

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

THE

OXYRHYNCHUS PAPYRI PART V
 GRENFELL AND HUNTT

EGYPT EXPLORATION FUND
 GRAECO-ROMAN BRANCH

Greta $\frac{1}{9}$

THE

OXYRHYNCHUS PAPYRI

PART V

EDITED WITH TRANSLATIONS AND NOTES
BY

BERNARD P. GRENFELL, M.A., D.Litt.

HON. LITT.D. DUBLIN ; HON. PH.D. KOENIGSBERG; FELLOW OF QUEEN'S COLLEGE, OXFORD FELLOW OF THE BRITISH ACADEMY; CORRESPONDING MEMBER OF THE MUNICH ACADEMY OF SCIENCES

AND

ARTHUR S. HUNT, M.A., D.Litt.

ION. PH. D. KOENIGSBERG; FELLOW OF QUEEN'S COLLEGE, OXFORD LATE FELLOW OF LINCOLN COLLEGE

WITH SEVEN PLATES

LONDON
 sold at

The Offices of the EGYPT EXPLORATION FUND, 37 Great Russell St., W.C. and Pierce Building, Copley Square, Boston, Mass., U.S.A.
Megan paul, trench, TrÜbNer \& CO., Dryden House, Gerrard St., W. bernard Quaritchi, il Grafton St., New Bond St., W.
ASher \& CO., 13 Bedford St., Covent Garden, W.C., and 56 Unter den Linden, berlin and Henry frowde, Amen Corner, E.C., and 91 and 93 Fifth Avenue, New York, U.S.A.

All rights reserved

8^{\prime}

PREFACE

OF the five texts comprised in this volume, the four long classical papyri (nos. 841-4) formed part of a large find of literary fragments from about twenty MSS., which was made on Jan. I3, 1906 in circumstances described in the Times of May 24, 1906 and the Archaeological Report of the Egypt Exploration Fund, 1905-6, p. 10. Of the other literary papyri which were discovered at the same time, the portions of the Hypsipyle of Euripides and of a new commentary upon Thucydides Book II will be published in Part VI, which we hope to issue in the summer of 1908 . The vellum fragment of a lost gospel (no. 840) was unearthed in a different mound in December, 1905.

In editing the two most important classical texts, the Pindar (841) and the new historian (842) we have enjoyed for the last time the very great privilege of collaborating with Professor F. Blass, whose tragically sudden death occurred shortly after he had completed the revision of the earlier proofs of those two texts, to the reconstruction of which he had so largely contributed. It is impossible for us adequately to acknowledge the debt which our publications of classical texts during the last eleven years owe to the generous and unstinted assistance of that illustrious scholar, whose brilliance of imagination and depth of learning were never more admirably displayed than in the congenial occupation of restoring, elucidating, and identifying literary papyri. His loss is indeed to us irreparable, and will be felt most keenly when we come to deal with the immense number of fragments from the Greek lyric poets found during the last two seasons, since in that department no less than in that of the Attic orators his preeminence was conspicuous.

In the reconstruction and interpretation of the new historian we also owe much to the most valuable help of Professors E. Meyer
and U. von Wilamowitz-Möllendorff, while Professor J. B. Bury has contributed a number of suggestions and criticisms upon both that papyrus and the Pindar. The assistance which we have received from other scholars, particularly Professors E. Schürer and H. Schöne and Mr. E. M. Walker, is acknowledged in connexion with the individual papyri.

In the Appendices we give a list of addenda and corrigenda to Parts III and IV of the Oxyrhynchus Papyri, and a list of published papyri recently distributed among various museums and libraries, in continuation of the list in Part IV, pp. 265-7I.

The excavations at Oxyrhynchus were at length concluded last winter, the sixth which has been devoted to the exploration of that marvellously productive site; the publication of the vast store of Greek papyri from it will be the work of many years to come. Owing to lack of funds the Graeco-Roman Branch is unable to conduct excavations during the coming season, but we hope to resume our work in Egypt in the winter of 1908-9, when we look forward to breaking fresh ground.

BERNARD P. GRENFELL. ARTHUR S. HUNT.

Quefn's College, Oxford, Остоber, 1907.

CONTENTS

PAGE
Preface v
Note on the Method of Publication viii
TEXTS
I. Theological:
840. Fragment of an Uncanonical Gospel 1
II. New Classical Texts:
841. Pindar, Paeans 11
842. Theopompus (or Cratippus), Hellenica 110
III. Extant Classical Texts:
843. Plato, Symposium 243
844. Isocrates, Panegyricus 292
APPENDICES
I. Addenda and Corrigenda to Oxyrrhynchus Papyri, Parts III and IV 313
II. List of Papyri Distributed 315
INDICES
I. 840 320
II. 841 321
III. 842. 33^{2}
LIST OF PLATES
I. 840 verso, 841 A. Col. xxiii
II. 841 A. Cols. iv-v .III. 841 Frs. 82 and 128IV. 842 Cols. $v-v i$at the end.V. 842 Cols. xi-xii
VI. 843 Cols. xxxi-xxxii
VII. 844 Cols. $\mathrm{ix}-\mathrm{x}$

NOTE ON THE METHOD OF PUBLICATION

The same general method is followed in this volume as in its predecessors. The three new literary texts are printed in dual form, a reconstruction in modern style in the case of 840 following, in that of 841 and 842 facing, a literal transcript. In the two texts of extant authors, 843 and 844 , the originals are reproduced except for division of words, addition of capital initials to proper names, and supplements of lacunae. Additions or corrections by the same hand as the body of the text are in small thin type, those by a different hand in thick type. Square brackets [] indicate a lacuna, round brackets () the resolution of an abbreviation or contraction, angular brackets \rangle a mistaken omission in the original or a correction made by us; double square brackets [[] mean that the letters within them have been deleted in the original, braces $\}$ that the letters so enclosed, though actually written, should be omitted. Dots placed within brackets represent the approximate number of letters lost or deleted; dots outside brackets indicate mutilated or otherwise illegible letters. Letters with dots under them are to be considered doubtful. Heavy Arabic numerals refer to the texts of the Oxyrhynchus papyri published in this volume and in Parts I-IV ; ordinary numerals to lines ; small Roman numerals to columns.

I. THEOLOGICAL

840. Fragment of an Uncanonical Gospel.

Plate I (verso).
This fragment consists of a single vellum leaf, practically complete except at one of the lower corners, and here most of the lacunae admit of a satisfactory restoration. The book to which the leaf belonged was of remarkably modest dimensions, but though the written surface only slightly exceeds two inches square the scribe has succeeded in compressing forty-five lines into the two pages. He used a small and not very regular uncial hand, round and upright, of a type pointing, we think, to a fourth rather than a fifth century date. A later date than the fifth century, to which most of the papyri found with 840 belonged, is out of the question. A peculiarity is the employment of red ink to outline and bring into greater prominence the dots of punctuation (in the middle position), initial letters of sentences, strokes of abbreviation, and even accents, of which two examples occur (11. 23 and 36). Longer pauses are marked not only by dots but also by short blank spaces, and the following letter, besides being sometimes ornamented with red, is rather enlarged. Of the abbreviations usual in theological MSS. $\overline{a \nu 0 S}\left({ }^{a} \nu \theta \rho \omega \pi o s\right), \overline{\delta \delta}$ ($\left.\Delta \alpha v \epsilon i \delta \delta\right)$, and $\overline{\sigma \omega \rho}(\sigma \omega \tau \eta \rho)$ are found. ν at the end of a line, in order to save space, is sometimes written as a horizontal stroke above the preceding vowel ; and there is one apparent instance (1.9) of the use of the common angular sign to complete a line shorter than its neighbours. In three cases words originally omitted have been supplied, all these interlineations most probably being by the original hand. The scribe apparently was particularly liable to omission, and in one or two other places supplements seem to be required ; cf. 1. I and notes on 11. 3-7 and 40.

The bulk of the fragment is concerned with a conversation between Jesus and a chief priest, which takes place in the Temple at Jerusalem, the episode,
which is of a dramatic character, being preserved almost complete. It is preceded by the conclusion of a speech of Jesus to His disciples, exhorting them to avoid the example of certain wrong-doers and warning them of the penalties which await the latter both in this world and the next (1l. 1-7). What particular class is referred to by the word av̇rois in 1.3 is not clear. Jesus, who throughout the fragment is called simply $\dot{\delta} \sigma \omega \tau \eta \rho$, then takes His disciples with Him inside the Tcmple to the àvvevrípiov, by which term the author of the gospel perhaps meant the 'court of the men of Israel', though how far this use of it is legitimate is doubtful (ll. $7-9$; cf. 1. 8, note). They are there met by a chief priest who is also a Pharisee, but whose name is quite uncertain (1. 10, note). The chief priest reproaches them for having neglected to perform the necessary ceremonies of ablution and change of garments before entering the holy place and looking upon the sacred vessels (11. 12-21). A short dialogue ensues in which Jesus asks the chief priest if he is pure, and the latter answers recounting the different purificatory rites which he had himself observed (ll. 2I-30). To this Jesus delivers an eloquent and crushing reply contrasting outward with inward purity, the external bathing prescribed by Jewish ritual with the inward cleansing which He and His followers had received in the waters of eternal life (1l. 30-45). Before the conclusion of the speech is reached the fragment breaks off.

In its general outline the episode described resembles Matt. xv. I-20, Mark vii. $1-23$, though the scene is there not Jerusalem but near Gennesaret, and the other details are of course different. The contrast between outward religious observance and inward purity was one of the most salient points in Christ's teaching, and is illustrated not only by the canonical gospels but by other uncanonical utterances ascribed to our Lord, e.g. the two series of Sayings of Fesus (1. 5-11
 than 655,840 belongs to a narrative covering the same ground as the canonical gospels. That this was composed with a view to advocating the tenets of a particular sect is not indicated by anything in our fragment; for though $11.4 \mathrm{I}-+$ when separated from their context might conceivably be adduced as an argument for denying the necessity of the use of water at baptism, $\beta a \pi \tau i \zeta \epsilon \epsilon v$ is not there used in its technical Christian sense (cf. 1. 15, note), and in other respects the fragment is quite orthodox. A possible point of connexion with the Gnostics may be found in the noticeable fact that our Lord is called not 'I η oovs or ó кúpos but δ $\sigma \omega \tau \mathfrak{\eta} \rho$, a title which Irenaeus (I. i. 3) reproaches the Valentinian Ptolemaeus for using to the exclusion of kv́pıos; cf. Harnack, Expansion of Christianity, i. p. 124. But the use of $\sigma \omega \pi \dot{\prime} \rho$ or salvator simply to designate Jesus is of course common in other early Christian writers, and though its employment indicates that this gospel belongs to a later stage of development than the canonical gospels,

 establish a Gnostic origin for the fragment. It is, however, enough to exclude the likelihood that 840 comes from either the gospel according to the Hebrews or that according to the Egyptians. For thou:gh $\sigma \omega \tau \eta \rho$ is used in introducing quotations from those gospels by Origen (In Ioann. ii. 6 tò ка日' 'E,阝paiors

 $\mu a \theta \eta \tau a i s$ к.т.. ., the evidence of the extant quotations themselves indicates that кúptos was the title commonly employed, as in the Gospel of Peter. In the absence of any definite resemblances between 840 and the scanty remains of the various uncanonical gospels composed in the second or third century, the fragment is best classed as belonging to a gospel distinct from any of them. The chief point of interest in it lies in the references to Jewish ceremonies of purification in connexion with the Temple-worship, about which the author at first sight shows an intimate knowledge. On some points the statements in the fragment find support in the extant authorities for the Temple-ritual at the time of Christ. Thus Josephus states that no Jew who was unclean had the right to be admitted to the inner court of the Temple, i. e. that known as the 'court of the men of Israel ' (cf. 1. 8, note), and the statement put into the mouth of the chief priest concerning the necessity of ceremonial washing and putting on white garments is in accordance with the regulations for priests described in the Mishnah (cf. 11.25 and 27 , notes). But that an ordinary Jew before visiting the inner court of the Temple had to wash and change his clothes as stated in 11.18-20 is not confirmed
 $\Delta a v \epsilon_{i ́ \delta}^{0}$ in 1. 25 are mentioned elsewhere, while considerable difficulty arises in connexion with the 'sacred vessels' which are stated to have been visible from the court to which Jesus and His disciples had penetrated; cf. 11. 12-21, note. Moreover the two stairways leading down to the 'pool of David' and still more the statement that dogs and swine were cast into it (11. 33-4) seem to be details invented for the sake of rhetorical effect, for that a high priest washed himself in a pool of the character described in the fragment is incredible. So great indeed are the divergences between this account and the extant and no doubt well informed authorities with regard to the topography and ritual of the Temple that it is hardly possible to avoid the conclusion that much of the local colour is due to the imagination of the author, who was aiming chiefly at dramatic effect, and was not really well acquainted with the Temple. But if the inaccuracy of the fragment in this important respect is admitted, the historical
character of the whole episode breaks down, and it is probably to be regarded as an apocryphal elaboration of Matt. xv. 1-20 and Mark vii. 1-23. In these circumstances the gospel to which the fragment belongs can hardly have been composed before the middle of the second century. The use of the term $\sigma \omega \tau \eta \rho$ and the fact that the manuscript itself was written in the fourth or possibly even the fifth century may be represented as arguments for a third century date, but that seems to us improbable. After the four canonical gospels had come to be cxclusively used in most churches, a process which was complete by the end of the second century (Harnack, Gesch. d. altclor. Lit. ii. p. 699), no new gospel covering the same ground could look for more than a very limited acceptance, and after about A.D. 180 authors of apocryphal gospels generally avoided competition with the canonical gospels by placing their supposed revelations in the period of the Childhood or after the Resurrection. Moreover, if the author of 840 wrote in the third century, we should expect him to betray a definitely heretical point of view, which, as we have said, is not discernible in the fragment. That it is Egyptian in origin is very likely, but it stands much nearer to the gospel according to the Egyptians which was composed in the second century, probably before the middle of it, than e.g. to the Pistis Sophia which was written in the third. The literary quality also of the fragment does not favour a very late date; the style is more ambitious than that of the canonical gospels, and the rhetorical tendency of the composer, who uses a number of words not found in the New Testament, is somewhat pronounced, but he is more successful in catching something of the genuine ring than many of the authors of apocryphal gospels. Hence we prefer to regard the work to which 840 belongs as composed before A. D. 200. While the story of the dialogue between Christ and the chief priest has no claim to be accepted as authentic, and is probably a secondary or even tertiary production, the fragment is an interesting and valuable addition to the scanty remnant of the numerous uncanonical traditions concerning Christ's teaching which were current in many Christian communities, especially in Egypt, during the third and fourth centuries.

We are indebted to Prof. E. Schürer for several suggestions in the interpretation of this fragment.

$\beta \alpha \sigma \alpha \nu 0 \nu$. K $\alpha \iota \pi \alpha \rho \alpha \lambda \beta \omega \nu \alpha \nu \tau о v \sigma$
 $\pi \epsilon \rho \iota \epsilon \pi \alpha \tau \epsilon \iota \epsilon \nu \tau \omega \iota \epsilon \rho \omega \cdot \kappa \alpha \iota \pi \rho 0 \sigma \epsilon[\cdot]]$
10 $\theta \omega \nu \phi \alpha \rho \iota \sigma \alpha \iota \sigma \sigma \tau \iota \sigma \alpha \rho \chi \iota \rho \rho \in v \sigma \lambda \epsilon \cup[. .$.
тооvо $\mu \alpha \sigma \nu \nu \epsilon \tau v \chi \in \nu \alpha \nu \tau 0 \iota \sigma \kappa \alpha \iota \epsilon[$. . .] . [
$\tau \omega \overline{\sigma \omega \rho l} \cdot \tau \iota \sigma \epsilon \pi \epsilon \tau \rho \epsilon \psi \epsilon \nu \sigma 0 \iota \pi \alpha \tau[$

$\tau \epsilon$
$\tau \alpha \tau \alpha \alpha \gamma \iota \alpha \sigma \kappa \epsilon \nu \mu \eta \lambda o v \sigma \alpha[\cdot] \epsilon!\varphi[\cdot] \mu[$.
$\mu \eta \nu$
${ }^{1} 5 \tau \epsilon \tau \omega \nu \mu \alpha \theta \eta \tau \omega \nu \sigma 0 \cup \tau 0 v \sigma \pi$
$\pi \tau \iota \sigma \theta \epsilon \nu \tau \omega \nu \cdot \alpha \lambda \lambda \alpha \mu \epsilon \mu 0 \lambda v[. . .$.
єтатทбабточтотоїєроцт[.
$\tau \alpha \kappa \alpha \theta \alpha \rho o \nu \cdot o \nu 0 v \delta \epsilon \iota \sigma \alpha[$.
$\lambda o v \sigma \alpha \mu \epsilon \nu 0 \sigma \kappa \alpha \iota \alpha \lambda \lambda \alpha[$.
$20 \mu \alpha \tau \alpha \pi \alpha \tau \epsilon \cdot \cdot 0 v \delta \epsilon!$
т $\alpha \alpha \gamma \iota \alpha \sigma \kappa \in \cup \eta \cdot \kappa \alpha \iota \sigma[$
. [. . .]oı $\sigma \mu \alpha \theta \tau \alpha \iota[$.

Recto.
$\sigma \varphi c \varphi \varphi \nu \epsilon \nu \tau \alpha \nu \theta \alpha \hat{\omega} \nu \epsilon \nu \tau \omega i ̈ \epsilon \rho \omega \cdot \kappa \alpha \theta \alpha$ €КєเขOの
$\rho \epsilon v \epsilon \iota \sigma \cdot \lambda \epsilon \gamma \epsilon \iota \alpha v \tau \omega \kappa \alpha \theta \alpha \rho \epsilon \nu \omega \cdot \epsilon \lambda, \quad v \sigma \alpha$
${ }^{2}{ }^{5} \mu \eta \nu \gamma \alpha \rho \epsilon \nu \tau \eta \lambda \iota \mu \nu \eta \tau 0 v \bar{\delta} \cdot \cdot \kappa \alpha \iota \delta \iota \epsilon \tau \epsilon$
$\rho \alpha \sigma \kappa \lambda \epsilon \iota \mu \alpha \kappa о \sigma \kappa \alpha \tau \epsilon \lambda \theta \omega \nu \delta \iota \epsilon \tau \epsilon \rho \alpha \sigma$
$\alpha[\cdot] \eta \lambda \theta_{0 \nu} \cdot \kappa \alpha / \lambda \epsilon v \kappa \alpha \epsilon \nu \delta \nu \mu \alpha \tau \alpha \in \nu \epsilon$
$\delta v \sigma \alpha \mu \eta \nu \cdot \kappa \alpha \iota \kappa \alpha \theta \alpha \rho \kappa \alpha \iota \tau о \tau \in \eta \lambda \theta_{\bar{o}}$
ка८троб $\epsilon \beta \lambda \epsilon \psi \alpha \tau$ титоוбто८ $\sigma \gamma \iota \circ \sigma$
$30 \sigma \kappa \epsilon \nu \epsilon \sigma \iota \nu \cdot \quad О \overline{\sigma \omega \rho} \pi \rho о \sigma \alpha v \tau о \nu \alpha \pi о$
[. . .] $\theta \epsilon \iota \sigma \epsilon \iota \pi \epsilon \nu \cdot 0 v \alpha \iota \tau \cup \phi \lambda о \iota \mu \eta \circ \rho \bar{\omega}$
$\tau[\cdot] \sigma \cdot \sigma v \in \lambda$ ov $\omega \omega \tau$ тотоוбтоь $\sigma \chi \in о \mu \in \nu 0 \iota \sigma$
$\varphi[\cdot] \alpha \sigma!\epsilon \nu 0 \iota \sigma \kappa v \nu \in \sigma \kappa \alpha \iota \chi \circ \iota \rho 0 \iota \beta \epsilon \beta \lambda \eta \nu$
[. . .] $\nu \cup \kappa \tau о \sigma к \alpha \iota \eta \mu \epsilon \rho \alpha \sigma \cdot \kappa \alpha \iota \nu \iota \psi \alpha \mu \epsilon$
$35[..] \rho \sigma \tau о є \kappa \tau о \sigma \delta \in \rho \mu \alpha \in \sigma \mu \eta \xi \omega \cdot \sigma \pi \epsilon \rho$ [. . .]! $_$! $\pi о \rho \nu \alpha \iota к \alpha \iota \alpha[.] \alpha v \lambda \eta \tau \rho i \delta \delta \epsilon \sigma \mu \nu \rho \iota$ [. .]ov[. . . .]a! λ ovovбเขкаıб $\mu \eta \chi^{0 \nu \sigma \iota}$ [. . . .] $\alpha \lambda \lambda \omega \pi \iota \zeta 0 v \sigma \iota \pi \rho 0 \sigma \epsilon \pi \iota \theta \nu \mu \iota$ [. . .] $\omega \nu \overline{\alpha \nu \omega \nu} \cdot \epsilon \nu \delta O \theta \epsilon \nu \delta \epsilon \epsilon \kappa \in \iota$
[.]кı $\alpha \sigma$ є $\boldsymbol{\omega \delta є к \alpha \iota о \iota ~}$ [.]ov $\lambda \lambda \epsilon \gamma \epsilon \iota \sigma \mu \eta \beta \epsilon \beta \alpha[$. [. $] \mu \mu \epsilon \theta \alpha \in \nu \ddot{\partial} \delta \alpha \sigma \iota \varsigma \omega[$. [.] $] \sigma \epsilon \lambda$ Өovбı $\alpha \pi$! . . [.]
45
 $\pi \rho o ́ \tau \epsilon \rho о \nu \pi \rho o ̀\langle\tau о \hat{v}\rangle \alpha \dot{\alpha} \delta \iota \kappa \hat{\eta} \sigma \alpha l \pi \alpha ́ \nu \tau \alpha$ бофí§єT α. $\dot{\alpha} \lambda \lambda \grave{\alpha} \pi \rho \circ \sigma \epsilon ́ \chi \epsilon \tau \epsilon \quad \mu \dot{\eta} \pi \omega s$ каі $\dot{v} \mu \epsilon i ̂ s ~ \tau \grave{\alpha}$ ö $\mu o \iota \alpha$ av́тoîs $\pi \alpha ́ \theta \eta \tau \epsilon \cdot$ oủ $\gamma \dot{\alpha} \rho$ є่v тoîs swoîs μ óvous ảто入a $\mu \beta$ ávou-
5 $\sigma \iota \nu$ oi како仑̂pүol $\tau \hat{\omega} \nu \dot{\alpha} \nu(\theta \rho \omega ́ \pi) \omega \nu \quad \alpha \lambda \lambda \grave{\alpha}[\kappa] \alpha \grave{~}$ ко́ $\alpha \sigma \iota \iota \nu$ vं $\pi о \mu \epsilon ́ \nu 0 v \sigma \iota \nu$ каì $\pi о \lambda[\lambda] \eta ̀ \nu$ $\beta \alpha ́ \sigma \alpha \nu 0 \nu$. каi $\pi \alpha \rho \alpha \lambda \alpha \beta \grave{\omega} \nu$ aủтоùs

 тò ővo $\mu \alpha$ $\sigma v \nu$ ét $\tau \chi \in \nu$ av̇тoîs каì $\in[i \bar{i} \pi \epsilon \nu]$
 тои̂тo тò $\alpha \dot{\alpha} \gamma \nu \epsilon \tau \tau \eta ́ \rho l o \nu ~ к \alpha i ̀ ~ i \delta \epsilon i ̂ \nu ~[\tau \alpha \hat{v}-$

 $\pi \tau \iota \sigma \theta \epsilon \in \nu \tau \omega \nu ; \quad \dot{\alpha} \lambda \lambda \grave{\alpha} \quad \mu \epsilon \mu 0 \lambda v[\mu \mu \epsilon ́ \nu 0 s$
 $\tau \alpha \kappa \alpha \theta \alpha \rho o ́ v, ~ o ̂ v ~ o u ́ \delta \epsilon i s ~ a ̆[\lambda \lambda o s ~ \epsilon i ~ \mu \grave{\eta}$
 $20 \mu \alpha \tau \alpha \pi \alpha \tau \epsilon \hat{i}$, oú $\delta \hat{\prime}$ ô $[\rho \hat{\alpha} \nu \tau 0 \lambda \mu \hat{a} \tau \alpha \hat{v} \tau \alpha$
 $\sigma[\grave{v} \nu \tau] o i ̂ s ~ \mu \alpha \theta \eta \tau \alpha i ̄[s \quad \alpha ं \pi \epsilon \kappa \rho i \theta \eta \quad \alpha v ่ \tau \hat{\varphi}$,


```
2Ј \mu\eta\nu \gamma\alphà\rho '̇\nu \tau\hat{\eta} \lambdaí\mu\nu\eta \tauоv̂ }\Delta(\alpha\nu\epsiloni)\delta к\alphai \deltai' \epsilonं\tau\epsiloń
    \rho\alphas к\lambdaí\mu\alphaкоs к\alpha\tau\epsilon\lambda0\grave{\omega}\nu \deltal' \epsiloń\tau\epsiloń\rhoаs
    \alpha}[\nu]\etaे\lambda0о\nu, каì \lambda\epsilonvкà \epsiloṅ\nu\delta\dot{v}\mu\alpha\tau\alpha \epsiloṅ\nu\epsilon
    \deltav\sigma\alphá\mu\eta\nu к\alphai к\alpha0\alpha\rho\alphá, каi то́т\epsilon \grave{ \}\lambda0о\nu
```



```
30 \sigmaк\epsilonú\epsilon\sigmaL\nu. ò \sigma\omega(\tau\grave{\eta})\rho \pi\rhoòs aú\tauòv \alphả\pi0-
    [k\rhol]0\epsilonis \epsiloni\pi\pi\epsilon\nu, ov\alpha\alphaí, \tauv\phi\lambdaoi \mu\età ó\rho\omegaि\nu-
    \tau[\epsilon]s` \sigmaù \epsiloń\lambdaov́\sigma\omega roútols \tauoís X\ino\mu'́vols
    v"[\delta]\alpha\sigma\iota\nu \epsiloṅ\nu oîs кúv\epsilons каi \chioîpol \beta\epsiloń\beta\lambda\eta\nu-
    [\tau\alphal] \nuvктòs каi \età\mu\epsiloń\rho\alphas, каi v\psi&а́\mu\epsilon-
3Ј [\nu]os rò \epsilońктòs \delta'\epsiloń\rho\mu\alpha \epsiloń\sigma\mu\eta'\xi\omega, ö\pi\epsilon\rho
    [к\alpha]i \alphai \pióр\nu\alpha\iota к\alphai \alpha[i] \alphaủ\lambda\etaтрí\delta\ins \mu\nuрí-
    [\zeta]0v[\sigma\iota\nu к]\alphai \lambdaov́ov\sigma\iota\nu к\alphai \sigma\mu\etá\eta\ov\sigma\iota
    [к\alphai к]\alpha\lambda\lambda\omega\pií{ov\sigma\iota \pi\rhoòs \epsiloṅ\pi\iota0v\mui-
```



```
40 [\nu\alpha\iota \pi\epsilon\pi\lambda]\eta{\rho\omega\langle\nu\rangle\tau\alpha\iota \sigmaко\rho\pií\omega\nu к\alphai
    [\pi\alphá\sigma\etas ка]кías. \epsiloń\gamma⿳亠凶禸 \delta\grave{ к\alphaì oi}
    [\mua0\eta\tau\alphaí \muov] oṽs \lambda\epsiloń\gamma\epsilonlS \mu\grave{ }\beta\in\beta\alpha-
    [\pi\tauí\sigma0\alpha\iota }\beta\in\beta\alphá]\mu\mu\epsilon0\alpha \epsiloń\nu v̈\delta\alpha\sigma\iota \zeta\omega
    [\etâs \alphai\omegaviov \tauoî]s \epsiloṅ\lambda0ov̂\sigma\iotav ả\piò . . [.]
4j [. . . . . . . . ả\lambda]\lambda\grave{\alpha} ov́\alphai [\tau]oîs [. . .].
```

＇．．．before he does wrong makes all manner of subtle excuse．But give heed lest ye also suffer the same things as they；for the evil－doers among men receive their reward not among the living only，but also await punishment and much torment．And he took them and brought them into the very place of purification，and was walking in the temple．And a certain Pharisee，a chief priest，whose name was Levi，met them and said to the Saviour，Who gave thee leave to walk in this place of purification and to see these holy vessels，when thou hast not washed nor yet have thy disciples bathed their feet？But defiled thou hast walked in this temple，which is a pure place，wherein no other man walks except he has washed himself and changed his garments，neither does he venture to see these holy vessels．And the Saviour straightway stood still with his disciples and answered him，Art thou then，being here in the temple，clean？He saith unto him，I am clean；for I washed in the pool of David，and having descended by one staircase I ascended by another，and I put on white and clean garments，and then I came and looked upon these holy vessels．The Saviour answered and said unto him， Woe ye blind，who see not．Thou hast washed in these running waters wherein doga
and swine have been cast night and day，and hast cleansed and wiped the outside skin which also the harlots and flute－girls anoint and wash and wipe and beautify for the lust of men ；but within they are full of scorpions and all wickedness．But I and my disciples，who thou sayest have not bathed，have been dipped in the waters of eternal life which come from ．．．But woe unto the ．．．＇

3－7．This sentence is very obscurely worded，and perhaps corrupt．The contrast is， we think，between punishment in this life and in the world to come；hence we prefer ζ ऊois＇living＇to 广థ＇ous＇animals＇．The use of کwós，a poetical word employed also by
 object for $\dot{a} \pi \sigma \lambda a \mu \beta \dot{a} \nu o v \sigma \iota \nu$（e．g．тòv $\mu \iota \sigma \theta o ́ v)$ is awkward，even if one could be supplied from the sentence preceding 1．1；and after $\dot{\alpha} \lambda \lambda \grave{\alpha}$ каi a phrase to balance $\dot{\epsilon} \nu$ roís $\zeta \omega 0 i \hat{s}$ would be expected．Possibly some words have dropped out ；the scribe seems to have been rather prone to omission．For kó入agts in reference to the next world cf．Matt．xxv． 46 àme入cúroveat oitot єis кодаaət aí̀uov：Báravos is not so used in the N．T．，though cf．Matt．xviii． 34. $v \pi о \mu \epsilon \nu \quad v \sigma \iota \nu$ may be future，but the present tense makes a better contrast to $\dot{a} \pi{ }^{2} \lambda a \mu \beta a ́ \nu o v \sigma \iota \nu$ ．

8．ajvevinfoov：this term is not found elsewhere in connexion with the Temple，and what the author of this gospel exactly meant by it is not clear．The context shows that it was within the inner enclosure，and 11．12－3，where $\pi a \tau[\epsilon \hat{i}]$ тoìтo тò áyvevińpıo corresponds
 especially as the term $\dot{\alpha} \gamma v \in u \tau$ inpoov is not a suitable description for any of the known rooms in Herod＇s Temple．The＇Chamber of Washers＇（Middoth v．4）was employed for cleansing the inwards of the offerings，not for ceremonial ablutions．If a dyvevtípoo implies a place where rites of purification were performed，the only part of the Temple to which the name would be at all appropriate is the space round the brazen laver，which stood between the Temple－porch and the altar，having succeeded to the＇molten sea＇of Solomon＇s Temple
 was in the court of the priests，which could not be entered by lay Israelites except for purposes of sacrifice（Kelim，i． 8 quoted in Schürer，Gesch．d．Jiud．Volkes，ii．p．273），and other indications in the papyrus（cf．11．12－2I，note）besides the general probabilities of the case suggest that Jesus and His disciples had not penetrated further than the＇court of the men of Israel＇，which was outside the priests＇court．If áyvevtipoov is legitimately used of the＇court of the men of Israel＇，the term seems to be applied to it not because it was a place where purification was performed but because it could only be entered by Israelites

 ii． 8 in tertia（sc．porticu）masculi Iudaeorum mundi existentes atque purificati（sc．ingredie－ bantur）．But it may be doubted whether the author of this gospel had any clear conception of the topography of the Temple，and the employment of the term dyvevtiptov may be a mere error ；cf．introd．
 the high priest actually in office and his predecessors，but also secondly members of the families from which the high priests were drawn；cf．Schürer，op．cit．ii．pp．22I－4．There is therefore no necessity for this person to have been the high priest in office at the moment． Most of the high priests were Sadducees，and hence are often in the N．T．contrasted with the Pharisees，but instances of high priests who were Pharisees occur ；cf．Schürer，op．cit． ii．P 201．The combination Фарияaiós $\tau \iota \varsigma$ äpxıpevis is therefore quite legitimate，and such a person is particularly appropriate as the champion of external purity ；cf．11．24－30．

Aci［Eis］：the reading is extremely doubtful，but neither＂Avv as nor Kar［á申as is admissible． The first two letters，if not $\lambda \epsilon$ ，seem to be $a \sigma$ ，and the third，if not v ，to be ι or κ ．

12-21. From this speech of the Pharisee it appears firstly that entrance to that part of the Temple to which Jesus and His disciples had penetrated was permitted only to those who had either bathed (1. 19 גovaíusvos ; cf. 1. 24) or at any rate had washed their feet, and had put on fresh clothes, secondly that from this part of the 'Temple the holy vessels were visible. The principal holy vessels, e.g. the table of shewbread and the sevenbranched candlestick, stood in the hekal or larger room of the sanctuary; but this was only entered by the officiating priests, and the writer of this gospel is not likely to have been so ignorant of the facts concerning the Temple-service as to suppose that Jesus and His disciples could have wished to enter the sanctuary, much less that they could have succeeded in doing so without opposition from the Temple guards and with no stronger remonstrance from the high priest than that related here. Other sacred vessels were kept in the small chambers (38 in number), which surrounded the sanctuary on all sides except that of the porch; cf. Middoth iv. These chambers were apparently entered from the inside of the building, so that in order to reach them it would be necessary to pass through the Temple-porch, and their contents can hardly have been visible from the priests' court which immediately surrounded the Temple-building, much less from the court of the men of Israel which was outside the court of the priests. Since the court of the priests was only accessible to lay Israelites for the purpose of sacrificing at the great altar, it is almost as difficult to suppose that Jesus and His disciples penetrated to these chambers as that they entered the sanctuary. The nature of the remonstrance addressed to them by the chief priest, who reproaches them not with being laymen but with being unclean, suggests that the scene of the conversation is the court of the men of Israel, which, as Josephus says, could only be entered by the mundi atque purificati or каӨainav $\dot{\eta} \gamma \nu \epsilon \in \kappa o ́ t \epsilon s$ (cf. l. 8, note). Hence if äya $\sigma \kappa \epsilon \dot{\eta}$ implies more than the bronze laver, and the rings, tables, and other accessories of the sacrifices, all of which objects, being outside the Temple-building, would be visible from the court of the men of Israel, the author of this gospel has fallen into a somewhat serious error. Moreover, the statement in 11. 18-20 that bathing and changing of clothes were required from ordinary Israelites when visiting the Temple is not confirmed by anything in the authorities, which record the observance of these formalities only in the case of the officiating priests; cf. 11.25 and 27 , notes. Josephus' reference to каӨáтav ŋiyvevкótes probably means merely persons who were Levitically pure, and does not imply the performance of special rites of purification. Schürer, therefore, seems to be right in supposing that the author of the gospel has by mistake referred to laymen the regulations applicable only to priests.
15. $\beta a] \pi \tau \tau \sigma \theta \in \nu \tau \omega \nu$: $\beta a \pi \tau i \zeta_{\epsilon \iota \nu}$ is used here and in 1.42 not in the ordinary technical sense of baptizing, but with reference to ceremonial ablution, as in Luke xi. 38 ó $\dot{\text { e }}$ Фapıбaias

 עєкрồ.
20. ófâv: σ may be read in place of o.
 clear what the author of the gospel meant by it, or where it was situated. Schürer thinks that it refers to the 'brazen' or 'molten sea' set up by Solomon between the porch and the altar (1 Kings vii. 23, 2 Chron. iv. 2). This was a large laver supported by 12 brazen oxen, and containing according to I Kings 2000, according to 2 Chron. 3000, baths of water. It was destroyed by Nebuchadnezzar (2 Kings xxv. 13, 16, Jer. lii. 17, 20), and though if Sir. I. 3 may be trusted the second Temple also had its brazen sea, Herod's Temple did not possess one. In its place there was firstly a bronze laver between the porch and altar (Middoth iii. 6, \&c.; cf. Schürer, op. cit. ii. p. 283) in which the officiating priests had to wash their hands and feet, and secondly a room fitted up with baths for daily use by
the officiating priests before entering on their duties ；cf．Testam．XII Patriarch．，Levi 9
 1．c．This room，which is called in Middoth i． 9 ＇the house of baptism＇，was reached by a passage from the Temple－building，and was clearly outside the Temple－enclosure．That the author of the gospel had in his mind the＇brazen sea＇seems to us improbable，since the $\lambda_{i \mu \nu \eta}$ is called after David，not Solomon，and while the brazen sea stood close to the Temple－building itself，the $\lambda i \mu \nu \eta$ which had two к之ípaкєs leading down to it（11．25－6）and into which dogs and swine are cast（1．33）is evidently conceived of as being outside the Temple（presumably in the valley below），and thus fulfilling the functions ascribed in the Mishnah to the＇house of baptism＇．Whether a pool called after David really existed is however very doubtful，for the details concerning it are more picturesque than convincing． The subtle distinction of the different stairways for the use of the clean and unclean，though plausible in itself，is，in the absence of corroboration，more likely to be due to the imagination of the author of the gospel than to have a historical basis，and the casting of dogs and swine into the pool looks like a rhetorical exaggeration；cf．note ad loc．

27．λ єvкর̀ è $\nu \delta \delta \dot{v} \mu a t a$ ：on this detail，that the officiating priests put on special garments， white in colour，the author of the gospel is correct（cf．Schürer，op．cit．pp．281－2），as he is with regard to the necessity for their taking a daily bath before entering on their religious duties ；cf． $1 .{ }^{2} 5$ ，note，and introd．

31．ovai，тvф入oi：the dative is more common after ovai，as in 1.45 ；but cf．Luke vi，

33．χ oipo：：that swine were not uncommon in Palestine at the time of Christ is proved by Matt．vii．61，viii． 30 ，and Luke xv．${ }^{5} 5$ ．The reference to the dogs and swine is introduced to heighten the effect of the contrast with the waters of life in ll．43－4．The author of the gospel may well have had in his mind the stagnant pools which are a common feature of Egyptian villages，but the description is incredible when applied to a pool in which a chief priest bathed，and as a piece of rhetoric somewhat overshoots the mark； for the real point of the contrast between the two kinds of purification is not that the water was in the one case unclean，but that it only cleansed the outward skin，whereas the other form of purification was spiritual．

 by Eusebius in his Theophania（Resch，Agrapha，p．388）．

 ípтаү̂̀s каì π ovךрias（cf．ка］kias in 1．41）．
 of $\bar{\epsilon} \kappa \varepsilon i v a$, but such a use of the neuter plural is unlikely．

43．$\beta_{\epsilon} \beta a^{\prime} \mu \mu \epsilon \theta a: a$ ，δ ，or λ could be read in place of the doubtful μ ，but not σ or v ， so that $\left.\lambda_{\epsilon} \lambda_{0}\right] \dot{u} \mu \epsilon \theta a$ and $\left.\beta_{\epsilon} \beta a \pi \tau i\right] \sigma \mu \epsilon \theta a$（which is also too long）are excluded，and $\beta_{\epsilon} \beta a \dot{\mu} \mu \mu \epsilon a$ is practically certain．及aint $\epsilon \nu$ is a less technical word than $\beta a \pi \tau i \xi \epsilon \nu$ ，but there is，we think， no real distinction intended between the two terms here，since $\beta a \pi r i \zeta \epsilon \omega$ is not employed in its technical sense ；cf．l．I5，note．

43－4．$\zeta \omega\left[\hat{\eta} s\right.$ ：or $\zeta \hat{\omega}\left[\sigma t\right.$ ，with another word in place of ai viou．The letter before $\epsilon^{\prime} \lambda \theta o v \sigma \iota \nu$ may be τ or v instead of σ ，so that $\kappa a] \tau \in \lambda \theta o \hat{v} \sigma \iota \nu$ is possible．$v \delta \omega \rho \zeta \hat{\omega} \nu$ occurs in John iv． 10 ， ${ }^{11}$ ，vii． 3^{88} ，v̈ $\delta \omega \rho \zeta \omega \bar{\eta} s$ in Rev．vii．${ }_{17}$ ，xxi． 6 ，xxii． 1 and 17 ．ánó，if correct，was no doubt followed by some words like $\tau \hat{\omega} \nu$ oìpavêv or tov̀ $\pi a \tau \rho o ́ s . ~$

II. NEW CLASSICAL TEXTS

841. Pindar, Paeans.

Height $18 \mathrm{~cm} . \quad$ Plates I-III (1 Cols. iv, v, xxin, Frs. 82 and 128).

IT is a somewhat remarkable circumstance that though several Pindaric fragments have been found at Oxyrhynchus (408, 426 (?), and 658 besides 841), none of them has contained any part of the Epinician poems. Eustathius tells us (Opusc. p. 60. 22) that that section of the poet's works was the most popular as being fuller of human interest, less concerned with myth and less obscure

 hardly seems to have been the general verdict in Egypt during the Roman period. Recent discoveries moreover happily enable us to form our own opinion as to the character of some of the other categories. 659 provided for the first time a specimen of the Пap θ ' $\nu^{\prime} \epsilon \iota a$; and now the following much longer and more valuable text presents the material for an adequate estimate of the important class of Пaıâvєs.

The paean, which is a very ancient form of poetry, was a hymn originally sung in honour of Apollo or Artemis, whether in thanksgiving to, or propitiation of, the deity. Both of these motives appear in Homer; the Achaeans are to return to their ships singing a paean of victory ($\begin{aligned} & \text { 3 31) , and try to divert the }\end{aligned}$ wrath of Apollo with a paean at a sacrificial feast (A 472-3). In later times paeans were dedicated to other gods than Apollo ; Xenophon, for instance, speaks of a paean to Poseidon (Hell. iv. 7. 4) : cf. Proclus, Clirest. ap. Photius, Bibl. 239

 characteristic of the paean ; Athenaeus, xv. pp. $696 \mathrm{e}, \mathrm{f}$ (cf. $701 \mathrm{~b}, \mathrm{c}$), calls in maldu^{\prime} the $\pi a \iota a \nu \iota \kappa \grave{v} v \dot{\epsilon} \pi i \rho \rho \eta \mu a$ or $\grave{\epsilon} \pi i \phi \theta \epsilon \gamma \mu a$, a description which the papyrus well illustrates; cf. also 660 .

The Paeans were comprised in one of the seventeen books attributed to Pindar by the Cod. Ambrosianus and Suidas. To that book, apart from single
words, only two small fragments (52 and 61) could hitherto be certainly referred ; a few others, now seen to belong to it, had been wrongly assigned to other categorics. Of the Paeans of Simonides there are but a line and a half; of those of Bacchylides, previously represented by a couple of fragments, two specimens have lately reappeared in the British Museum papyrus. By a similar stroke of good fortune the lost book of the Paeans of Pindar is now partially recovered through the present MS., which, next to that of Bacchylides, is the largest extant papyrus of a lyric poet. The identification admits of not the smallest doubt. That the bulk at any rate of the poems are to be classed as paeans is obvious; and not only do they bear unmistakably the Pindaric stamp, but their authorship is conclusively established by several coincidences with already known citations as well as by references to Pindar in the scholia which accompany the main text.

The remains of this admirable manuscript, in elaborateness rivalling the l'aris Alcman papyrus, were unearthed in deplorable condition ; they consisted of some 380 fragments, none of which contained two complete consecutive columns, while the great majority were quite small. The process of fitting together has largely reduced the total, but many scraps remain unplaced in spite of repeated efforts ; some of them no doubt will eventually be assigned by future revisions to their proper position, though it does not seem probable that there is much to be done in this direction. The task of combination has been greatly assisted by the fact that the literary text was written upon the verso of a cursive document; frequently a connexion, which otherwise would have remained a matter of conjecture, has been definitely established or excluded by the evidence on the other side of the papyrus. As now reconstructed the MS. falls into four principal sections. In A, which constitutes the bulk of what survives, as many as thirty-five consecutive columns containing parts of seven odes can be accounted for, though with large gaps and imperfections. The recto contains an elaborate list of persons, written probably in the latter part of the first century, with details as to parentage, age, and other personal characteristics. As often, the papyrus was cut horizontally before being re-used; it has also sometimes been divided vertically and rejoined, and strengthening strips have been glued on in places. Under B, where the hands on either side are the same as in A, are included several fragments which are distinguished by their dirty and decayed condition. There are remains of three columns which may be consecutive, but whether they belong to a single poem or form part of the last ode (VII) of A is doubtful; cf. the commentary ad loc. It is even uncertain whether B precedes or follows A. In C the cursive recto is the same as in A and B, but the text of the Pindar is in a new hand, which continues through D ; the two groups, each including one practically complete column, are marked off from each other by
the presence of a different document, part of a land-survey list, on the recto of D). while the recto of C is the same as in Λ and B. Two isolated fragments, 26-7, where the text on the verso was written by the scribe of $A-B$, also have a different cursive, perhaps the same as in D , on the recto. The changes of hand in the verso and recto respectively make the order $\mathrm{A}-\mathrm{B}, \mathrm{C}, \mathrm{D}$ the natural one; but it is not impossible that D preceded C or that $\mathrm{C}-\mathrm{D}$ preceded $\mathrm{A}-\mathrm{B}$, for the case of Frs. $26-7$ indicates that the recto of the roll as made up to receive the literary text on the rerso was of a somewhat heterogeneous character. There is some internal as well as external evidence for distinguishing $\mathrm{C}-\mathrm{D}$ from $\mathrm{A}-\mathrm{B}$, since it is doubtful whether the poems represented in $\mathrm{C}-\mathrm{D}$ are also to be regarded as paeans ; this question will be considered later (p. 23).

The text of the Pindar is written in short columns of fifteen or sixteen lines which occupy about 11.5 cm . in depth, a wide margin being left between the columns for the reception of scholia, and the lines placed rather wide apart, perhaps with a view to interlinear additions ; the distance from the commencement of one column to that of the next is from $1+$ to 15 cm . The occurrence of the figure 900 opposite II. 25 proves that some 866 lines or fifty-seven columns had preceded the ten verses which survive of Paean I. On the assumption that a literary roll did not ordinarily exceed thirty feet in length, this MS. of Pindar's Paeans would have consisted of more rolls than one. As already stated the text is the work of two scribes; in $\mathrm{A}-\mathrm{B}$ the hand is a good-sized uncial, round and upright, but irregular and rather heavy. There is a noticeable variation in the size of the writing at different points; and cursive forms have occasionally: intruded themselves at the end of a verse. On its own evidence this hand might be assigned with probability to the carlier decades of the second century, a date strongly indicated (1) by the document on the recto, which was written after the end of the reign of Titus (who is called θ eós) but perhaps before the close of the first century, and (2) by the cursive scholia, which we think are not later than the middle of the second century and are likely to be for the most part practically: contemporary with the main text. The scribe of $\mathrm{C}-\mathrm{D}$ was the master of a much more practised and ornamental handwriting. This also is of the round upright type, but the letters are smaller and lighter, though firm and carefully finished (cf. Plate III). A noticeable feature, found also in some other well-written literary papyri, is the apices or little hooks with which the extremities of strokes are in many cases provided. A cursive ϵ occurs at the end of a line in Pacan IX. $3^{8 .}$

Breathings, accents, marks of quantity and elision, and diaereses have been pretty freely supplied throughout, but accents are rather more common in C-D. Breathings are of the square shape. The system of accentuation shows a general
resemblance to that found c.g. in the Bacchylides papyrus and 223. In diphthongs, as usual, an acute accent falls on the first of the two vowels, while a circumflex generally covers both; a grave accent is placed by the scribe of $\mathrm{A}-\mathrm{B}$ on the second vowel (III. I2, VI. 130), by the scribe of C-D in two instances on the second (Fr. 82.25 Teגeis, IX. 39 arati θ eis), in one (IX. 39μ цòtrautas) on the first. Unaccented syllables often bear a grave accent, usually one or more of those
 a following syllable is similarly treated in Fr. 82. 21 oдoaî $\bar{\sigma}$, IX. 42 '́tìk $[\epsilon$. The article δ is written ô in I. 5. Oxytone disyllables as a rulc only have a grave accent on the first syllable (IV. 5^{1} vòmov, VI. I4 $\tau \rho \grave{\phi o v o v, ~ \& c . ~ ; ~ a n ~ e x c e p t i o n ~ i s ~} \theta a \mu$ á Fr. 20. 2%), and a similar method is sometimes followed in polysyllabic words,
 arc accented (IV. 27 d́r $\imath \pi \pi o ́ s ~ \epsilon \varphi \mu l, \& \% c$.) even in the case of paroxytones, c. g. V. $44 \epsilon^{\prime} \nu \theta \dot{\alpha} \mu \epsilon$, VI. 87 óo $\sigma \alpha \dot{\prime} \tau \epsilon$. Instances of mistaken accentuation are II. 98
 for єкатóv (or єка̀тоv), similarly IX. 39 avatitєis for avatıtєís, and Fr. 82. 25 тєגєis for $\tau \epsilon \lambda \epsilon i s$. Punctuation is commonly effected by means of a high dot, which is freely supplied. At the ends of lines it is placed some little distance away at a level varying between the middle and top of the letters. The exact height is apparently immaterial, and therefore has been disregarded in our transcript ; e. g. in IV. 34 the stop after катаßaivov is opposite the middle of ν, in $\eta 0$ after $\pi \rho о \pi \dot{\alpha} \rho o t \theta \epsilon \nu$ it is at the top, the length of the pause being exactly the same in the two cases. Stops occurring in the course of lines are placed, as in the Bacchylides papyrus, well above the letters; but there is one genuine case of a dot in the middle position, where the pause is represented by the modern comma (VI. 15 ; cf. 182), and one instance of a dot just below the line (IV. 48), at the end of an interrogative sentence. A paragraphus is only used in the text to separate the metrical sections which are, apparently, always distinguished. Plain paragraphi are employed at the end of strophes and antistrophes, but at the commencement of new strophes they are accompanied by a conspicuous coronis, as in 659. Pacan V, which consists only of strophes, accordingly has this coronis at the end of each one. The commencement of a fresh poem is denoted by a separate sign (VI. i). In the scholia by the first hand of C-D paragraphi are frequently inserted to mark off the notes, and in A-B they appear sporadically for a similar purpose. In some other respects an apparent difference of practice in the two main divisions of the manuscript is to be noted. In C-D a curved line has in several cases been placed below letters or syllables, with no very clear object (cf. note on Fr. 82. 23); this does not occur in what remains of $\mathrm{A}-\mathrm{B}$. In the latter on the other hand there occur before lines certain critical signs, consisting of the ordinary diple,
which was used for a variety of purposes, or a small cross, which is also found in the Paris Alcman and Berl. Klassikertexte V. (2) xvi (Corinna). This was not one of the recognized Aristarchean symbols and its precise signification is not certain ; it may, as Wilamowitz says (op. cit., p. 64), be no more than a nota benc. Another example of a diple in a Pindar papyrus occurs in 659. 17. In C-D there is in four columns no instance of the use of such marginal symbols, which though not quite conclusive at any rate establishes a presumption against their employment elsewhere in that part of the papyrus.

How far hands other than the first have contributed towards these many lectional aids it is difficult precisely to determine. Unless there are considerable differences in the colour of the ink, which is here not the case, responsibility for such marks cannot be assigned. To a large extent at least, they appear in the present case to be original, and none of them is likely to be much later in date than the body of the manuscript. The numeration of the lines by hundreds (II. $2_{5}^{5}, \& \mathrm{c}$. .) is undoubtedly by the first land : the title at VI. 1 appears to be a subsequent insertion.

The path of the reader has been still further smoothed by the frequent notes which accompany the text and which embody both apparatus criticus and commentary. A number of variants are recorded between the lines or in the margin, sometimes with a statement of the authority to whom they were due. Several readings are attributed to \bar{Z} or $\mathrm{Z} \eta$ (cf. note on IV. 5^{8}), who no doubt is Zenodotus of Ephesus. Others are coupled with the abbreviations Ap, Apır, Av and A r^{\prime}, which are less easily identified, since it is uncertain how many names they represent. Perhaps Aristarchus for the first pair and Aristophanes for the second is the most likely interpretation; cf. note on II. 6x. Chrysippus the pupil of Zenodotus and instructor of Aristarchus is probably referred to in Fr. 84. 13, and Theon, a later grammarian, may be named at II. 37. Other lections have the common adjunct $\gamma \rho(\dot{\alpha} \phi \epsilon \tau a \ell)$, or more often stand by themselves, usually enclosed between two dots. The explanatory notes, which are especially full in II and in C-D, deal with names or allusions, grammatical points, and the like, or elucidate the sense-not always very successfully.

These additions are in several hands which are not always readily distinguished. The textual notes in $\mathrm{A}-\mathrm{B}$ are mostly in uncial or semi-uncial script, and sometimes are certainly due to the first scribe, e.g. the variants at V. 38, VI. 55, \&c. This scribe was moreover a careful if not an elegant writer, and made few slips which he did not himself correct ; an instance occurs at VII. I. To a distinct class belong certain other entries in a more sloping hand (H2), including II. I $\theta \omega$ ракоs, 37 к $\overline{a \imath}, 40$ dáoos, IV. + бато, V. 21 єpinvass, VI. I title (?), 10 ає $\xi \omega \nu$, I4 $\kappa \lambda$ utov a λ oos, 52 interlinear ϵ and $\pi \iota \theta \in \omega(?)$, the note opposite 11 . 108-9, VII. 2
 lighter hand (H_{3}) is responsible for II. 2 marpoov, $2 \boldsymbol{\epsilon} \boldsymbol{\lambda}[$ (?), V. 45 $\pi a v \delta \omega \rho o u \kappa . \tau . \lambda$., and perhaps IV. 62 vo(s) к.т.入. ; while a few more variants, namely II. 52 interlinear 1 and
 (S I) of the explanatory scholia. Here again a distinction has to be drawn. Two groups of these cursive notes are traceable throughout the papyrus, $(a)=S \mathrm{I}$, in a small and as a rule clear writing, and $(b)=S 2$, in a more rapid and negligent and generally rather larger cursive, the ink of which also is of a lighter shade ; c. g. in the scholium opposite II. 43 то vопиa . . $є \lambda \pi \imath \delta a s$ belongs to S I, the rest of the note to $S 2$. Evidently these two groups were written on different occasions, and at first sight would be put down to different persons; but they are of a similar character and at times approximate closely in style, and we hesitate to say that they could not proceed from a single hand. It is a question too how far the various readings classed under H_{2} and H_{3} may not be the work of the scholiast or scholiasts; H 2 and S I, at any rate, are not unlikely to be identical. In C-D such variants as occur and many of the scholia proper are in the hand of the text, but $S 1$ and S_{2} are responsible for a number of additions.

To turn now to the individual poems. Of the first there remain only the last ten verses, in which however the allusion to Thebes and the Theban $\delta a \phi \nu \eta \phi o p i a$ (cf. 1. 8 note and Frs. 129-31) clearly shows that the paean was written for the poet's native city on the occasion of that festival. The metre, which is logaoedic, is as follows:-

II. The title of the second paean has disappeared with the margin at the commencement, but this loss is made good by the first few lines, which practically form a title, and with other internal evidence render it abundantly clear that the poem was composed for the people of the Thracian Abdera, and dedicated to Apollo. It is unfortunately mutilated, two of the seven and
a half columns comprising it being wholly lost and another badly damaged; the remainder however, amounting to three-fifths of the whole, which consisted of 108 verses, is in good condition. Abderus, the mythical comrade of Heracles, who is said to have founded the city to perpetuate his memory, is addressed in the opening line ; and the subsequent fortunes of the place, the failure of a settlement from Clazomenae (11. 55-6, $63-4$), its successful colonization from Teos (11. 3, 65 sqq.), and its later prosperity (1l. 25^{-7}), are appropriately commemorated. There are some rather obscure allusions (ll. 39-40, 104-) to a war in which the Abderites were taking part. The date is subsequent to the battle of Salamis, since the occupation of Athens by the Persians is referred to in 11.28 sqq. Perhaps the poem was written about the time of the formation of the confederacy of Delos, when hostilities directed against the Persians were still going on in the region of Abdera ; or a struggle with some Thracian neighbour may have been in progress. The whole ode is characterized by a distinctly warlike note. It consists of three systems, the strophe having eleven and the epode fourteen logaoedic cola, and each epode ending with the refrain lijic

In the following schemes a comma at the end of a verse indicates synaphia as shown by the division of a word between two cola, and a vertical line marks hiatus. Syllabae ancipites at the ends of verses will be apparent without special note.

Strophe


```
5}\cup\cup-\cup\cup-\cup\cup-\cup-[南
    v\cupv\smile-\cup--,
    v-vu-v\cupv-\underline{v}
    \cup\cup\cup-vu--,
    こ-\cup\cup--v-
1 0
    -v-vu-v-,
    --vu--
    --vu--v-v\smile--
    v-vu--
```

III. The third paean is hopelessly mutilated. From the stichometry of the papyrus it may be inferred to have consisted of 102 lines (cf. note on 1.17) out of which seventy-five have disappeared altogether, while only one short passage of six verses in which Apollo is addressed is intelligible. The occasion of the ode and the patrons for whom it was written are not determinable; the Graces are named at the commencement.
IV. A peculiar interest attaches to the fourth paean, which is without doubt the ode spoken of at the commencement of the first Isthmian. Pindar there apologizes for having postponed the completion of a paean to the Delian Apollo to be sung at Ceos in order that he might first celebrate a victory won by his compatriot Herodotus at the Isthmian Games. Cf. 11.6 sqq.


```
ка\grave{ тòv àк\epsilon\iota\rho\epsilonко́\muаv Фоîßov \chiо\rhoєv́\omegav}
\epsiloṅv K\epsiloń\varphi à\muф\iota\rhov́rą \sigma\grave{v \piov\tauio\iotas}
àv\deltà\rhoá\sigma\iotav, каì \tauàv á\lambda\iota\iota\epsilon\rhoк\epsilońa 'І }\sigma0\muо\hat{v
\delta\in!\rhoáơ',
```

and the scholia upon the occasion of the poem:-oi Kєiot $\Delta \eta \lambda \iota a \kappa o ̀ v ~ \pi a \iota a ̂ v a ~ \eta \xi \xi i o v v$

 clear that the well-known fragments $87-8 \chi a \hat{\imath} \rho$ ', ڤ̂ $\theta \in o \delta \mu a ́ \tau a \kappa$ к. $\tau . \lambda$. which have been referred to this Cean paean (Schneider, Pind. Fragm. p. 29; so Schroeder) have no connexion with it. On the other hand the conjecture of Dissen and Fennell that the poem was sung at the temple of Apollo at Carthaea is corroborated by the allusion in 1.13 . The central idea is the virtue of contentment with a simple life like that of the Ceans in their rocky island, which was nevertheless celebrated as the home of athletes and poets. This lesson finds further illustration in the stories of Melampus (11. 28 sqq .) and of the local hero Euxantius (1l. 35 sqq .), in
the narrative of which some novel points emerge（see commentary）．An interest－ ing coincidence occurs with a quotation found in a corrupt form in Plutarch （11． 50 sqq．）．

The poem consisted of sixty－two verses divided into two systems，the strophe containing ten，and the epode，which as in II ends with a refrain，eleven lines． Two consecutive columns out of five are well preserved，but the remaining three are too severely damaged for continuous restoration．The metre is logaoedic．

Strophe

```
    \(\checkmark \cup-\cup \cup-\cup \cup-\cup-\)
    \(--\cup--\cup \cup-\cup \approx \mid\)
    \(--\cup--\cup \cup \cup--\)
    \(\cup \cup \cup--\cup \cup \cup-\simeq--\cup \cup \mid\)
5
    - - - \(\cup \cup-\cup \cup-\cup \cup-\)
    \(\cup \cup-\cup--\cup \cup-\underline{\cup}\),
    - Ј - ט и - ,
    - \(\cup レ ー-\cup \cup-\),
10
```

 Epode
 \(\simeq-\cup \cup-\cup \cup-\cdots-\cup v\),
 - - \(-\cup \cup \cup-\cup \cup-\)
 - - v-ー-v-v-
 \(-ー \cup \cup-\cup \simeq\) (syll. anceps ?)
 $5--\cup \cup[--] \cup \cup-\cup \cup-$
$\cup \cup-\cup \cup-\cup \cup-\cup \simeq$ (syll. anceps ?)
$\cup-v-v--v \cup-v \cup-v \underline{~}$
ー v v - v- - v-
$\cup-\simeq \cup \cup \cup-ー-ー$
10
$\cup-v-ー \cup \cup-\simeq$

V．To Delos is also dedicated the next paean，the shortest and simplest in structure in the collection．Like Ol．xiv，Pyth．vi，xii，\＆c．it consists of strophes only；there were eight short stanzas in dactylo－epitritic metre，each commencing with the invocation iŋ́í $\Delta a^{\prime} \lambda \imath^{\prime}$＂A $\pi o \lambda \lambda o v$ ．The first six of these have almost entirely disappeared，and no sense can be gleaned until the thirty－sixth line is reached，from which point to the end there is no lacuna．The topic here
is the spread of the Ionian folk over Euboea，the Sporades，and Delos；and very likely the Ionians were the principal subject throughout．Perhaps the ode was written for the Athenians．

Strophe

```
    \(\cup-v \cup ー \cup v ー ー\)
    \(-v \cup-v \cup-\)
    \(-v---v \cup-v v-\simeq \mid\)
    - v - -
\(5 \rightarrow \cup \cup-\cup \cup-\)
    - vレーレレー -
```

VI．Paean VI is inscribed＇For the Delphians，to Pytho，＇and was composed for performance at the Theoxenia（ $11.6 \mathrm{I}-2$ ），one of the three principal festivals in the Delphic calendar．Like its predecessors this long ode has sustained con－ siderable damage；three columns have disappeared entirely，two more are hopelessly mutilated，and another is very imperfect．Still even with these deduc－ tions about half of the 183 lines are complete or easily restored．The first eighteen，after which there is a gap，belong to an extremely graceful exordium，the commencement of which was already familiar in a citation by Aristides，though its classification was a matter of doubt ；Schroeder puts it in the Prosodia．The body of the paean（11．74－120）is occupied with a sketch of the fate of Troy and the subsequent fortunes of Neoptolemus，including the passage，already partly known from a quotation，which offended the susceptibilities of the Aeginetans （cf．notes on 11．117－9 and 123），and to which reference is made in the seventh Nemean．Pindar there repeats，in language very similar to that used in this paean，his version of the story of Neoptolemus＇death（cf．11．104－20 with Nem． vii． $35-42$ ），and protests that he had no intention of disparaging the Aeacid hero （Nem．vii． 64 sqq．， 102 sqq．）．The date of our paean is therefore prior to B．C．46I，the year of the victory which Nem．vii celebrates．From Neoptolemus the poet turns with characteristic suddenness to the praises of Aegina and the myth of the bride of Zeus whose name the island bore ；and here the thread is lost．

The poem contains three systems，of which the strophe consists of twenty－one and the epode of nineteen verses with logaoedic rhythm．

Strophe Epode

```
v\cup-v-\cup-v-v-,
vu-v-
-v-vu-,
```

$-v \cup-v-\cup-\cup v$
$--v-\cup \cup-\cup--$
し ᄂ - - v - - $\cup \cup-~-~$

$-v-v-v-\underline{1}$	
5	$-v \cup-v--v-1$
	$v-\cup--\cup v-\cup-$
	$\checkmark \cup \cup \cup \cup \sim$－
	$\checkmark \cup \cup \cup-$－
	$-\cup v--\cup-\cup v \underline{\cup v}$
10	v－v－v－－－，
	$\checkmark-\cup v-\cup-\underline{\cup}$
	－$-\cup v \cup--\cup v-\cup \cup$
	vu－v－｜vv－，
	$\underline{\cup}$
${ }^{15}$	－
	$\cup v \cup--\cup-\mid \cup v-\cup-$
	$v-v \overline{-}$
	$\checkmark \cup \cup$
	$\checkmark-\cup v \cup v$
20	－v－v－v－
	$-v \cup-\cup-\underline{\sim}$

 - - - vv-
 $5-\cup v--\cup-\cup v--$
$\cup-\cup v-ー \cup-\cup v-\cup$
-ーv-vu-vvし
$-v v-v v-v v-v v$
- v-vレー
$10 \cup-\cup ー \cup \cup ー$
$\checkmark--v-\cup \cup-\cup v$,
$-v-v-v \cup-v \cup \underline{v}-$
$-v \cup-v-\underline{\imath}$,
$-\underline{v}-\cup v-\cup$,
15 - $-\cup \cup \cup-$
$-v-v v-v \simeq$
$-\cup \cup v \cup \cup--\cup-\cup v-\underline{\cup}$
$v-v-v-v \cup--v$,
ー - - v -

VII．Of the seventh paean the commencement is preserved in a mutilated condition，but after the eighteenth line the connexion is broken，and it is doubtful， as we have said，whether the fragments grouped under B belong to VII or to another poem or poems．In Fr．16，where there are some complete lines at the bottom of a column，Pindar speaks of his art and describes himself as inspired to walk in the way of his predecessors，among whom he perhaps refers especially to Homer．Fr．19，which may have followed close after，also has some well－preserved lines in the lower part of the second column，where the myth of Asteria the sister of Leto is related．The rest of $A-B$ consists of small scattered fragments．

VIII．At Fr．82，the first of C，we again arrive at a connected passage of sixteen more or less complete consecutive verses which，whatever the relation of $\mathrm{C}-\mathrm{D}$ to $\mathrm{A}-\mathrm{B}$ ，a question to be considered immediately，no doubt belonged to a poem different from any that have preceded．The first column of this fragment appears from the remains of the scholia to have contained a reference to the story of Erginus，who in revenge for the murder of his father exacted a tribute from Thebes and was eventually slain by Heracles．Before the beginning of the next column，however，a widely different subject has been reached．Troy is now the scene，where Cassandra，on the departure of Paris in quest of Helen，prophesies
the impending doom presaged by the well-known dream of Hecuba. The scheme of the lines is appended :-

```
- * * * * * * 
-vu-vuvu-,
-vu-v-
---v\cupv--,
-\smilev--v \cup[-v-,
v\cup\cupvu-v-[v--v-
v-v-v-[-
```



```
-v-vu--[-
v-v--vu-[vv
v--\cupv\smile-[\cup
v-----[v\cup-1
-v---vuv[u-
vv-vu-vu[
    -vu-v[v\simeq
[ ]}\simeqv--
```

Most of the other fragments of C may well belong to the same pocm. 'A $A \epsilon$ ' $\xi a \nu \delta[\rho o s(?)$ is mentioned in Fr. 96 ; but the only other piece which has any complete lines is $\mathrm{Fr}, 84$, which gives the beginning of a speech of a person whose identity is unknown.
IX. D is more valuable, for in one small piece there is a coincidence with the well known Pindaric fragment on the occasion of an eclipse of the sun'Aктis à ϵ रiov к.т. λ.-and a practically complete column gives most of a subsequent strophe and antistrophe from the same ode, thus establishing the metre and therewith the text of the extant fragment. In the later section the poet passes to the subject of the Theban seer Tenerus, son of Apollo and the nymph Melia; the poem was evidently written for Thebes. The strophe consists of ten logaoedic verses ; of the epode there is no clear trace beyond the one line already known.

Strophe

Epode

Some of the minor fragments of D are no doubt also to be assigned to 1 X ; but the only pieces of any size, Frs. 129-3r, containing parts of two consecutive columns, are proved by the metre to belong to a different ode.

It remains to be considered whether the poems represented in $\mathrm{C}-\mathrm{D}$ are to be ranked, as those in A (with which B is naturally connected) undoubtedly are, as paeans. External evidence is inconclusive, for though there is a change of scribe at C the continuity of the sections is in a measure preserved, as has been explained above, by the recto and part of the scholia, as well as by the similar height of the papyrus and the columns of writing. The contents of the fragments must therefore be the main guide ; and here it must be admitted that in certain respects $C-D$ appear to be peculiar. There is no sign in thesc sections of î or π acáv ; and though the importance of this argument a silcntio might easily be exaggerated, the fragments are sufficiently extensive to make the absence of those characteristic words remarkable. Secondly, it is curious to what an extent C-D are concerned with seers and soothsaying ; sce Fr. 82 throughout. Fr. 84. 10 sqq., Fr. 128 (Tenerus), Fr. 131. 20-2, and Fr. 139. There is a reference to an oracle in II. 73 ; but here such subjects almost monopolize the field. If however these poems are not paeans, what are they? Boeckh assigned the fragment on the eclipse of the sun to the ' $\Upsilon \pi о \rho \chi \eta \mu a \tau a$ on the strength of the passage prefacing the quotation in Dionys. Hal. de Demosth. dict. c. 7 taî̃a (sc. certain passages from Plato's Pluacdrus) . . . єi $\lambda a ́ \beta o \iota ~ \mu \epsilon ́ \lambda \eta ~ \kappa \alpha i ́ ~ \rho o v \theta \mu o v ̀ s ~ \tilde{\omega} \sigma \pi \epsilon \rho ~ o i ~$
 $\ddot{\eta} \lambda \iota o v$ cip $\eta \mu \epsilon \epsilon^{\prime} \mathbf{r}^{\prime}$ os. Hence Boeckh infers that the fragment must either come from a dithyramb or a hyporcheme, and that, since there is nothing Dionysiac in it, the latter must be the right category-a conclusion accepted by Schroeder. In favour of this classification may now be set the consideration that the paeans and hyporchemes were closely connected; cf. Menander Rhet. de Encom. p. 27
 Δ tóvejov סıӨvpá β ßous к.т. λ. On the other hand Boeckh's argument that the men-
tion by Dionysius of $\delta \iota \theta \dot{v} \rho а \mu \beta о \iota$ and $\dot{v} \pi о \rho \chi \eta$ й of those classes is unconvincing. Since the fragment cannot be included in both it need not neccssarily belong to either; if Dionysius meant to imply that it came from a hyporcheme why did he go out of his way to mention dithyrambs ? Boeckh further considers that the metre is well adapted to dancing, and therefore favours a hyporcheme; but this argument is counterbalanced by the apparent unsuitability of the predominant themes of $\mathrm{C}-\mathrm{D}$ to an orchestic accompaniment. There is moreover another class of Pindar's works to which the paeans stood in close relation, and whose claims should be considered, namely the

 is not improbably to be restored in a mutilated scholium in Fr. 108, though this of course no more justifies the inference that the odes were $\pi \rho o \sigma$ ódia than the occurrence of $\delta a \phi \nu \eta^{〔} \phi$ орькóv in Fr . 107 authorizes us to hold that they were $\delta a \phi \nu \eta$ форька́. That references to the Theban $\delta a \phi \nu \eta \phi о \rho i a$ should be found in both C and D (Frs. 107 and 129-31, notes) is not surprising if VIII as well as IX had a Theban setting; there is an allusion to the same festival in I, which is doubtless a paean. The $\delta a \phi \nu \eta \phi о \rho \iota \kappa a ́$, like the $\pi a \rho \theta \in \dot{v} \in \iota a$ of which they were a subdivision, were designed for a female chorus (cf. 659), of which there is no trace in these fragments, while the masculine participle in the gloss on IX. 36 points in a contrary direction.

On the whole, though it remains questionable whether a distinction should not be drawn between the contents of $\mathrm{A}-\mathrm{B}$ and $\mathrm{C}-\mathrm{D}$, the evidence hardly seems
A.

$$
\text { Col. i (Fr. } 1 \text {). }
$$

$\pi \rho \iota \nu o \delta v \nu \eta \rho a ̆ \gamma \eta \rho \alpha o \sigma \sigma[.] .0 \lambda \epsilon \iota \nu$
$\pi \rho \iota \nu \tau \iota \sigma \epsilon v \theta v \mu \iota \bar{\alpha} \iota \sigma \kappa \iota \alpha \zeta \epsilon \tau \omega$
$\nu о \eta \mu^{\prime} \alpha ́ \kappa о \tau о \nu$ ѐ $\pi[.] \mu \epsilon ́ \tau \rho \alpha \ddot{̣} \delta \omega \nu \quad$ بєтрюч!
бขva $\mu \iota \nu о \iota к о ́ \theta \in \tau о \nu$.
$5[\cdot] \eta \iota \eta \nu \hat{v} \nu 00 \pi \alpha \nu \tau \in \lambda \eta \sigma \epsilon \nu \iota \alpha v \tau \circ \sigma$

[. . . .] $<\pi \pi o \nu \alpha \sigma \tau v \theta \eta \beta \alpha \sigma \epsilon \pi \eta \lambda \theta o \nu$
[. . . .] $\lambda \omega \nu \nu \delta \alpha i ̂ \alpha \phi i \lambda \eta े \sigma i \sigma \tau \epsilon ́ \phi \alpha \nu o \nu \alpha \gamma o \nu \tau \epsilon \sigma \cdot$
[. .] $\nu \delta \epsilon \lambda \alpha \omega \nu \gamma \epsilon \nu \epsilon \alpha \nu \delta \alpha \rho о \nu \epsilon \rho \in \pi \tau \circ \iota$
ı 0 [. .] $] \phi \rho о \nu о \sigma \alpha \nu \theta \epsilon \sigma \iota \nu \epsilon \nu \nu о \mu \iota \alpha \sigma^{*}$
sufficient to justify their definite attribution to different classes, still less for determining how the second class should be named.

Regret for the loss of so much of Pindar's work is undoubtedly intensified by the discovery of this papyrus. In spite of their mutilated condition the new poems display merit of a very high order, though they may not rank among the best efforts of the poet's genius. The long ode to Delphi (VI), in particular, is remarkably fine. Its extremely graceful exordium approaches the easier manner of the Oxyrhynchus Partheneion (658) ; but in general the style is more akin to that of the Epinicia, though, as V shows, the metrical structure of the Pacans was sometimes not less simple than that of the Partheneia. Mythical themes are frequent, as they no doubt were in all Pindar's poetry, and they would of course be prominent in compositions of this class ; but the other points in Eustathius' criticism quoted above (p. 11), that in comparison with the Epinician poems the rest of the poet's work was inferior in common interest and in clearness, are not justified by what is now known of the Partheneia and the Paeans.

In the reconstruction and elucidation of this papyrus we owe much to Prof. Blass, whose knowledge and ingenuity were perhaps never more conspicuous than in dealing with fragments of lyric poetry. The commentary unfortunately could not have the benefit of his revision, but the proof-sheets have been submitted to Prof. J. B. Bury, to whom we are indebted for a number of valuable criticisms and suggestions.

I. $[\Theta H B A I O I \Sigma]$.

Sívapıv оіко́ $\theta \in \tau о \nu$.

เ० $[\sigma \omega ́] \phi \rho \circ \nu o s$ й $\nu \theta \epsilon \sigma \iota \nu$ єن́vo $\mu i \alpha s$.

```
    [. ...]o\sigma0\rhoо\nu\iota\alpha\sigma\alpha\beta\delta\eta\rhoєє\chi\alpha\lambdaко0\omega\rho\alpha\xi 0\omegaрако\sigma [
    [.. .]\epsiloni\delta\alpha\nu0\sigma\tau\epsilon\pi\alphaiً 
```



```
    |\mp@code{\delta\sigma\sigma\tau\tau\eta\sigma\iota\omegavia\sigma\pio\lambdal\sigman[}
    [. . .] ] \nu\alpha[. .] \omega\xi }
5
[. . .]\rho\eta\nuov\alpha\pi[.]\\lambda\\omega\nu\alpha\pi\alphá\rho\tau\alphaф\rhoo
```


Col．ii（Fr．2，Col．i）．

Opposite 11．26－7．

Col．iii（Fr．2，Col．ii）．
［ 13 letters ］．．$\alpha[$. ．］
Өappougav，
［．．．．．］．
［．．］aтıva［．．．．．］${ }^{\text {aí } \omega}$

$\sigma \alpha \nu \tau \epsilon \kappa \alpha \iota \in \cup \times \alpha \rho \pi о \nu \cdot \mu \eta \mu \circ \iota \mu \epsilon \alpha \sigma \epsilon \rho \pi \omega \nu \nu$［

$\nu є о ́ \pi о \lambda \iota \sigma \epsilon \iota \mu \iota \mu \alpha \tau \rho о \sigma$
$\delta \epsilon \mu \alpha \tau \epsilon \rho^{\prime} \in \mu \hat{\alpha} \sigma \epsilon \tau \epsilon \kappa \alpha \nu \epsilon \mu \pi \pi \overline{\widetilde{\alpha}} \nu$
т \ddagger vTcek［
$\pi \epsilon \rho \sigma \omega v \eta v[$
3°
$\pi 0 \lambda \epsilon \mu \omega \iota \pi v \rho \iota \pi \lambda \bar{\alpha} \gamma \epsilon \iota$ eкtioavola［
$\times \sigma \alpha \nu \cdot \epsilon \iota \delta \epsilon \tau \iota \sigma \alpha \rho \kappa \epsilon \omega \nu \phi \iota \lambda о \iota \sigma$ eavevkau［ к＇точатод
反vvatalou［ єІ大тov入o［ $\mu_{0} \chi{ }^{\theta} \sigma \sigma \eta \sigma v \chi \iota \alpha \nu \phi \in \rho \in \iota$ є．pe！ каเршıкат $\alpha \beta \omega \iota \omega$ ． סuvaratonox $\boldsymbol{\theta}_{\text {og！}}$ ！ $\ddot{\eta} \boldsymbol{\epsilon} \epsilon \pi \alpha \downarrow \nu \nu \ddot{\eta} \dot{\epsilon} \cdot \pi \alpha \iota \alpha \nu$

II. [AB $\triangle H P I T A I \Sigma]$.

${ }_{2}[\Pi \circ \sigma] \epsilon \iota \delta \bar{\alpha} \nu o ́ s \quad \tau \in \pi \alpha \hat{\imath}$,
maтрiou.

${ }_{3}[\sigma \epsilon \in \theta] \epsilon \nu$ 'I α ovı тó $\nu \delta \epsilon \Theta \alpha \hat{\omega}$

- $[\pi \alpha l] \hat{\alpha} \nu \alpha[\delta i] \omega \xi \omega$

Lines 6-20 lost $=$ str. 6-II, antistr. $1-y$.

Fr. 2, Col. i, opposite 11. 26-7.

'Aßsin'pots
]
]
 jv

Col. v (Fr. 3, Col. ii). Plate II.
入ıаıтєкаıк[. .]o८
$\epsilon \gamma \kappa \epsilon \iota \mu \epsilon \nu 0[\cdot] \alpha \epsilon \iota \theta \alpha \lambda \lambda \epsilon \iota \mu \dot{\alpha} \lambda \alpha$ $a \in \ell$
$\kappa \alpha \iota \sigma \epsilon[\cdot] \delta \iota \alpha \iota[\cdot] \kappa \alpha \iota \tau о \mu \epsilon \nu \delta \iota \delta о \tau \omega$
$\theta \in \rho \sigma[]. ’ \in X \in[\cdot] \alpha \nu о \eta \sigma \alpha \iota \sigma$
$55 \eta \delta \eta \phi \theta 0 \nu 0 \sigma 0 \iota \chi \in \tau \alpha \iota$
$\tau \omega \nu \pi \alpha \lambda \alpha \iota \pi \rho \circ \theta \alpha \nu 0 \nu \tau \omega \nu$.
Х $\rho \eta \delta \alpha \nu \delta \rho \alpha \tau о к \epsilon v \sigma \iota \emptyset \epsilon \rho \epsilon \iota \nu \quad \delta \epsilon \epsilon[\ldots . .$.

$\tau о \iota \sigma v \nu \pi о \lambda \epsilon \mu \omega \iota \kappa \tau \eta \sigma \alpha \mu[. .$.
60 X $Ө о \nu \alpha \pi о \lambda \nu \delta \omega \rho о \nu 0 \lambda[$]
$\cdot \gamma \cdot a \rho^{2}$
$\epsilon \nu \kappa \alpha \tau \epsilon \theta \eta \kappa \alpha \nu \pi \epsilon ́ \rho \alpha \nu \alpha[$]
$\pi \alpha \iota o \nu \omega \nu \alpha \iota \chi \mu \alpha \tau \alpha \hat{\alpha}[.].] \sigma$

$\epsilon \pi \epsilon \pi \epsilon \sigma \epsilon \mu \circ \iota \rho \alpha \cdot \tau \lambda \breve{\alpha} \nu \tau[],$.
$6_{5} \delta^{\prime} \epsilon \in \epsilon \epsilon \iota \alpha \theta \epsilon \circ \iota \sigma v \nu \epsilon \tau \epsilon \lambda \epsilon \sigma \sigma \alpha[$. ...].


```
    14[\deltaغे \mu\etá\piот\epsilon \lambda\epsiloním]ol.
```



```
    2[\tilde{v}\psi\iota\sigma\tauo\nu ï\sigma\tau\alpha\tau]\alpha\iota
    s [\cup \cup ᄂ-\cup]\rhoă. }\quad\mu\alphá\rho\nu\alpha\mu\alphal \mu\grave{\alpha}
```



```
    6 \tau\hat{\omega}\nu
```



```
    5:[-\smile-\pio]\tau\iotaKv́\rho\sigma\eta
    10 [--\cup\smile]ĩ \mu\alpha\nuí\epsilon\ell \phi0oveí.
    11[\cup \checkmark - v--]
```



```
    \pi\epsilon\zeta\epsilonvi\omega\sigmatv '̇av v\epsilon \mu\epsilon0' im\pi\omegav mapa-
    \tauv\gammaxáv\omega\sigma\iotav трє\psió\mue0a au̇тov̀s
    \tauبิ i\pim\kappaк\varphiิ.
```



```
    2[\Xi-\simeqーu-] 
    50 s[u u U-\smile u]ol \tauò \delta' \epsilonú\betaou-
1 \(\lambda i ́ a \quad \tau \in \kappa \alpha i \quad \alpha[i \delta] 0 \hat{\imath}\)
```



```
б каi тò \(\mu\) ѐ \(\nu\) סıסót \(\omega\)
```



```
\(\tau \hat{\omega} \nu \pi \alpha ́ \lambda \alpha \iota \pi \rho o \theta \alpha \nu o ́ \nu \tau \omega \nu\). \(\tau(\hat{\omega} v)\), Yové \(\omega v, \eta \mu, \hat{\omega} \downarrow \tau(\hat{\omega}) \pi \rho] 0 \theta a v o ́ v \tau \omega v ~ a ̈ \lambda \lambda \lambda^{\prime}\) ov̉-
\({ }^{10}\) Х \(\rho \eta े \delta^{2}\) ă \(\nu \delta \rho \alpha\) токє \(\hat{v} \sigma \iota\langle\nu\rangle\) ф'́ \(\rho \in \iota \nu\)
\({ }_{11} \beta \alpha \theta u ́ \delta o \xi o v\) aî \(\sigma \alpha \nu\).
```



```
'́ \(\pi\). \(\beta^{\prime}{ }_{1}\) тò \(\sigma \grave{v} \nu \pi 0 \lambda \epsilon ́ \mu \omega \quad \kappa \tau \eta \sigma \dot{\alpha} \mu[\epsilon \nu 0 \iota\)
```



```
\(\gamma\) 'Ap(iarapxos?).
```



```
4 ai \(\chi \mu \alpha \tau \hat{\alpha} \nu \quad\left[\tau \epsilon \quad \sum \tau \rho v \mu o v i ́ a s \quad \gamma \hat{\alpha}\right] s\)
```



```
- \(\epsilon^{\pi} \pi \epsilon ́ \pi \epsilon \sigma \epsilon \mu 0 i ̂ \rho \cdot \quad \tau \lambda \alpha ́ \nu \tau[\omega] \nu\)
65 ₹ \(\delta^{\prime}\) धै \(\pi \epsilon \iota \tau \alpha\) \(\theta \epsilon o i ̀ ~ \sigma v \nu \epsilon \tau \epsilon ́ \lambda \epsilon \sigma \sigma \alpha[\nu . . .\).\(] .\)
```


i̇mo $\mu \in เ v a ́ v[\tau \omega v$ oi $\theta \in 0 i$ te

Col. vi (Fr. 3, Col. iii).
${ }_{0} \delta_{\epsilon \kappa \kappa \alpha \lambda о \nu \tau \iota \pi о \nu \eta[.] \alpha \iota \sigma}$
єvaरoplaı $\sigma \iota \llbracket \nu \rrbracket \phi \lambda \epsilon \gamma \epsilon \iota$.
$\kappa \epsilon \iota \nu 0 \iota \sigma \delta v \pi \epsilon \rho \tau \alpha \tau о \nu \eta \lambda \theta \epsilon \phi \epsilon \gamma \gamma \circ \sigma$
$\alpha \nu \tau \alpha \delta[.] \sigma \mu \epsilon \nu \epsilon \omega \nu \mu \epsilon \lambda \alpha \mu$
 $\downarrow \iota \epsilon \pi \alpha \iota \alpha \nu \iota \eta \iota \epsilon \cdot \pi \alpha \iota \alpha \nu$
$\delta \in \mu \eta \pi о \tau \epsilon \lambda \in \iota \pi o l$.
$[\cdot] \lambda \lambda \alpha \mu \iota \nu \pi о \tau \alpha \mu \omega l \sigma \chi \in \delta о \nu \mu 0 \lambda о \nu \tau \alpha \phi \nu \rho \sigma \epsilon \iota \quad \frac{\pi}{0} \cdot[$

$\pi \rho \omega \tau о \nu \tau \nu \chi$ ¢ $\nu \alpha \mu \alpha \rho^{\circ}$
${ }_{\alpha}^{\alpha} \gamma \gamma \epsilon \lambda \lambda \epsilon \delta \epsilon \phi о \iota \nu \iota \kappa o ́ \pi \epsilon \zeta \Omega \lambda o ́$
रоข $\pi \alpha \rho \theta \epsilon \nu 0 \sigma \epsilon \nu \mu \epsilon \nu \eta \sigma^{\prime} \epsilon \kappa \alpha \dot{\alpha} \tau \alpha$

8० [.] $] \nu \delta \alpha \nu \gamma[].\langle к \nu \mu \alpha \chi \alpha \nu \omega \nu$

Col. vii lost.
Col. viii (Fr. 4, Col. i).
[. . . .]єк $\alpha \lambda \epsilon о \nu \tau \iota \mu о \lambda \pi \check{\alpha} \iota$
[. . . .] $\nu \alpha \nu \epsilon v o \delta \mu о \nu \alpha \mu \phi \iota \epsilon \pi \alpha \rho$
[. . . .] $\iota \alpha \iota \sigma \pi \epsilon[$. .] $\alpha \iota \sigma v \psi \eta \lambda \alpha \iota \sigma \theta \grave{\alpha} \mu \grave{\alpha} \delta[.$. .] $\omega \nu$
[. . . .]кต́

[. . . .] $\kappa \epsilon \lambda \alpha \delta[$. . .] $\tau \iota \gamma \lambda \nu \kappa v \nu a v \delta \alpha i ̂$

[. . . .]vк $\lambda \in a[.] \nu \chi \alpha[]<.\nu$

[.] $\eta \iota \in \cdot \pi \alpha \iota \alpha \nu$
[.] ${ }^{\text {rot }}$

```
        8ó \deltaè ка\lambdaóv \tau\iota \piov\etá\eta[\sigma]\alphals
```



```
        10 к\epsilonívols \delta' vं\pi\epsiloń\rho\tauа\tauо\nu \tilde{j}\lambda0\epsilon ф\epsiloń\gamma\gammaos
        11 \ddot{~}\nu\tau\alpha \deltav\sigma\mu}\epsilon\nu\epsiloń\omega\nu M\epsilon\lambda\alpha\mu
```



```
    1s i\eta}i\ddot{i\epsilon}\pi\alpha\iota\alphá\nu, i\etăi\epsilon\cdot \pi\alpha\iotaà\nu
    14 \deltaè \mu\etá\pioт\epsilon \lambda\epsiloní\piol.
```



```
    5 आ\pio\taui \pio\lambda\grave{v}\nu \sigma\tau\rhoa\tauó\nu. \grave{\epsilon}\nu \delta\grave{\epsilon} \mu\eta\nuòs
```



```
                        iv \deltaó.
        4 \pi\rho\hat{\tau\tauo\nu \tauú\chi\epsilon\nu \hat{\alpha}\mu\alpha\rho.}
```



```
        ` \epsilonủ\mu\epsilon\nu\etaेs 'Eка́\tau\alpha
                \tauoís \eta
    \imath \tauò\nu \epsiloń0\epsiloń\lambdao\nu\tau\alpha \gamma\epsilon\nu\epsiloń\sigma0\alphal. àv(\taui \tauov̂) ôv \etä0\in\lambda\epsilonv \gamma\invé\sigma0a[l.
808[\sigma]\hat{vे\nu \delta' a\hat{v}}\gamma[\lambda]v\kappav\mu\alpha\chi\alphá\nu\omega\nu
```

Lines $8 \mathrm{r}-9.5$ lost $=$ str. $9-\mathrm{II}$, antistr. $\mathrm{I}-1 \mathrm{I}$, ep. 1 .


```
    \ \pi\epsilon{[\tau\rho]\alpha\iotas \dot{v}\psi\eta\lambda\alphaîs 0a\mu\grave{\alpha}}\Delta[\epsilon\lambda\phi]\omegaे
    % [\epsilonं\lambda\iota]\kappa⿱㇒\pi\pi\iota[\delta\epsilon]s i\sigma\tau\alphá\alpha\epsilon\epsilon\nu\alphal Xo\rhoò\nu
    100%[\tau\alpha\chiv́]\pio\delta\alpha \pi[\alpha\rho]0\epsilon'\nu0\iota }\mp@subsup{\chi}{}{\alpha\lambda-
```



```
    \gamma [\nuó}\mu]\mp@code{\nu
    0 [\lambda\omega\hat{\nu}}\boldsymbol{\epsilon}
    10 ["A\beta\delta]\eta\rho\epsilon, к\alphai \sigma\tau[\rho\alpha\tauò\nu] i\pi\pi%о\chi\alphá\rho\mu\alpha\nu
```



```
    12[\tau\alphaí]@ \pi\rhoo\beta\iota[\beta]\alpháSols. \\sigma\omegas गûvi[kn.
    13[i\eta`i\epsilon \pi\alpha\iota\alphá\nu, \]\etäi\epsilon\cdot \pi\alpha\iota\alphà\nu
```


［．．．．．．．．．］．$\nu \alpha \gamma \lambda \alpha o$
［．．．．．．．．．］${ }^{\nu \alpha \iota \chi \alpha \rho ı \tau \epsilon[.] ~}$
Fragment of Col．vii（？）．
Fr． 5 ．
］
］ode．e．］
］بaı
］
］ov
5 ］！aß8［
］

Col．ix（Fr．4，Col．ii）．
－［
$\iota \epsilon!\cdot[\cdot] .0 క ฺ!$
5 ar入aïā ν т［
$\mu a \tau$ ¢́ ρ［
vaovọ
к $\alpha \iota \theta \nu o \epsilon[$
$\beta \omega \mu \circ \nu$［
$v \psi \circ \theta \in \nu$［
$\alpha 0 \iota \delta \alpha, \sigma \epsilon \nu \in \dot{\jmath} \pi \lambda \epsilon[$
$\gamma \alpha \rho \nu і ̈ \tau[.] \nu \delta \epsilon \chi \rho \nu \sigma \sigma[$
wplovtotixpovov［
${ }^{\theta}$
${ }^{5} 5 \quad \theta \epsilon \alpha \sigma[\tau \epsilon] \epsilon \lambda \iota \kappa \alpha \mu \pi v \kappa[$
$\epsilon \lambda \alpha \nu \nu[\cdot] \iota \sigma \alpha \nu \alpha \mu \beta \rho o \tau[$
$\phi \alpha \in \nu \nu 0 \sigma \alpha \iota \theta \eta \rho$ ．
5 columns lost．
Col．xv（Fr．6）．
］$\nu \sigma \theta \in \nu \rho \sigma \iota \epsilon \rho \bar{\alpha} \nu$

$$
\begin{aligned}
& \text {]白ол'av入ovo } \mu \phi \alpha \nu
\end{aligned}
$$

```
Fr. 5.
            J
                ]o\lambda\epsilon[ ]
                ]rat
    ]
]ov
                                ]c 'A\beta\delta[\etap
```

5

III.

 [..........]. . \(\nu\) áy \(\lambda \alpha 0\) -
 [.]vaı X \(\alpha\) р́ \(\iota \tau \in[s]\)
 - [
 ı \(\epsilon \iota \cdot[\cdot] .0 \zeta[\)
 \(5 \quad \dot{\alpha} y \lambda \alpha i ̈ \alpha \hat{\nu} \tau[\)
 \(\mu a \tau \epsilon ́ \rho[\)
 \(\nu\) aòv o[
 каì \(\theta v o ́ \epsilon[\nu \tau \alpha\)
 \(\beta \omega \mu\) ò \(\nu\) [

认 $\psi \underset{\circ}{ } \theta \in \nu$ [

रápvı, $\tau[i] \nu$ סє̀ Xpvao[
ढ̈pıov тоті хpóvov [

$\phi \alpha \in \nu \nu o ̀ s ~ a i \theta \eta ́ \rho$.
Lines 18-92 lost.
] $\nu \sigma \theta \in ́ \nu o s i \in \rho \alpha ̀ \nu$
$\chi^{\alpha \lambda \kappa]}{ }^{\alpha} \varrho \pi^{\prime} \alpha u ̉ \lambda \omega ิ \nu$ ó $\mu \phi \grave{\alpha} \nu$

D
].
]. [....].v.]o $\lambda \alpha \tau[$. . .]]v. $\tau \eta![]$.] $\delta 0[.[$. ϵ хорои]
] $\alpha \rho \tau \epsilon \mu \nu \nu$.
]vборац
] $0 \sigma \alpha \varphi \delta \alpha \nu$.
] $\alpha<\kappa \omega \nu \epsilon \delta \nu \omega ́ \sigma \epsilon \tau \alpha \iota^{\circ}$ бато ar $\nu \mu \nu \eta \theta \eta[$

Col. xvi (Fr. 7, Col. i).
[. $] \bar{\alpha} \kappa \alpha \tau \alpha \pi \alpha \sigma \alpha \nu о \delta o \nu ~$
[.] $]$ бихı
[.]
[.]
10
.] $] \lambda \lambda \epsilon \tau \alpha \iota$

[.] ${ }_{\alpha} \alpha \lambda о \nu \alpha \gamma \alpha \grave{\alpha \lambda \epsilon \alpha ~}$

${ }_{15}[.] \nu \iota \nu \beta \alpha \beta \nu \lambda \omega \nu \sigma \sigma \alpha \mu \epsilon \iota \psi о \mu \alpha \iota$

[.]
[.]p ${ }^{\text {. }}$

Col. xvii (Fr. 7, Col. ii).
$\eta \tau о \iota \alpha \alpha \epsilon \gamma \omega \sigma[. ..] \epsilon \lambda о \nu \nu \alpha \iota \omega \nu \delta \iota \alpha[$
$\gamma \iota \nu \omega \sigma \kappa о \mu \alpha \iota \mu \epsilon \nu \alpha \rho \epsilon \tau \alpha \iota \sigma \alpha \epsilon \in \theta \lambda \omega \nu$
$\epsilon \lambda \lambda \alpha \nu i \sigma \iota \nu \cdot \gamma \iota \nu \omega \sigma \kappa[\cdot] \mu \alpha[\cdot] \delta \epsilon \kappa \alpha \iota$

```
1.
]. [...].v
]0\lambda \alpha\tau[...]
        ]v.\tau\eta
        ]\deltao[\tau]\epsilon Xоро̀з
]
IV. [KEIOI\Sigma EI\Sigma \triangleHAON].
```

100
$\sigma \tau \rho \cdot \alpha^{\prime} 1[\smile \cup-\cup \cup-\cup \cup]{ }^{N} A \rho \tau \epsilon \mu \iota \nu$.
$2[--\cup--\cup \cup]$ v́ $о \mu \alpha \iota$
s $[--\cup--\cup \cup] o s \alpha u ́ \delta \alpha ́ \nu$.

$5[\cup-\cup----] . \delta^{\prime} \epsilon \pi \epsilon \epsilon \omega \nu \quad \delta \nu \nu \alpha \tau \omega ́ \tau \epsilon \rho \circ \nu$.
- [--- $\cup] \bar{\alpha} \kappa \alpha \tau \grave{\alpha} \pi \hat{\alpha} \sigma \alpha \nu$ ó $\delta o ̀ \nu$
? $[\cup \cup-\cup-\dot{\eta}] \sigma v \chi i ́ \alpha \nu$ K $\epsilon \in$
$8[-\Xi-\cup \cup-]$
- [- $-\cup--\cup \cup-]$
$10[\cup \cup-\cup \cup-\cup \cup \beta] \alpha \lambda \lambda \epsilon \tau \alpha \iota$.
$\alpha^{\prime} \nu^{\prime} \tau . \alpha^{\prime} 1[\cup \cup-\cup \cup-] \nu$ Хро́vov óp $\nu v \in \epsilon$
$2[\cup-u-] \Delta \hat{\alpha} \lambda o \nu \quad \dot{\alpha} \gamma \alpha \kappa \lambda \epsilon ́ \alpha$

${ }^{6}[---\cup \cup-\cup] \epsilon ́ \chi \epsilon \iota \nu \quad \pi \epsilon \delta^{\prime} \omega \nu$.

っ [$\cup-\cup--\cup \cup] o l \cdot \theta \epsilon \hat{\omega} \nu$
s [-ஏー し - -]
っ $[-\cup \cup--\cup \cup] \rho \eta$.
20 зо [u u-u $-\cup \cup] \nu i x \theta \dot{c} \sigma \iota \nu$.

${ }^{2} \gamma \iota \gamma \nu \omega ́ \sigma \kappa о \mu \alpha \iota ~ \mu \grave{\epsilon} \nu \quad \alpha \rho \in \tau \alpha i ̂ s ~ \dot{\epsilon} \epsilon \theta \theta \lambda \nu$
$3^{'} E \lambda \lambda \alpha \nu i \sigma \iota \nu \quad \gamma \iota \gamma \nu \omega i \sigma \kappa[0] \mu \alpha[\iota]$ סє̀ каi
D 2
$\mu o i ̂ \sigma \alpha \nu \pi \alpha \rho \epsilon \chi \omega[\cdot] \alpha \lambda \iota \sigma$
 $\beta \iota о \delta \omega \rho о \nu \alpha \mu \alpha \chi^{\alpha \nu \iota \alpha \sigma \alpha к о \sigma^{*} \quad \delta \omega р \eta \mu а т \omega \iota \beta \iota \omega \iota}$ ब́ $\nu \iota \pi \pi o ́ \sigma \epsilon \iota \mu \iota \kappa \alpha \iota \beta o v \nu о \mu \iota \alpha \sigma \alpha \delta \alpha \epsilon \sigma \tau \epsilon \rho \sigma \sigma \quad$ Fr．8，Col．i．
 $\lambda \iota \pi \omega \nu \pi \alpha \tau \rho[.] \delta \alpha \mu \sigma[..] \rho \underset{\sim}{c} \epsilon[. \quad.] \alpha \rho \gamma \epsilon \iota$

$30 \quad \theta \epsilon \mu \epsilon \nu \circ \sigma o \iota[.] \nu 0 \pi о \lambda о \nu \gamma \in \rho \alpha \sigma$
兰 $\ddot{\eta} \ddot{\eta} \eta \omega i ̈ \epsilon \pi \alpha[. .$.
 $\kappa \alpha \iota \sigma \nu \nu \gamma \epsilon \nu \in \iota^{\prime} \alpha \nu \delta \rho \iota \phi[$ $\sigma \tau \epsilon \rho \xi \alpha \iota \cdot \mu \alpha \tau[..] \omega \nu \delta \epsilon[$
$35>{ }^{\epsilon} \kappa \alpha \sigma \epsilon \circ \nu \tau \omega \nu \cdot \lambda o \gamma \rho[. .$.$] ． \kappa T \rho \sigma \sigma \epsilon \nu \xi \alpha \nu[$ $\epsilon \pi \alpha \iota \nu \epsilon \sigma \alpha[. . ..] \omega \nu \mu \alpha \iota \sigma \mu \epsilon \nu \omega \nu o ̈ \sigma \alpha \nu \alpha[$

Col．xviii（Fr．8，Col．ii）．
$\alpha \nu \tau \alpha \rho \chi \epsilon \hat{\imath} \nu \cdot \pi o \lambda i ́ \omega \nu \delta^{\prime} \epsilon \kappa \alpha \tau \grave{o} \nu \pi \epsilon \delta \epsilon \chi \epsilon![$ $\mu \epsilon \rho \circ \sigma \epsilon \beta \delta о \mu о \nu \pi \alpha \sigma \iota \phi[\cdot] \alpha \sigma \nu \iota \quad \kappa а ⿱ ⺌ 兀 \omega \sigma[$

$\pi \epsilon \nu \sigma \phi \iota \nu \cdot \tau \rho \epsilon \omega \tau о \iota \pi о \lambda \epsilon \mu о \nu$
$\delta \iota \sigma \sigma \epsilon \nu \nu 0 \sigma \iota \delta \alpha \nu \tau \epsilon \beta \alpha \rho[\cdot] \kappa \tau v \pi \sigma \nu$.
 $\pi \epsilon \mu \psi \alpha \nu \kappa \in \rho \alpha \nu \nu \omega \iota \tau \rho \iota \circ \delta \circ \nu \tau \iota \tau \epsilon$ $\epsilon \sigma \tau o \nu \beta \alpha \theta \nu \nu \tau \alpha \rho \tau \alpha \rho о \nu \epsilon \mu \alpha \nu \mu \alpha$ $\tau \epsilon \rho a \lambda \iota \pi о \nu \tau \epsilon \sigma \kappa \alpha \iota \circ \lambda$ ороıкоעєvєркє́ α ．
$\epsilon \pi \epsilon \iota \tau \alpha \pi \lambda$ ouvovi $\epsilon \iota \rho \hat{\omega} \nu \mu \alpha \kappa \alpha \rho \omega \nu \epsilon \pi \iota \chi \omega \rho \iota o \nu$ $\tau \epsilon \theta \mu о \nu \pi[.] \mu \pi \alpha \nu \epsilon \rho \hat{\eta} \mu о \nu \alpha \pi \omega \sigma \alpha \mu \epsilon \nu \sigma \sigma$ $\mu \epsilon \gamma \alpha \nu \alpha \lambda \lambda o \theta \iota \kappa \lambda \alpha \rho o \nu \epsilon \chi \omega{ }^{\omega} \cdot \lambda^{\prime}{ }^{\iota}{ }^{\prime} \alpha \nu$ $\mu o \iota[$ ．．．］$\sigma \epsilon \mu \pi \epsilon \delta o \nu \epsilon \iota$

Col．xix（Fr．9，Col．i）．
5^{2}

－$\theta[$

```
            4 \muoí\sigma\alpha\nu \pi\alpha\rho\epsiloń\chi}\\omega[\nu] \ddot{\lambda}\lambda<s
```



```
            - \beta\iotaó\delta\omegaро\nu á\muа\chiа\nuías äкоs. \delta\omegáр\eta\muа тب̣ \betaíч.
            \imathă\nu\iota\pi\piós \epsiloniцц каi \betaovvo\muías \alphȧ\deltaає́\sigma\tau\epsilon\rhoоs.
```



```
            - \lambda\iota\pi\grave{\omega}\nu\pi\alpha\tau\rho[í]\delta\alpha \muo[\nu\alpha]\rho\chi\epsilon[i\nu] "A\rho\gamma\in\iota
```



```
            10 \thetá\epsiloń\mu\epsilon\nuOs oil[\omega]\nuо\pió\lambdao\nu \gamma'\epsiloń\rhoas.
```



```
            2 к\alphai \sigmav\gamma\gamma\epsiloń\nu\epsiloni \alpha}\nu\delta\rhoi \phi[\\lambda’ ढ̈\sigma\tau\epsilon каi
            s \sigma\tau\epsiloń\rho\xi\alphaal \mu\alpha\tau[\alphai]\omega\nu \delta\grave{\epsilon [ }\mu\alpháк\alpha\rho \alpha}\nu\delta\rho\hat{\omega}
```


40 - $\pi \epsilon ́ \nu \quad \sigma \phi$. тр'́ ω тоו $\pi o ́ \lambda \epsilon \mu \circ \nu$
10. Δ iòs 'Evvorí $\alpha \boldsymbol{}$ v $\tau \in \beta \alpha \rho[v ́] k \tau v \pi o \nu$.

${ }_{2} \pi \epsilon ́ \mu \psi \alpha \nu$ кєраиv $\hat{\varphi}$ трเóסovтí $\tau \epsilon$

${ }_{6} \tau \epsilon \theta \mu \partial ̀ \nu \quad \pi[a ́] \mu \pi \alpha \nu \quad$ ' $\rho \eta \hat{\eta} \mu \nu \quad \alpha \pi \omega \sigma \alpha ́ \mu \in \nu 0 S$

סéjסorai Oáplyos

]
] $\sigma \tau \omega v \in \nu \xi a v \tau i o v \pi a[. ~ . ~]. ~ . ~ \tau \eta \nu \kappa є о \nu ~$

 The rest blank.

เทิ̈̈ δ [

Col. xx (Fr. 9, Col. ii).

Col. xxi (Fr, 1I, Col. i).] $\sigma \quad$ epítvals II lines lost.

Lines 54^{-7} lost $=$ ep. 3^{-6}.


```
\({ }^{8}[-\cup \cup \cup-\cup--\cup-]\)
```



```
\({ }_{10}[\cup \cup \cup--\cup \cup-\cup-\)
\({ }_{11}[i] \hat{\eta}\) in \([\hat{\omega}\) i \(i \in \pi \alpha \iota \alpha\),
кат〒ผ́кпбаv. кєар. [...]
```


V. $[E I \Sigma \quad \triangle H A O N]$.
 3 lines lost.
$5 \quad[-\cup \cup-\cup \cup-]$

- $\sigma[-\cup \cup-\cup \cup--$
$\sigma \tau \rho . \beta^{\prime}{ }_{1} i\left[\eta \dot{\eta} i \epsilon \quad \Delta \alpha ́ \lambda i{ }^{\prime}\right.$ " $A \pi o \lambda \lambda o \nu$.
2 $\bar{\epsilon}[\cup \cup-\cup \cup-$
з $\sigma[-\cup---\cup u-\cup u--$
10 $\frac{1}{}[-\cup u-v u--$
s[- $-\cup-\cup \cup-]$
- $\lambda[-\cup v-\cup v--$

${ }_{2} \tau[-\cup \cup-\cup \cup-$
15 s $\langle[-\cup---\cup \cup-\cup \cup--]\rangle$
4 $\bar{a} \pi[\cup \cup-\cup \cup-$
- $\Delta \alpha \lambda[u \cup-u \cup-$

6 $\sigma \grave{v} \nu \delta[\cup \cup-\cup \cup--$
$\sigma \tau \rho . \delta^{\prime}{ }_{1}[i] \eta \ddot{i} \epsilon \Delta\left[a^{\prime} \lambda \iota^{\prime}{ }^{\prime} A \pi 0 \lambda \lambda o \nu\right.$.
$202[-\cup \cup-\cup \cup--]$
s $[-\cup---\cup \cup-\cup \cup--] s \quad$ épínvats.
Lines $22-3^{2}=\operatorname{str} . \delta^{\prime} 4-6$, str. $\epsilon^{\prime} 1-6$, str. $5^{\prime} 1-2$.
$\sigma \tau \rho .5^{\prime}{ }^{3}[-\cup---\cup \cup-\cup \cup-] a$

- [- $\cup \cup-\cup \cup--\quad]$

Col．xxii（Fr．11，Col．ii）．

${ }_{\imath} \eta \epsilon \epsilon \delta \alpha \lambda \iota \alpha \pi 0 \lambda \lambda \nu \nu$

$\epsilon \kappa \tau \iota \sigma \alpha \nu \nu \alpha \sigma o v \sigma \cdot \epsilon \rho \iota \kappa \nu \delta \delta^{\prime} \alpha \tau^{\prime} \epsilon \sigma \chi^{\circ} \nu$
$\delta \alpha \lambda o \nu \epsilon \pi \epsilon \iota \sigma \phi \iota \nu \alpha \pi 0 \lambda \lambda \omega \nu$ $\delta \omega к \in \nu о \chi \rho v \sigma о к о \mu \alpha \sigma$
，妾 $-\alpha \sigma \tau \epsilon \rho \iota \alpha \sigma \delta \epsilon \mu \alpha \sigma 0 \iota \kappa \epsilon \iota V^{\circ}$
$\imath \eta \iota \epsilon \delta \alpha \lambda \iota \alpha \pi \circ \lambda \lambda о \nu$
$\times \lambda \alpha \tau 00 \sigma \epsilon \in \nu \theta^{\prime} \mu \epsilon \pi \alpha \iota \delta \epsilon \sigma$
 $v \mu \epsilon \tau \epsilon \rho о \nu \kappa \epsilon \lambda a \delta \epsilon \nu \nu \hat{\alpha} \iota$ $\sigma v \nu \mu \epsilon ̀ \lambda \iota \gamma \frac{1}{\alpha} \rho v i ̈ \pi \alpha \iota$
，
$\because \quad \pi \rho \circ \sigma \circ \lambda \nu \mu \pi \iota o v \delta \iota \sigma \sigma \sigma \epsilon \chi \rho v[$ ．．$] \bar{\alpha}$

$\lambda \iota \sigma \sigma о \mu \alpha \iota \chi \alpha$ рітє σ

Col．xxiii（Fr．II，Col．iii）．
Plate I． $\sigma \iota \tau \epsilon \kappa \alpha \iota \sigma v \nu \alpha \phi \rho \circ \delta i ́ \tau \bar{\alpha} \iota$ $\epsilon \nu \zeta \alpha \theta \epsilon \omega \iota \mu \epsilon \delta \epsilon \xi \alpha \iota \chi \rho \circ \nu \omega \iota$
ω
$\times \alpha 0 \iota \delta t \mu \cdot 0 \cdot \nu \pi \iota \epsilon \rho \iota \delta \omega \nu \pi \rho \circ \phi \alpha \tau \alpha \nu$.
廿офораїш ккабт $\lambda \lambda i \bar{\alpha} \sigma$ орф $\alpha \nu 0 \nu \alpha \nu \delta \rho \omega \nu \chi \circ \rho \epsilon ́ v \sigma \iota \sigma \sigma \eta \lambda \theta 0 \nu$

世офov
［．］\rceil ．
$10 \times{ }^{\prime} \tau \tau \alpha \iota \sigma \alpha \mu \alpha \chi \alpha \nu \iota \alpha \nu \alpha\left[{ }^{[}\right]{ }^{\prime} \xi \xi \omega \nu$

 $\pi \epsilon \ell \theta \rho \mu \epsilon \nu 0 \sigma \kappa \alpha \tau \epsilon \beta \bar{\alpha} \nu \sigma \tau \epsilon \phi \alpha \nu \omega \nu$ $\kappa \alpha \iota \theta \alpha \lambda \iota \bar{\alpha} \nu \tau \rho o ̀ \phi \circ \nu \alpha \lambda \sigma о \sigma \alpha \quad \kappa \lambda v \tau \circ v a \lambda \sigma \circ \sigma$
$15 \pi 0 \lambda \lambda \omega \nu 0 \sigma . \tau 0 \theta \iota \lambda \alpha \tau 0$ î $\bar{\alpha} \nu$


```
40 \& \(\Delta \hat{\alpha} \lambda o \nu\), '́ \(\pi \epsilon i ́\) ' \(\sigma \phi l \nu\) ' \(A \pi o ́ \lambda \lambda \omega \nu\)
б \(\delta \bar{\omega} к \epsilon \nu\) ó хрибоко́ \(\mu а я\)
- 'Aбтєрías ס́́ \(\mu\) as oiкєiv.
```



```
- \(\dot{v} \mu \epsilon ́ \tau \epsilon \rho \rho \nu \quad \kappa \epsilon \lambda \alpha \delta \epsilon \nu \nu \underset{\alpha}{\alpha}\)
\({ }_{5} \sigma \grave{v} \nu \quad \mu \epsilon \lambda \iota \gamma \alpha ́ \rho v \iota \pi \alpha \iota-\)
```



```
VI. \(\triangle E \Lambda \Phi O I \Sigma E I \Sigma \Pi \Upsilon \Theta \Omega\).
```



```
\({ }_{2} \kappa \lambda \nu \tau о ́ \mu \alpha \nu \tau \iota ~ \Pi \nu \theta о i ̂\),
s \(\lambda i ́ \sigma \sigma o \mu \alpha \iota X \alpha \rho i \tau \epsilon \sigma\) -
1 \(\sigma i\langle\nu\rangle \tau \epsilon \kappa \alpha i\) \(\sigma \grave{v} \nu\) 'A \(\quad\) pooí \(\alpha\),
```



```廿óoov.
```



```
\({ }^{15} \pi o ́ \lambda \lambda \omega \nu o s, \tau o ́ \theta_{l} \Lambda \alpha \tau о\) ổ \(\alpha \nu\)
```

```
0\breve{\alpha}\mu\check{L\nu\alpha\delta\epsilon\lambda\phi\omega\nuкораॅ\iota\chi}\mp@subsup{0}{0}{\prime}\nuо\sigmaо\mu\phiа\lambdaо\nu
\pi\alpha\rho\alpha\sigma\kappa\iotaо\epsilon\nu\tau\alpha\mu\epsilon\lambda\pi[.]}]\mu\in\nu\alpha\iota[
\piо\delta\iotaкрот\epsilon\hat{v}[. . . . . . .]\imath [ ]
```

Col. xxiv lost.
(Line 30 had a cross in the left margin.)
Col. xxv (Fr. 12, Col. i).

Opposite 11. 52-3.
]тá $\theta \in a \sigma$]. єเซa. π av] $\boldsymbol{\sigma} \theta \in a \sigma \in \operatorname{\epsilon } \pi \sigma \sigma$

Opposite 11. $5^{8-9 .} \quad$ Opposite 1. 62. Jv Jpover Joxov Javn

Col. xxvi (Fr. 12, Col. ii).
$50 \quad \kappa \alpha \iota \pi \circ \theta \epsilon \nu \alpha \theta \alpha \nu[.]. p \xi \alpha \tau \tau[$ $\times \tau \alpha v \tau \alpha \theta \epsilon o \iota \sigma \tau[.] \in \nu$
$\times \pi \iota \theta \epsilon \iota \nu \sigma \circ \phi \circ v[\cdot] \delta \varphi \varphi \nu \alpha \tau 0 \nu[\cdot] \quad \pi[$
ßротоเбเ $\delta \alpha \mu \alpha \chi \alpha \nu o[$. . .] $] \epsilon \mu \epsilon \nu$
$\alpha \lambda \lambda \alpha \pi \alpha \rho \theta \epsilon \nu \circ \iota \gamma \alpha \rho \iota \sigma o \varphi[\cdot] \mu \sigma[.] \sigma \alpha$
$\pi \alpha \nu \tau \alpha \kappa \epsilon[. ..] \nu \epsilon \phi \epsilon i \sigma v \nu \quad\left[.{ }^{\eta}\right]$.] $\epsilon \lambda a[$
$\pi \alpha \tau \rho \iota \mu \nu \alpha \mu \sigma \sigma[.] \alpha \iota \tau \epsilon$
тоитоע $\tau \sigma \chi \in \tau[. . ..] \mu o \nu$

̧a[. .]ov. [.....].
$>\gamma \lambda \omega \sigma \sigma \alpha \mu \in \lambda \iota \tau о \sigma \alpha \omega \tau о \nu \gamma \lambda \nu \kappa v \nu[$] à $\alpha \omega \tau \circ v$

$\frac{1}{\overline{2}}>\frac{\epsilon \nu \theta \epsilon \omega ิ \nu \xi \epsilon \nu t a l . ~}{\text {. }}$

Col. xxvii (Fr. 12, Col. iii, with Fr. 13).
$65 \mu o v \sigma[$ $\epsilon \nu \delta[$ $\phi \iota \lambda \epsilon[$ кроџ[

18 $\theta \alpha \mu \nu \nu \grave{\alpha} ~ \triangle \epsilon \lambda \phi \bar{\omega} \nu$ кópal χ Øovòs ỏ $\mu \phi \alpha \lambda o ̀ \nu$
${ }_{17} \pi \alpha \rho \grave{\alpha} \quad \sigma \kappa \iota o ́ \epsilon \nu \tau \alpha \quad \mu \epsilon \lambda \pi[0 ́] \mu \in \nu \alpha \iota$

Lines 19-49 lost $=$ str. 19-21, antistr. 1-2 I, cp. $1-7$.

Scholia on Col. xxv.

] $\tau \mathrm{d} \mathbf{s} \theta \in \mathrm{c} \mathrm{a}_{\mathrm{s}}$]. cis ámav тà’s θ єàs étтоs

$\underset{\substack{\text { Jpove } \\ \text { Jav } \eta}}{\substack{\text { Jon }}}$
e] $]$ Xov

50 Є́ π. α^{\prime} в к $\alpha \grave{ } \pi o ́ \theta \epsilon \nu \dot{\alpha} \theta \alpha \nu\left[\alpha \tau-\cup \cup \alpha^{\prime}\right] \rho \xi \alpha \tau о$.

- $\tau \alpha \hat{\tau} \tau \alpha$ $\theta \in o ̂ ̂ \sigma \iota[\mu] \epsilon ̀ \nu$
€
$10 \pi \iota \theta \in \hat{\imath} \nu \quad \sigma \circ \phi 0 \hat{v}[s]$ §vvaтóv, $\quad \pi[\theta \in i v$.
${ }_{11} \beta \rho о т о \hat{\imath} \sigma \iota\langle\nu\rangle \delta^{\circ} \alpha \dot{\alpha} \mu \alpha ́ \chi \alpha \nu 0[\nu \quad \epsilon \dot{U}] \rho \epsilon ́ \mu \epsilon \nu$.
$12 \alpha \dot{\alpha} \lambda \lambda \dot{\alpha} \pi \alpha \rho \theta \epsilon ́ \nu 0 \iota \quad \gamma \grave{\alpha} \rho \imath^{\prime \prime} \sigma \circ \nu\langle\gamma \epsilon \nu\rangle[\epsilon \in] \mu \circ[\iota] \sigma \alpha \iota$

${ }_{14} \pi \alpha \tau \rho i \quad M \nu \alpha \mu о \sigma[u ́ \nu] \alpha \quad \tau \epsilon$
${ }_{15} \tau 0 \hat{\tau} \tau \circ \nu$ '้ $\sigma \chi \in \tau[\epsilon \tau \epsilon \theta] \mu \delta \nu$,

10 '่ $\nu \quad \theta \epsilon \hat{\omega} \nu$ छ̇vía.
$\sigma \tau \rho, \beta^{\prime}{ }_{1} \theta \dot{v} \epsilon \tau \alpha \iota$ र̀̀ ρ áy入a人as $\dot{v} \pi \epsilon ̀ \rho ~ \Pi \alpha \nu \in \lambda-$
${ }_{2} \lambda \alpha ́ \delta o s ~ a ́ \nu \tau \epsilon \Delta \epsilon \lambda \phi \hat{\omega} \nu$
s ${ }^{\epsilon} \theta[\nu]$ os $\epsilon ข ้ \xi \alpha \tau o ~ \lambda t$ -

65 , $\mu 0 \hat{v}$ o[u-u-v--

${ }_{7}$ $К \rho o ́ \nu[\iota \epsilon \cup \cup \cup-\cup \cup-$

```
    \pi\rhov\tau\alpha[
70 \tauо\iota\pi\alpha[
    \chi\rho\eta\sigma[.]\eta[
    0\omega\nuo0[
    к\alphaו\piот\epsilon[
    \pi\alpha\nu0oo[
        ót
75 \delta\epsilon\sigma\tau\rho\omegat\alpha[
    \eta\nu\epsilon\gammaкє[
    \delta\epsilon\alpha\pi\alpha\iota\sigma[
    ov\epsilon\mu\beta\alpha[
    \pi\alpha\rho[.]o\sigma\epsilon'[
```

Col. xxviii (Fr. 13, Col. ii).
8o $\sigma \iota \omega \iota \delta \epsilon \mu \alpha i \theta \epsilon \sigma \sigma$.
${ }^{\iota} \lambda \iota \omega \iota \delta \in \theta \eta \kappa \in \nu \alpha \phi \alpha \rho$
${ }^{\circ} \psi \iota \epsilon \rho \alpha \nu \alpha \lambda \omega \sigma \iota \nu$

$\theta \epsilon \tau \iota \dot{\delta} \circ \sigma \beta \iota \alpha \tau \bar{\alpha} \nu$
85 тเбтоуєркоб $\alpha \chi^{\alpha \iota}$
$\omega \nu \theta \rho \alpha \sigma \epsilon i \not \emptyset o \nu \omega \iota \pi \epsilon \delta \alpha \sigma \alpha \iota{ }^{\circ}$.

$\alpha \kappa \nu \alpha \mu \pi \tau о \nu \eta \rho \bar{\alpha} \iota \mu \in \nu \sigma \sigma=\alpha ้ \nu[\cdot] \epsilon \rho \epsilon \iota \delta \omega \nu$.
об $\alpha \tau \epsilon \pi о \lambda \iota \alpha \delta \iota \cdot \pi \rho о \pi о \nu \omega \nu \quad$ ávog σa
$90 \delta^{\prime} \epsilon \epsilon \epsilon \mu \epsilon \gamma \alpha \lambda \omega \nu \delta \alpha \rho \delta \alpha \nu \iota \alpha \nu$
$\epsilon \pi \rho \alpha \theta \epsilon \nu \epsilon \iota \mu \eta \phi \nu \lambda \alpha \sigma \sigma \epsilon \nu \alpha \pi \rho[\cdot] \lambda[.] \nu$.
$\nu \epsilon \phi \in \sigma \iota \delta \in \chi \rho \nu \sigma \in 0 \iota \sigma 0 \lambda \nu \mu \pi \sigma$
окацкорифа[. . .] $\bar{i}\} \omega \nu$

Col. xxix (Fr. 13, Col. iii).
$95 \mu \alpha \cdot \pi \grave{\epsilon} \rho \iota \delta v \psi \iota \kappa o ́ \mu \omega[..] \lambda \in \nu \bar{\alpha} \iota$
$\chi \rho \hat{\eta} \nu \check{\alpha} \rho \alpha \pi \epsilon \rho \gamma \alpha \mu о \nu \epsilon \nu \rho \nu[\cdot]$]
$\grave{\imath} \sigma \tau \bar{\omega} \sigma \alpha \iota \sigma \epsilon \lambda \alpha \sigma \alpha \iota \theta о \mu \epsilon \nu \sigma \sigma$
$\pi v \rho \circ \sigma \cdot \epsilon \pi \epsilon \iota \delta \alpha \lambda \kappa \iota \mu о \nu \nu \epsilon \kappa v \nu[$.] $] \nu \tau \alpha[$

```
        8 \pi\rhoú\tau\alpha[\nul ᄂ--u u -
70 % Tol \pi}\boldsymbol{\pi}[\smile--\cup-\cup\smile - -
    10 X\rho\eta\sigma[\tau]\eta[\rho\iota-u \smile-\smile--
    11[\Piv]0\omega\nuó0[\check{v}v-\cup--
    12 к\alphaí \pio\tau\epsilon[\smile \cup- - \smile \cup- \smile - - -
    13 \Pi\alphá\nu\nuOoo[s - \\alpha\nua\hat{\omega}\nu öT\epsilon \pia\hat{l-}
75 1& \delta\epsilons T\rho\omega\hat{\alpha}[\smile \cup- \smileu
    15 \eta}\nu\epsilon\gammaк\overline{\epsilon}[\cup\cup~-\Delta\iotao\mu\eta\prime
    10 \delta\epsilon\alpha \pi\alphá̈̈s [Z\eta\nuoั̀s - \smile v- - -
```



```
    18 Пá\rho[l]os ध́[к\alpha\betaó\lambdaos \beta\rhooт\eta-
```

 So 19 бím ס́є \(\mu a i ̈ \quad \theta \epsilon o ́ s\).
 \({ }_{20}\) 'I入íov \(\delta\) €̀ \(\theta \hat{\eta} \kappa \in \nu\) ă \(\phi \alpha \rho\)
 \({ }^{21}\) ó \(\psi \iota \tau \in ́ \rho \alpha \nu{ }^{\alpha \prime} \lambda \omega \sigma \iota \nu\),

${ }_{2}$ Єétios $\beta \iota a \tau \alpha ̀ \nu$
85 з $\pi \iota \sigma \tau$ о̀v ${ }^{\epsilon \prime} \rho к о$ ' 'A Хаь-

90 8 δ € $\kappa \epsilon \mu \epsilon \gamma \alpha ́ \lambda \omega \nu \quad \triangle \alpha \rho \delta \alpha \nu i ́ \alpha \nu$
و $\epsilon \pi \rho \alpha \theta\langle 0\rangle \nu, \epsilon i \quad \mu \eta \grave{\eta}^{\prime} \phi \dot{v} \lambda \alpha \sigma \sigma \epsilon \nu$ ' $A \pi o ́[\lambda] \lambda[\omega] \nu$.

${ }_{14} \chi \rho \hat{\rho} \nu$ ă $\rho \alpha$ Пє́ $\rho \gamma \alpha \mu о \nu$ єủp̀̀ [$\left.\delta\right] \iota-$


```
    \piо\lambdav\sigma\tauо\nu\omega\iota0\epsilon\nu\tauо\pi\eta\lambda\epsilonїठ\alpha . . [
100 \alpha\lambdaо\sigma\epsilon\pi\iota\kappav\mu\alpha\beta\alpha\nu\tau\epsilon\sigma[.]\lambda
    0o\nu\alpha\gamma\gamma\epsilon\lambdao[.]o\pi\iota\sigma\omega
    \sigma\kappav\rhoо0\epsilon\nu\nu[.]o\pi\tauо\lambda\epsilon\mu[
    \epsilonv\rhov\beta\iota\alpha\nuа\gammaо\nu\tau\epsilon\sigma.
    o\sigma\deltat\in\pi\epsilon\rho\sigma\epsilon\nu\\lambda\iotaov\pio\lambda[
105 \alpha\lambda\lambdaóv\tau\epsilon\mu\alpha\tau\epsiloń\rho\epsilon\pi\epsilon\epsilon\tau\alpha[.]\epsilon\oint\delta\nu\alpha\nu[.....]
    \epsilon̈̈ठ\epsilon\nuóv\tau\epsilon\pi\alpha\tau\rho\omegaїo[.]]\sigma\epsilon\nu\alpha\rhoo[. . . . . . .]
    \iota\pi\piоv\sigma\muv\rho\mu\iota\deltao\nu\omega\nu
```


Col. xxx (Fr. 13, Col. iv).

$\omega[$. .] $\sigma \epsilon[$ [. . .] $\epsilon \sigma \sigma$.
$\gamma \in[.$. . $] \nu[$. .] $\pi \rho \iota \alpha \mu o \nu$

.v.

[.] $] \tau \epsilon \pi \iota \gamma \eta \rho \alpha \sigma^{i} \xi \xi \in$
$\mu \epsilon \nu \beta \iota v \cdot[\cdot] \mu \phi \iota \pi о \lambda о \iota \sigma \delta \epsilon$

[....] $] \nu \hat{v} \nu \mu \in \tau \rho \alpha \pi \alpha \iota \eta o \quad \gamma^{\rho} \eta_{\imath}^{\eta}, \tau \epsilon$

[. . .] $] \alpha \kappa \lambda u ́ \tau \bar{\alpha} \gamma \in ́ \varphi \in \sigma \sigma \iota \delta \omega p \iota \epsilon \iota$

 $\epsilon \cup \xi a[$.$] тотєрเтоขavX \mu$ оข

Col. xxxi (Fr. 13, Col. v, with Fr. 14).
$\lambda \alpha \nu$ וov $\alpha \in \nu \nu 0 \nu \alpha \sigma \tau \rho \circ \nu$.
ov $\downarrow \epsilon \kappa \epsilon \nu$ óv $\sigma \epsilon \pi \alpha \iota \eta \circ \nu \omega \nu$
${ }_{17} \pi 0 \lambda v \sigma \tau o ́ v \omega$ Ө́єvто $\Pi \eta \lambda \epsilon i ̂ \delta \alpha$, $10018 \dot{\alpha} \lambda$ òs $\epsilon \in \pi i \quad \kappa \hat{v} \mu \alpha \beta \alpha \dot{\alpha} \nu \tau \in S[\hat{\eta}] \lambda-$
${ }_{19} \theta 0 \nu \alpha^{\alpha} \gamma \gamma \epsilon \lambda o[l]$ ó $\pi i ́ \sigma \omega$
${ }_{20}$ इккирó $\theta \in \nu \quad N[\epsilon] 0 \pi \tau o ́ \lambda \epsilon \mu\left[0{ }^{\prime}\right.$
${ }_{21} \epsilon \dot{v} \rho \nu \beta i ́ \alpha \nu$ ä ${ }^{2} \nu \nu \tau \epsilon S$,
$\epsilon \in \pi . \beta^{\prime}=$ òs $\delta \iota \epsilon \in \pi \epsilon \rho \sigma \epsilon \nu$ 'I入íov $\pi o ́ \lambda[\iota \nu$.

4immous Mup $\mu i \delta o ́ v \omega \nu$

${ }_{10} \gamma \in[\rho \alpha \iota o ̀] \nu$ [ôs] Прíaرov

${ }_{13}[\mu] \hat{\eta} \tau$ ' $\epsilon \pi i \quad \gamma \hat{\eta} \rho \alpha s$ i $\xi^{\prime} \epsilon$ -

${ }_{18}\left[\hat{\eta} \hat{\eta}\langle\langle\hat{\eta}\rangle \tau \epsilon] \nu \hat{v} \nu \quad \mu^{\prime} \epsilon \tau \rho \alpha \quad \pi \alpha \iota \eta o ́-\gamma \rho(\alpha ́ \phi \epsilon \tau a \iota)\right.$ in $i \hat{\eta} \tau \epsilon$.
${ }_{19}[\nu] \omega \nu$, î $[\tau \epsilon] \quad \nu \epsilon \in[L.] \quad \gamma \rho^{\prime}(\phi \phi \epsilon \tau \alpha u)[7] \eta \hat{\eta} i \hat{\eta} \tau \epsilon \nu \nu^{\prime} \circ \circ$.

- 入aviou фаєvvòv ă $\sigma \tau \rho o \nu$.
- oưv $\nu \kappa \kappa \epsilon \nu$ ov̋ $\sigma \epsilon \pi \alpha \iota \eta o ́ \nu \omega \nu$

```
        \alphá\deltao\rho\piо\nu\epsilonv\nu\alpha\xi
    \rhoó0\iotaӑ\delta\epsilon\chiо\mu\epsilońv\alphaка\tau\epsilon\rho\epsilon\iota\sigma
    130 \pió}0\epsilon\nu\epsilon\lambda\alpha\beta\epsilon\sigma\nu\alphav̀m\rhov́\tau\alpha\nu\iota
```



```
        о\pi\alphá\nu\tau\tau\alphá\tauo\iota\tau\alpha\tau\epsilonК\alpha\iota\tau\alpha\tau\epsilonv\chi}\mp@subsup{}{}{\omega\nu
        \sigmaov\epsilon\gamma\gammav\alpha\lambda\iota\xi\epsilon\nuo\lambda\betao\nu
        \epsilonv\rhov́o[. .]\kappa\rhoovov\pi\alpha\iota|\cdotv\delta\alpha\tau\iota\delta[[]]\pi\alpha\sigma[ II letters 
    135\piоvิ\pi[. . .]\piо\pi\rhoо0v\rho\omega\nu\beta\alpha0vvo\lambda [ ", ", [j0v\rho\omegav\in\
        \piov\alpha[.] . \rho\epsilon\psi\alpha\tauо\pi\alpha\rho0\epsilon\nuo\nu
    >\alpha\iota\gamma!\nu\alpha\, '\tauо\tau\epsilon\chi\rho\overline{v}\sigma\epsilon\alphă\iota\alpha
    > \epsilon\rhoо\sigma\epsilonк\rhov\psi\alpha\alpha\tau\alpha\nu\kappaо\mu[..]l\epsilon\pi\iota\iotaX\omega\rho\iotaov[
    \kappa\alpha\tau\alphá\sigma\kappa\iotaо\nu\nu\omega\tauо\nuv\mu\epsilon\tau\epsilon\rhoо\nu. \tau[
I 40> > v\nu\alpha\lambda\epsilon\chi\epsilon\omega\nu\epsilon\pi\alpha\mu\beta\rhoо\tau\omega\nu [
```

Col. xxxii (Fr. 14, Col. ii).
[
$\alpha \iota \sigma[$
$\mu v[$
$\tau o \lambda[$
$145 \delta_{\iota 0}$ [
$\pi \epsilon[$
$\pi o[$
$\pi \alpha[$
$\xi \in[$
${ }^{150} \kappa \bar{\imath}[$
$\xi \alpha[$
$\nu \stackrel{[}{[}$
$\tau \rho[$
$\sigma \theta[$
${ }^{1} 55 \zeta \eta[$

Col. xxxiii lost.
Col. xxxiv (Fr. I5, Col. i).

[.]
[.]


```
    7 \rhooô0ıа \deltaє\chiо\mu'́va кат\epsilon\rho\epsilonї今
    130 8 по́0\epsilon\nu \epsilon̂\ 人\alpha\beta\epsilons vav\pi\rhov́т\alpha\nul\nu
```



```
            10 ó \pi\alpháv\tau\alpha \tau0\iota \tau\alphá \tau\epsilon к\alphai \tau\alphà \tau\epsilonv́\chi\omega\nu
```



```
135 is \piov \pi[o\tau' \alpha']\piò \pi\rhoo0ú\rho\omega\nu \betaa0úко\lambda-
```



```
\({ }_{17} \kappa \alpha \tau \alpha \dot{\alpha} \kappa \iota \circ \nu \nu \omega ิ \tau o \nu \dot{\nu} \mu \epsilon ́ \tau \epsilon \rho \circ \nu, \quad \tau\)
```



```
\(19 \cup-\cup \cup \cup \smile \underline{~}\)
\({ }_{20} \alpha \iota \sigma[\cup-\cup-\cup \cup \underline{~}\)
\({ }^{21} \mu \bar{v}[\cup \cup-\cup-\bar{v}\)
\(\alpha{ }^{\alpha} \nu \tau . \gamma^{\prime}\)
1 то̆入［ \(\cup-\cup-\cup-\cup-\cup-\)
\(145=210[-\cup-\)
\({ }^{3} \pi \vec{\epsilon}[u-\cup \cup-\)
\({ }^{1} \pi \bar{o}[\cup-\cup-\cup-\simeq\)
\％\(\pi \bar{\alpha}[\cup \cup-\cup--\cup-\)
\({ }^{6} \xi \check{\xi} \check{\epsilon}[-\cup--\cup \cup-\cup-\)
```



```
，\(\nu o ̈[\cup \cup--\cup-\cup \cup \underline{u} \simeq\)
\({ }_{10} \tau \rho[\underline{ } \underline{-}-\cup-\cup \cup-\cup--\)
\({ }_{11} \sigma \theta[\cup-\cup \cup-\cup-\simeq\)
```


Lines ${ }^{1} 56-171$ lost $=$ antistr． $1_{3-21, ~ e p . ~}^{1-7 .}$

```
\epsilon\pi. \gamma
    0 [-\smile-\smileし-]
    10 [u-u-u v-]
```



```
    [..............]єрораларєта\sigma
    [. . . . . . . . . . .] тробтактькш\sigma
    [. . . . . . . .]\tau\rho\omegaї\alpha\nu`\phi\iota
    [. . . . . . . . .]\alpha\lambda\alphaov
180 [..........]vo\iota\sigma\iota\pi\alpha\nu \sigma\tau\epsilon\phiavor\sigma\iotavv.[...]
```



```
    [. . . . . . .]\pio\lambda\lambda\alphaк\iota\cdot\pi\alpha\iota⿱人\alpha\nu\deltá́
    [. . . . . . . .]\hat{\alpha\nu \tau\omegava\piотبч¢.[.] . к\omegav}
                                    s 拢!!<\muav
                                    \epsilon\sigma
    [. . . . . . . .]\nu\tau\epsilon0\epsilon\sigma\pit\omega\nu\deltao\tau[
    [. . . . . . . . .] є\piє\sigma[.]
    [. . . . . . . .]ov[. .]\lambda\alpha\alpháv\tau\tau\epsilon\sigma\alphav\lambda\alpha\nu [ 9 letters ]ب\varphi\sigma\tauovay.!! • [
                            Col. xxxv (Fr. I 5, Col. ii).
    ×.[
            2 lines lost.
    [. . . .]\epsilon\iota\phi\iota\lambda\alpha[
    [. . . .]\nu\delta'\epsiloń . . [
    [. . . . .] ]\pi\alpha[
    10 [. . . . .]a\gamma }\mp@subsup{\chi}{}{\prime}0
    [. . .]\tau\alphav\lambdaov\alpha\iota0\epsilon\rho[
    [. . . . .]\epsilon'\alpha\nuкорvф\alphav[
    [. .]\nu\in\rhoo\nu\lambda\epsilon\gammaо\mu\epsilon\nu[
    [. . . .]\alpha\tau\alphav\rho\omega\nu
15 [. . . . .] ] |\rhoo\beta\omega\mu [
    [. . . . . .]o\iota\tau[.]] . \muo[. . . .]T\alpha\alpha\rho@[
    [. . . . . . . .]\delta\eta\sigma\alpha\nu\alphav\delta\alpha\nu
```



```
B
                                    Fr. 16.
    [. . . . . . . . . . . . .]al.
    [. . . . . . . . . . . . . .]o\sigma
    [. . . . . . . . . . . . ]p }\alpha
```

```
175 11[u--u-u v-]\nu % \gamma\epsilon \delta\epsilon-
    12[-\smile-\smile-\smile\dot{\alpha}\pi]\epsiloní\rhoo\nu\alphaS \alpha}\rho\epsilon\tau\dot{\alpha}
    13[-\smile\smile-\smile-Ч] тробтакткк\omegaิs.
```



```
    \mp@subsup{}{15}{[ [\lambda-\smile - \smile]\alpha \lambda\alphaò\nu}
180 з6[-\smile-\sigma\tau\epsilon\phi\alphá]\nu0ו\sigma\iota \pi\tilde{\alpha}\nu\quad \sigma\tau\epsilon\phiávoloí vıv.[...]
```



```
    18[\cup-\cup-\smile] \pio\lambda\lambda\alpháк\iota. \pi\alpha\iota\alphà\nu \delta'́
```


VII.

 \([\ldots] \nu \quad \tau \in \quad \theta \in \sigma \pi \in \sigma i ́ \omega \nu \quad \delta^{\prime} \tau[\epsilon \iota \rho \alpha \iota\) (?)
 [.] \(\left.{ }^{\text {en }} \pi \in \sigma \sigma_{L}.\right]\)

- [
2 lines lost.
[. . . .] $\epsilon \iota \quad \phi \iota \lambda \alpha[$
[....] ${ }^{\nu} \delta \epsilon ́ . .[$
[. $] \mu \pi \alpha[$
ı 0 [.....] $\dot{\alpha} \gamma \chi \iota \theta[\epsilon$
[. . .] $] \alpha v \lambda o \nu ~ a i \theta \in \rho[$
[.] ϵ^{\prime} à ν корифѝ ν [
$[\phi \alpha] \nu \in \rho o ̀ \nu \quad \lambda \in \gamma \sigma \mu \in \nu[$
[. . . .] α таúp $\omega \nu \quad \in[$
${ }^{15}$ [.] $\boldsymbol{v} \pi \rho o ̀ ~ \beta \omega \mu[o \hat{v}$ (?)
[.]oct[.] $\cdot \mu o[. . ..] \pi \alpha \rho o[$
[..... кє入á] $\delta \eta \sigma \alpha \nu$ aú $\delta \dot{\alpha} \nu$.
$[\epsilon \dot{v}] \alpha \nu \tau \in ́ \sigma \iota$ Х $\rho \eta \sigma \tau \eta \dot{\eta} \rho \iota o \nu$
Fr. 16.
[...............]ą
[.]os
[.] $] \alpha \nu$

```
    [. . . . . . . . . . . . .]x\omega\nu
5 [. . . . . . . . . . . .]vov\sigma
кє\lambdaа\delta\eta\sigmaаАข\muvov\sigma
    [. . . . . . . . . . . . .]\pi}
    [. . . . . . . . . . . .] . \sigmaup\iota\alpha\iota\sigma\alpha\nu\iota\pi\pio![.].
    [. . . . . . . . . . . .]\tau
    [. . . . . . . . . . . . . .]ọv.
10
```



```
    \mu\nu\alpha\mu[.]]\sigmav[.]\alpha\iotaкора[.]\sigmaiт\epsilonv
    \mu\alpha\chi\alpha\nu\iota\alpha\nu\delta\iota\deltaó}\mu\epsilon\nu
    [.]v\phi\lambda\alpha[. . .]\rho\alpha\nu\delta\rho\omega\nuф\rho\epsilon\nuє\sigma
    [.]\sigma\tau\iota\sigma\alpha\nu}\in\cup0\epsilon\lambda\iotaк\omega\nu\iota\alpha\delta\omega\nu
```


$\epsilon \mu \circ _\delta \epsilon \tau 0 v \tau \rho[\cdot][!\epsilon \delta \omega$
[. . . $] \alpha \theta \alpha \nu \alpha \tau[.] \nu \pi o \rho o \nu$
Two fragments from Fr. 16 (?).
Fr. 17.
ou $\eta \rho o v[$

Fr. 18.
]. oof $[$
亿ó $о \tau \in \sigma \alpha[$
$\epsilon \pi \epsilon \ell \oint \alpha[$
. .

Fr. 19, Col. i.
]
] §éntọ $^{\text {un }}$
]
] $\ddagger \stackrel{\sigma}{\bar{\sigma}}$
]
]
]
]
] . . a $\alpha[\cdot] \alpha \cup \tau{ }^{\circ}$
10
] $\boldsymbol{\pi}$. . $\epsilon \sigma \theta a[$.
]

```
    [. . . . . . . . . . . . .]X@\nu
    5
    [. . . . . . . . . . . t]\pi\piо\nu . [.] . \alphá\mu\alpha\xi{\iotaтò\nu
    [. . . . . . . . . . . .]. \Sigmavpíaıs á\nu` ï\pi\pio\imath[s].
    [. . . . . . . . . . \pi]\tau\alpha\nuò\nu \alphä\rho\mu\alpha
    [. . . . . . . . . . . . .]ov.
```



```
    M\nu\alpha\mu[0]\sigmaर́v[\nu]{ кó\rho\alpha[\iota]\sigmaí \tau' \epsilonù-
    \mu\alpha\chiа\nuía\nu \deltai\deltaó\mu<\nu.
    [r]v\phi\lambda\alpha[i`l \gamma\grave{\alpha}]\rho \alphả\nu\delta\rho\omegaि\nu ф\rho\epsiloń\nu\epsilonS
    [ö]\sigma\tau\iotas \alpha้\nu\epsilonv0' 'E\lambda\iotaк\omega\nul\alphá\delta\omega\nu
```



```
    [\kappa\alpha\nu] \alphaं0\alphá\nu\alpha\tau[0]\nu \pióvo\nu
```


Fr. 17.

. . [

Fr. 19.
]
] Sédtov.
]
] $\mathrm{fis} \bar{\sigma}$.
5
]
]
]
]
]. . $\alpha \tau[.] \alpha v \tau o ́-$

$$
\begin{aligned}
& \text { 'Ouńpov [} \\
& \text { lóvtes } \alpha \text { [} \\
& \text { } \bar{\epsilon} \pi \epsilon i \quad \delta a[
\end{aligned}
$$

Fr. 19, Col. ii, with Fr. 20.
ϵ © 0 o
$\alpha[$
$\delta[$
[. $] \boldsymbol{\alpha}[$
20 [.] $] v \bar{\alpha} \sigma \cdot \tau i \pi \epsilon \iota \sigma o \mu \alpha[$ $\eta \delta \iota \sigma \sigma$ оик $\in \in \in \lambda$ © $[$
коเov $\theta v \gamma \alpha \tau \eta \rho \pi[$
$\alpha \pi \iota \sigma \tau \dot{\alpha} \mu[\cdot] \iota \delta \in \delta \delta[\cdot] \ldots \alpha \ldots \alpha \cdot[$
$\delta \in \mu l \nu \in \nu \pi \in \lambda[\cdot] \gamma \epsilon[$
.v.
${ }_{2} 5 \rho \iota \phi \theta \epsilon \hat{\sigma} \sigma \nu \epsilon v \alpha \gamma \epsilon \alpha \pi \epsilon \tau \rho \alpha \nu \phi \alpha \nu \eta \nu \alpha \iota[$.. .auaye!
$\kappa \alpha \lambda[$.]ovтı $\mu \iota \nu$ ор $\tau v \gamma \iota \alpha \nu \nu \alpha v ิ \tau \iota \pi \alpha \lambda \alpha \iota$.
$\pi \epsilon ф о \rho \eta \tau о \delta^{\prime} \epsilon \pi^{\prime} \alpha \iota \gamma \alpha \hat{\imath} \nu \nu \theta \alpha \mu \alpha^{\prime}$.
таิбократьбтоб нкарт! $\sigma т о \sigma$.
$\epsilon \rho \alpha \sigma \sigma \alpha \tau о \mu \iota \chi \theta \epsilon \iota \sigma$

Fr. 21.

5

10

$$
\begin{aligned}
& \text {] } \mathrm{T} \text { [}[\\
& \text {]...[} \\
& \text {] } \\
& \text {] } \cdot \omega \cdot{ }^{-} \\
& \text {]. [} \\
& \text {]. } \nu \tau \epsilon \lambda o \sigma[\text {. .] }] \alpha L^{\circ} \quad a \mu \alpha[\ldots] \in \sigma \sigma \epsilon \tau a l \\
& \text {] } \chi \chi \bar{\alpha} \iota \sigma v[. .] . \nu o \nu \\
& \text {]тє } \rho \alpha \iota \nu 0 \iota \sigma
\end{aligned}
$$

	$\stackrel{a}{\omega \tau o v}{ }_{\text {éкає́ } \rho-}$
γ]
]
]

${ }^{\prime \prime} \delta 0$
α [
d[
]ov $\lambda e ́ \gamma \in l$ à $\left.\pi_{[}^{[} 0\right]$ pía
$j \lambda \eta v$
]vous
]o ধ゙テбато [
[.]a[

Koíov $\theta v \gamma \dot{\alpha} \tau \eta \rho \pi[$

$\kappa \alpha \lambda[$ '́́]ovтí $\mu \iota \nu$ 'Opтvүíav vav̂тal $\pi \alpha ́ \lambda \alpha l$.

тâs ó кра́тьбтоs ка́ртıбтоs
є́ а́б $\sigma \alpha т о ~ \mu i \chi \theta \epsilon i s$
30 Toğoфó $\rho o \nu \tau \epsilon \lambda \epsilon \in \sigma \alpha l$ yóvov.

Fr. 21.

5
]. []

$\tau] v ́ \chi \alpha \sigma v[.$.$] . vov$
] $\pi \in \rho a i ́ v o l s$

Beginnings of lines.
Fr. 28.
Fr. 29.
$\cdot[\cdot] \in \sigma[$
$\omega \beta \alpha \theta \cup \delta[$
$\iota \eta \iota \epsilon \pi \alpha \iota \mu \epsilon[$
$\delta \alpha \mu o \nu \alpha \theta \alpha[$

Fr. 3 I.

Fr. 32.
rọ
€

Fr. 22.

Fr. 26.
[.] $][$.$] . [$
[.]. $\nu \tau \in \nu \epsilon \iota[$

$\tau \iota \pi \alpha \rho \theta[\epsilon ́] \nu \omega \quad \sigma \grave{v} \nu \pi o \lambda[$
5. $\chi \epsilon \ldots \epsilon[.] \iota \nu \eta \lambda \epsilon \epsilon i i$ ө̀̀ $\rho \mu[$
$K \rho o ́[\nu] \iota o \nu \delta \hat{\omega} \mu$ ' α ' $\gamma \lambda \alpha o[$
[.....]ıs ${ }^{\epsilon} \pi \pi^{\prime}$ 'I $\sigma \mu \eta \nu i ́ \alpha[\iota s$
[. . .]o入 $\omega[$. .] $][.] \iota \tau \rho[$
[....] $\mu a ́ v \tau \iota s$ aủ. [
ı [. . . .]. . . .] $\quad \mu \eta \delta \epsilon[$
[.] $[\cdot] v \mu \epsilon[$
[... $\sigma v] \mu \phi о \rho o[$

Fr. 28.
$\cdot[\cdot] \epsilon \sigma[$
$\hat{\omega} \beta \alpha \theta \nu \delta[0 \xi(?)$
$i \neq i \epsilon \epsilon \pi \alpha \hat{\imath} \mu \in[$
$\delta \hat{\alpha} \mu o \nu \quad A \theta \alpha[\nu \alpha$

Ends of lines.
Fr. 33.
] α. [. .]
] $\alpha \sigma \sigma \alpha \mu \phi[$. . $] \beta \underset{\sim}{\alpha} \boldsymbol{\kappa} \epsilon \varphi[$
]ло入! $!\mathrm{ov}$
] $\sigma \rho[\cdot]$. ! $\alpha \sigma \nu \in \mu \epsilon \lambda \alpha \tau 0[$
5] $\alpha \lambda \mu \alpha \iota$
] $\nu \omega \nu$
]. $!\nu \epsilon \pi \in \epsilon[\cdot] \cdot \nu \in \iota[$
]
]
]

Fr. 3^{6}.
Fr. 37.
$] \cdot[$
$]!$.
$] o \nu$
$]$

Fr. 34.
]
Jo

Fr. 35.

$$
] \epsilon ́ \epsilon \delta \in \alpha \tau[
$$

] ν.

Fr. 3^{8}.

$$
\begin{gathered}
] \\
] \sigma \iota \\
] \backslash \uparrow \alpha \nu \alpha \widehat{\zeta}
\end{gathered}
$$

Fragments having blank margin above.

$\begin{gathered} \text { Fr. } 39 . \\ \text {]X } x^{[}[\end{gathered}$	Fr. 40.]кov $\phi[$	Fr. 4 I.] $\alpha \pi o v[$	
] $¢$. [

Fr. 4.3.	Fr. 44.
$] \in \delta[$	T $!6 .[$

Fragment having blank margin below.
Fr. 45.
]. $\phi[$

```
Fr. 33.
        ]\alpha . [. .]
    ]\alpha\sigma\sigma' \dot{\alpha}\mu\phi[\iota\beta\epsiloń]\beta\alpha\alphaк\in\nu [
    ] \pio\lambdaiò\nu
    ]\sigmao[.]. las \nu\epsiloń\mu\epsilon \Lambdaa\tauo[î\delta\alphas(?)
        5 ] \alphä\lambda\mu\alpha
        ]\nu\omega\nu
        ]. |v\in\pi\epsilon[.] . v\ini[
```


Fr. 49.
] $\sigma \phi \rho \alpha \sigma[$] $\delta 0 \xi \alpha \nu[$

Fr. 53.
]:0
]ap [
] $โ$

Fr. 57.
] $]$ [
] $] \times$

Fr. 54.

Fr. 50.] $\omega \nu$ [] $\alpha \nu[$

.

] $\delta \iota \tau[$

Fr. 58.
]k[] \times [
Fr. 59. .

Fr. 60.
jus of
Fr. 61.
]a. [
] $\in \cdot[$
Fr. 62. .
]ow[

Fr. 63.
$] v \delta \in[$

Fr. 64.
]. $\kappa \tau \alpha \varphi[$

Fr. 48.
]. [
] $\mu \alpha \kappa \alpha ́ \rho \omega \nu$ [
(?) $\nu \iota \kappa] \alpha$ форí $\stackrel{s[}{ }$ [

Fr. 47

$$
\begin{aligned}
&] v[\\
&] \Delta \dot{\alpha} \lambda \lambda \iota[\\
&] v \varsigma \omega \cdot[\\
&]<[
\end{aligned}
$$

]s $\phi \rho \alpha \sigma[\sigma$] $\delta o ́ \xi \alpha \nu$ [

Scholia.

Fr. 69. .	Fr. 70. .
\%. []amo入oү!
$\pi \operatorname{mpo\sigma }_{[}$]pukaut [
ov μ [] ω vrou ${ }^{\text {c }}$
- []• [

Fr. 71.

] ${ }_{\text {dealw }}$

Fr. 72.
Javtioy[\}к!̣!

Fr. 73.
Fr. 74.
Fr. 75.
Fr. 76.
$\underset{\substack{\text { Jxag } \\ j \underline{j n!} \\ j}}{ }$
$] a \cdot \sigma \delta L[$
$] \cdot[\cdot] \cdot .[$

Fr. 77.

Fr. 80.
Fr. 81.

```
]
]magav[
]
```

Fr. 65.

] $\mu \mathrm{uvte}$ ía[
]v[. .] ϵ. [

Fr. 69.
\cdot
oũ $(\boldsymbol{\tau} \omega \mathbf{s}) \cdot[$
$\pi \rho \circ \sigma[$
$0 \cup \mu \epsilon$
$\cdot[$

Fr. 70.
] а́тодоүє L^{2}. jou кai θ. [] ωv rov[]. [

$$
\begin{aligned}
& \text {]. [} \\
& \text {] } \\
& \text {]vouot } \gamma \in \mathrm{v}\left[\mathrm{~b}^{6}\right] \mu \mathrm{evot} \delta \mathrm{tc}[\\
& \text {]p }[.] \text { тar[.] • [. . .]apa[} \\
& \text {]oote [....] }] \in[.] v[
\end{aligned}
$$

Fr. 71.

$$
\begin{aligned}
& \text {]. } \mathbf{\epsilon t} \cdot \text { [} \\
& \text {]рикєо [} \\
& \text {] } \lambda \in a t \omega[\\
& \text {]s } \lambda \text { '́ } \gamma \in \operatorname{l} \text { [}
\end{aligned}
$$

Fr. 73.

Fr. 74.

C.

Fr. 82, Col. i.

] $\eta v o \delta \epsilon \pi \sim \delta a p[$.

] $\mathrm{mo}^{\text {' }}$]]mๆıтelavalpe

]. . . кaioxp!
] $\in \psi \in \sigma \tau \rho a \tau \in v$] ${ }^{\text {®aб }}$
]
]
] $\pi a \sigma$
]
] 6
]катероб]. ч. . . тoкк[.] $]$

Fr. 82, Col. ii.
Plate III.
[.] $] \tau \sigma[.] \tau \sigma \pi \lambda \eta \rho \epsilon \sigma[$

$\epsilon \nu v \pi \nu เ 0 \nu \delta u \tau \epsilon \lambda \in \epsilon \in \pi \iota \tau \in \lambda \epsilon[$
$20 \sigma \pi \epsilon v \delta o \nu \tau \cdot \epsilon \kappa \lambda \alpha \gamma \xi \in \dot{\tilde{\gamma}} \tau \epsilon \ddot{\epsilon} \epsilon \rho[$

.v. .a.
$\mu \alpha \iota \nu \epsilon \lambda o \gamma_{0} \nu \cdot \omega \pi \breve{a} \nu \alpha \pi[$

$\pi[\cdot] \pi \rho \omega \mu \in \nu \alpha \nu \pi \alpha ́ \theta \alpha \nu \cdot \alpha[$
$\nu \iota \kappa \alpha \delta \alpha \rho \delta \alpha \nu \iota \delta \alpha \iota \sigma \in \in \kappa \alpha ́ \beta][$
[. .] $\pi o \tau^{\prime} \epsilon \hat{\epsilon} \hat{\delta} \epsilon \epsilon \nu \grave{\tau} \pi o \sigma \pi \lambda \alpha \gamma \mathrm{X}$ [
$\left.\phi \epsilon ́ \rho o \iota \sigma \alpha \tau o ́ \nu \delta^{\prime} \alpha \nu \epsilon \rho \cdot \epsilon \delta \bigcirc \frac{\xi}{[}\right]$
$30 \tau \epsilon \kappa \epsilon i \nu \pi \grave{\nu} \rho \phi о ́ \rho o \nu \epsilon \rho![$

VIII，［ Θ HBAIOIइ ？$\}.$

Fr．82，Col．ii．

ठаıцо́vıov кє́ap ỏ入o人î－
$\sigma \iota$ отоvaX α is áф $\alpha \rho$ ，

$\mu \alpha \iota \nu \in \nu$ 入ó $\omega \omega \nu$ ．$\hat{\omega} \pi a \nu \alpha ́ \pi[\epsilon \iota \rho \circ \nu \epsilon \cup$－
$25 \rho[v ́] o \pi \alpha K \rho o \nu i ́ \omega \nu, \tau \epsilon \lambda \epsilon i ̂ s ~ \sigma[\grave{v} \nu \hat{v} \nu \tau \grave{\alpha} \nu \pi \alpha ́ \lambda \alpha \iota$
$\pi[\epsilon] \pi \rho \omega \mu \epsilon ́ \nu \alpha \nu \pi \dot{a} \theta \alpha \nu \dot{\alpha}-$

30 тєкєì $\pi u \rho \nless o ́ \rho o \nu ~ ' E \rho i[\nu \imath ̀ \nu$


```
\imath\lambda\iotao\nu\pi\alpha\sigma\alphá\nu\nu\iota\nu\epsilon\pi\iota\pi[
```



```
[. . . . .]ā\imath\tau\epsilon\rho\alpha\sigmav\pi\nu\alpha[
```

35 [.] $\lambda \epsilon \pi \rho \circ \mu \hat{\alpha} \theta \in \epsilon \alpha$

Frs. 83 and 84 .
$] \epsilon \nu \omega[$] $\mu \epsilon \cdot[$
. . of
${ }^{\circ} \mu[$
5 T! $โ$
κ [
$\delta[$
No! $\quad[\quad 13$ letters $] \cup \boldsymbol{\lambda}[\cdot] \cdot[$
$\sigma 0 ̣[]$

$\kappa \lambda \iota \theta \in![\cdot]\} \in \kappa \circ[.] \sigma \phi \iota \sigma \iota \nu$.
$\mu a \lambda \alpha \pi \rho \hat{\alpha} \xi \circ \nu[. ~.] \kappa \alpha ́ \iota \omega \sigma \cdot$

Fr. 85.
Fr. 86.
Fr. 87.
] $\omega \omega \sigma$
] $\alpha \nu 0$ o $\xi \alpha \mu[]$.$y . [. .]$
] $\alpha \nu \tau \omega \nu \epsilon \rho \gamma \circ \nu і ̈ \epsilon \rho \omega \tau[$] $\tau \alpha[..] \epsilon ́ \nu \tau \epsilon \sigma \cdot$]

```
                    841. PINDAR, PAEAN'S
                \epsilońк\alpha\tauó\gamma\chiє\iota\rho\alpha, \sigmaк\lambda\eta\rho\hat{\alpha} [\delta\hat{\epsilon} \betaí\alpha
```



```
                кат\epsilon\rho\epsilonî\psi\alpha| \epsilonॅ\epsilonl\pi\epsilon \delta\grave{ . [}
                [. . . .]a \tau\epsiloń\rho\alphas v́\piva[\lambda\epsilońo\nu
                                    oüras a[
3.) [. . . . . \\lambda\epsilon \pi\rhoо\mu\alphá0\epsilon\iota\alpha
Frs． 83 and \(8_{4}\) ．
］\(\epsilon \omega \omega[\) ］\(\mu \epsilon\) ．［
．．\(\delta\)［
\(o \mu[\)
5 TוJ［
\(\kappa\)［
of
\(\lambda o \iota \pi[\)
\(\sigma 0[\quad 13\) letters \(\quad v \lambda[\)
```



```
\(\kappa \lambda \iota \theta \epsilon i[s]\) द́ко［เขá \(\sigma \alpha \tau o] \quad \sigma \phi^{\prime} \sigma \iota \nu\),
\(\mu \alpha \hat{\lambda} \alpha \pi \rho \hat{\alpha} \xi o \nu[\delta i] \kappa \alpha i \omega s\).
к入ขтоі \(\mu \alpha ́ \nu \tau \iota[\epsilon \varsigma\)＇＇A
```



```
Fr． 86.
Fr．87．
```

α ả $] \nu \delta \rho o ̀ s ~ o ̈ \tau[\epsilon$
］$\tau \rho \eta$ к $\alpha[$
］os oú $\lambda u \tau[$ òs（？）
$\dot{v}] \pi \epsilon \rho \tau \alpha \dot{\alpha} \tau \underset{\sim}{\alpha} \cdot[$
5 ］ov［

```
] }\omega\omega\sigma
```

] }\omega\omega\sigma
] \alphȧ\nuoí\&\alpha\mu[\epsilon]\nu. [. .]
] \alphȧ\nuoí\&\alpha\mu[\epsilon]\nu. [. .]
\pi]⿱㇒\alpha\nu\tau\omega\nu \epsilon้\rho\gamma\omega\nu i\epsilon\rho\omegaш\tau[\alpha\tauо\nu (?)
\pi]⿱㇒\alpha\nu\tau\omega\nu \epsilon้\rho\gamma\omega\nu i\epsilon\rho\omegaш\tau[\alpha\tauо\nu (?)
]\tau\alpha[. .]\epsiloń\nu\tau\epsilon!.
]\tau\alpha[. .]\epsiloń\nu\tau\epsilon!.

Fr. 88.

[. $100 \mu[$
[.]. $\theta v[$

Fr. 89.
$\beta \iota \bar{\alpha}[$
ס![

Fr. 90.

$$
] \stackrel{\mu}{ } \text {. [}
$$

]" $\sigma о \rho v \theta \mu \sigma \sigma \epsilon \phi \alpha![$
]ádкє[]! $!\mu \epsilon \nu \tau o ́[$

5 '~]. [

Fr． 88.
Fr． 90.

$$
\begin{aligned}
& \pi \epsilon \mu[\pi \\
& {[.] \delta o \mu[} \\
& {[.] \cdot \theta v[}
\end{aligned}
$$

］ν ．．［

$\chi] a ́ \lambda \kappa є[.] \iota \quad \mu \epsilon ̀ \nu$ тó［
í］π ò кío［
］．［

Fr． 92.

$$
\begin{aligned}
& \text {] } \\
& \text {]. } \dot{\alpha} \nu \delta[\rho(?) \\
& \text {] } \sigma \pi \alpha ́ \rho[
\end{aligned}
$$

$$
\begin{aligned}
& \text {] } \cdot \cdot \epsilon[
\end{aligned}
$$

Fr． 93.

Fr．9＋．

$$
\begin{aligned}
& \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& \text {] } \nu v[. \cdot \text {] } \iota \hat{\omega} \iota \nu \\
& \text {] 'Aplír(tapxos?) } \sigma] i v \tau \hat{\psi} t \\
& \text {] } \\
& \text {] } \mu[\\
& \text { 5] } \in \text { [}
\end{aligned}
$$

Fr．95．．

$$
\begin{aligned}
& \text {] } \lambda о \mu \in \nu \\
& \text {]. Tis } \\
& \text {]as } \theta \in \hat{\varphi} \text { movia[} \\
& \text { а̀ко入ou日[}
\end{aligned}
$$

$$
\begin{aligned}
& \text {] } \\
& \text {] } v \mu \nu[T
\end{aligned}
$$

Fr． 99.

$$
\begin{aligned}
&] \nu \tau \epsilon \lambda \epsilon[\\
&] \alpha \cdot \\
& \pi 0 \lambda \lambda \alpha[\\
&]
\end{aligned} \quad\left[\begin{array}{l}
\text { an }
\end{array}\right.
$$

Fr． 103.

］$\iota \tau \eta \cdot[\cdot] \tau[$

Fr． 96.

$$
\theta \rho a \sigma v^{\prime} s[
$$

］$\nu \tau \alpha \chi \bar{v}[s$
］＇ $\mathrm{A} \lambda \in \xi a \nu \delta[\rho$
］c $\pi \nu \in \nu \sigma[$

Fr. 115.
Fr. 116

Fr. 117.] . $\mu ו \tau[$] $\cdot \rho \bar{a}[$
] 6
] $\alpha \sigma$ \underline{x}
]
]

Fr. II \quad]. $\dot{\check{v} \sigma} \sigma \cdot[$
Fr. 120.
Fr. 121.
]
]ap[.]. [
${ }^{1 \xi[\cdot]!} \cdot[$

Fr. 122.
Fr. 123.

Fr. 124.
Fr. 125.

Fr. 107.

Fr. 108.
пि]ooód [ov ?
]. v

Fr. 112.

```
]
]
] \(\sigma \grave{v} v \mathrm{X} \alpha \rho i \tau[\epsilon \sigma \sigma t\) ?
] \(\mathfrak{\eta} \ddot{\imath}\). [.] \(][\)
```

Fr. 116.

Fr. 124

$$
\begin{aligned}
& \text {] } \\
& \text {] } 0 \mathrm{Ecv}[\\
& \text { ? Travo } \\
& \text {] } \\
& \text {] íper() })^{-8}
\end{aligned}
$$

D
Col．i（Fr．126，Col．i）．
Opposite lines 16－17．

Col．ii（Fr． 127 and Fr．126，Col．ii）．
Fr． 127.

$$
\begin{aligned}
& \text {]ó入[} \\
& \text {]ór[} \\
& \text { loà }
\end{aligned}
$$

Fr．126，Col．ii．

$$
\begin{aligned}
& \text { [. .] } \omega \hat{\omega} \nu \sigma[\\
& \eta[.] \alpha \rho \pi о \hat{\phi} \phi[\\
& \grave{v}[.] \epsilon ́ \rho \phi \alpha \tau о \nu[\\
& \eta \pi 0 \nu \tau[\\
& \text { ท̀ } \pi{ }^{\circ}{ }^{\circ} \gamma \in \tau 0 \nu \chi[\\
& \text { v̌סaтıらàкót[} \\
& \eta \nu \text { отเo }{ }^{\theta}{ }_{\epsilon \nu}[\\
& \eta \mu є \gamma а \lambda о к о т \omega![\\
& \text { ๆтаратоуоте[}
\end{aligned}
$$

Opposite 1． 37.
］ 6σ
Opposite Il．40－41．
］o μ оv σ
］raтov ］！тє入入оцєva
Opposite 1． 44.
l！ζ ova！ ］$\sigma \sigma$ uva［．］

Between 11． 47 and 48 ．

］．
IX. [Θ HBAIOIइ].

```
\sigmaт\rho. а' , ['Aктis \alpháє\lambdaíov, \tauí по\lambdaи́\sigmaко\pi\epsilon \mu\etá\sigma\epsilon\alphal,
```

 \({ }_{2}[\hat{\omega} \quad \mu \hat{\alpha} \tau \epsilon \rho\) ó \(\mu \mu \dot{\alpha} \tau \omega \nu ; \quad \ddot{\alpha} \sigma \tau \rho о \nu \dot{v} \pi \epsilon ́ \rho \tau \alpha \tau о \nu\)
 \({ }_{3}\left[\begin{array}{lll}\dot{\epsilon} \nu & \dot{\alpha} \mu \epsilon ́ \rho \alpha & \kappa \lambda \epsilon \pi \tau o ́ \mu \epsilon \nu O \nu\langle\cup\rangle\end{array}{ }^{\prime} \theta \eta \kappa \alpha s \quad \dot{\alpha} \mu \alpha ́ X \alpha \nu \nu \nu\right]\)

s [iкє $\tau \epsilon \hat{v} \omega, \quad \dot{\alpha} \pi \dot{\eta} \mu о \nu \alpha$]

ı 0 [$\bar{\omega} \pi]$ óт $[\nu \iota \alpha, \pi \alpha ́ \gamma к о เ \nu о \nu ~ \tau \epsilon ́ \rho \alpha s . ~$
$\dot{\alpha} \nu \tau . \alpha^{\prime} \quad{ }_{1}[-] \rho \bar{\alpha}[-\cup \cup-\cup \smile-\cup \cup-\cup \underline{~}$
$2[--\cup-\cup--\cup \cup-\cup \smile]$

- $\hat{\eta}[\kappa] \alpha \rho \pi o \hat{v} \phi[\theta i ́ \sigma \iota \nu, \hat{\eta}$ viфєтồ σ Ө́́vos

t̀ mapà tò vote[púv.

Lines 22-33 lost $=$ ep. 2-10, str. 1-3.

Opposite 11. 40-41.

Col. iv (Fr. 128, Col. ii).
Plate III.

```
        \epsilon\mathbb{T}[]{[.]\{\sigma0\mp@code{\etav}
    \epsilonк\rho\alpha\nu0\eta\nuv\piто\delta\alpha\iota\muо\nuเ\omegaוт\iota\nu\iota
        Tou[[. .] ]\eta\nui\omegat\lambda\epsilon\gamma\epsilont
```



```
    \alpha\gammaаvovка\lambda\alpha\mu\omega\iota\sigmav\nuа\gamma\epsilonц\ @óov, \mu\epsilon[
    тот\sigmaтопраат
        T\eta[
    \mu\etá\delta\epsilon\sigma\sigmaí\tau\epsilon\phi\rho\epsiloǹvo\sigmav\mu[.]]T <\rho\alpha\nu\chi\\alpha\rhoı\nu
    \lambda\iota\tau\alpha\nu\epsilońv\omega\epsilonк\alpha [\tau\alpha]\beta
    \muò\iota\sigma\alphă\iota\alpha\iota\sigma\alpha\nu[.]\tau\iota0\epsiloni\sigma\tau\epsilon\chi\nu\alpha[. .]!
40 X\rho\eta\sigma\tau\eta\rhoוov['. .] . [.]\lambdaov\tau[. .]c тоєv0\eta[
        \epsilon\nu\hat{\omega}\iota\tau\etá\eta}\nu\epsilon\rhoo\nu\in\nu\rhov\beta\iota\alpha\nu0\epsilon\mu\iota\tau[{
```



```
    ко\rho\alpha\mu[.]\gamma\epsilonï\sigma\omegaк\epsilon\alpha\nu0v\mu\epsilon\lambda\imath`\alpha\sigma\epsilońо\piv0![
    [. . .]ка́\delta\muоv\sigmaт\rhoатоvк\alphaı}\epsilon\alphá0оv\piо[
45 \alphaкє\rho\sigmaєко\mu\alpha\pi\alphá\tau\epsilon\rhoवे\\nuорє́\alpha\sigma
    \epsilon\pi\epsilon\tau\rho\epsilon\psi\alpha\sigma\epsilonка\tau\iota\sigma\alpha०ф\rhoо\nuо\sigma.
    к\alpha\iota\gamma\alpha\rhoо\piо\nuто\sigmaо\rho\sigma[. .]\rhoíal\nu\alphá\nul\nu
    \pi\inрí\alpha\lambda\lambda\alpha\beta\rhoот\omega\nu\tauí\epsilon\nu
```


Frs. 129-31, Col. i.


```
            i\pi[\epsilon]T\epsilon\\epsilon\epsilon\sigma0\etav.
```



```
                т\hat{\varphi}['I\sigma]\mu\eta\nuíq \lambda\epsilon'\gamma\epsilon!.
```



```
            тois mоп\etá\muа\sigma!. T\eta[
```



```
    8. \lambda\iota\tau\alpha\nu\epsilon\cuṕ\omega, ध̇к\alpha\betaó\lambda\epsilon,
    *Mo\iota\sigma\alphaía\iotas \alphá\nu[\alpha]\tau\iota0\epsilonis \tau'́X\nu\alpha[\iota\sigma]\iota
```



```
    2 \epsiloń\xi\alphaí\rho\epsilon\tauо\nu \pi\rhoофа́та\nu \epsilonै\tau\epsilonк[\epsilon\nu \lambda\epsiloń\chi\chi\epsilonl
```



```
    4[\tau\hat{\omega}] K\alphá\delta\muоv \sigma\tau\rho\alpha\tauòv к\alphai Z\epsilon\alphá0ov \pió[\lambda\iota\nu,
    %\alpha\dot{\alpha<\rho\rho\sigmaко́}\mu\alpha \piа́\tau\epsilon\rho, аं\nuорє́аs
```



```
    7 каi \gamma\grave{\alpha}\rho ò \pióv\taulos 'O\rho\sigma[o\tau]\rhoí\alpha\iotav\alphá ve\nu
    % \pi\epsilon\rho{\alpha\lambda\lambda\alpha \beta\rhoот\hat{\omega\nu}\tau\tau\iota\epsilon\nu,
```


Firs. 129-31, Col. i.

Two fragments perhaps from this column．

Fr．131，Col．ii． －［．］a入入시 $\epsilon \mu[0]<\delta 0[$
$\tau \eta \sigma \mu[$
$\lambda \in \gamma \in \tau a[$
$\gamma \nu \grave{\alpha} \mu \pi \tau[$
$\psi \alpha \nu \tau \in \sigma \alpha![$
$\pi \alpha \tau \eta \rho \delta \in![$
10 ка兀Хрибо［
$\stackrel{\frac{1}{\alpha} \gamma \dot{\eta} \sigma \epsilon \tau \alpha \iota \cdot \tau[}{ }$
$\pi 0 \lambda \iota \alpha \alpha_{0} \alpha[$
$\alpha \sigma \tau o \iota \sigma \iota \tau$［

${ }^{15} \tau \alpha \kappa$［
$\bar{\epsilon} \bar{\sigma} \tau \alpha[$
$\epsilon \mu o \nu[$
$\tau \iota \nu \mu \epsilon[. . \cdot] \rho \mu \iota \nu!\mu[$
$\grave{\epsilon} \mu \iota \nu \delta \epsilon \pi \alpha[.] \kappa \epsilon \in \iota \nu 0![$
20 ऽ $\epsilon \cup \chi \theta \epsilon \hat{\iota} \sigma \alpha \pi[] .0 \beta \omega \dot{\omega} \mu[$

$\kappa \lambda \nu \tau \circ \mu \breve{\alpha} \nu \tau!\epsilon \sigma \tau \hat{\omega} \iota \delta[$
Fr． 134.
］
］acta入ıov ${ }^{\text {［ }}$
］$\sigma \tau ı \delta \delta a \pi 0 \lambda \lambda \omega[$
เкаб［
］aua δ pavek δ ！［

］$\mu \mathrm{o}$［ ＇］$\downarrow \tau \nu \delta[$ ］rov［ ］ori［

```
Col. ii.
            .[.]a\lambda\lambda[
            \epsilon\mu[. .]&o[
            \tau\hat{\eta}s\mu[
            \lambda'́\gamma\epsilon\taua[t
        \gammav\alpha\mu\pi\tau[
        \psi\alpha\nu\tau\epsilonS \alpha\iota[
        \pi\alpha\tau\eta\eta\rho \delta\in\iota[
        1о каi \chi\rhov\sigmao[
            \alpha}\gamma\eta\mp@subsup{\eta}{\sigma\epsilon\tau\alphal. \tau[}{
            \piо入\iotaáo\chi[
            \alphȧ\sigma\tau0\hat{\sigma\iota }\tau\in[
            \xi\in\nuока\delta[
    15 \tau\alphaк[
\alpha}\nu\tau.? \epsilon\sigma\tau\alpha
    \epsilon< }\mu\grave{\nu
    \taui\nu}\mu\mp@code{\epsilon<[\nu}|\pi\alphá]\rho \mu\iota\nu i\mu[\epsilon\rho(?
    \epsiloń\mui\nu \deltà \pi}\pi\alpha\[\rho] к\epsilonivol[s ...
```



```
    viòv 'ॅ\tau\ell \tau\epsiloń{[\epsilon]l \tauòv a. [
    \kappa\lambda\nuто\muá\nu\taul\epsilonS \tau\widehat{Q} \delta{
```

Fr. 134.
J
K]ađTádiov $\phi[$
 iк $08[10$ (?)

5]:\delta\epsilon\lambda\phiоto0\epsilonvка\iotaк[
5]:\delta\epsilon\lambda\phiоto0\epsilonvка\iotaк[
]\nu\stackrel{+}{\circ}\mu\omega}\nu\nu\mu\circ
]\nu\stackrel{+}{\circ}\mu\omega}\nu\nu\mu\circ

]
]
]о\sigma/\epsilon!каб\iotaо\sigmaарь' . [
]о\sigma/\epsilon!каб\iotaо\sigmaарь' . [
10]
10]
]r
]r

Fr. 136.
Fr. 137.
] $\delta[$
] $\in \rho \chi \in[$
]

Fr. 138.

Fr. 139.
]. $\pi \div[\ldots . .$. .]

Fragments which may belong to either C or D .
Fr. 140.
Fr. 141.
Fr. 142. .
Fr. 143.

Fr. 144.
Fr. 145.
] $\in \operatorname{\tau ov}[$
] 8 nov[]

Fr. 146.
Fr. 147. .
]a σ o] $\tau \in![$
]á $\beta o ̣[$

$] \cdot[$
$] \omega \times!\sigma[$
$] \cdot 0[$
]\kappa\iota\alpha\sigma[
]\kappa\iota\alpha\sigma[
]тєv\piо\muєч[.][[
]тєv\piо\muєч[.][[
]
in\sigma\alpha [.]\epsilon\epsilon\sigma.[
]
in\sigma\alpha [.]\epsilon\epsilon\sigma.[
]
]

5 o] $\Delta \in \lambda \phi о$ ö дөєv каіे к[] $\nu \dot{\delta} \mu \omega \dot{\omega} \nu \mu \boldsymbol{o}$ [
]s èßaios проo[
]
]os. єiксіठоя 'Apír(tap才os?) . [
10]
] v

Fr. 137. .
Fr. 138.
] $\delta[$

]
]
]
]
]s кai

Fr. 139.
]. $\pi 0[.$. . $]$

Fr. 144.

$$
\begin{aligned}
& \text {] } \kappa \iota \alpha \sigma[\\
& \text {]re іпо } \boldsymbol{\mu \epsilon i v [a] \text { l. }} \\
& \text {] } \lambda \in \sigma \alpha \quad[.] \epsilon \epsilon \sigma \cdot[
\end{aligned}
$$

Fr. 156.

$$
\begin{aligned}
& \text {] } \bar{\alpha} \iota \\
& \text {]. } o . . \mathrm{X} \\
& \text {]. }{ }^{\epsilon} \mathbb{C}[
\end{aligned}
$$

Fr. 159.
]axp $\bar{\eta}_{o r[}$.
$]$

Fr. 157.
] $\alpha \nu \in \mu[$

Fr. 160.

] $\tau \in$ [

]. [

Fr. 162.

$$
\begin{aligned}
& \text {] } \nu \tau \alpha \lambda \iota \alpha \nu \text {. [} \\
& \text {] є̀каитópova[} \\
& \text {] Tovt' кa[}
\end{aligned}
$$

I. For the Thebans.

1-10. 'Ere the pains of old age draw nigh let a man clothe his mind with cheerfulness and be content in due measure, seeing the power that is set in his house. Oh joy! Now the consummating year and the Hours, children of Themis, have come to the horse-

Fr. 152.
ou'
$v i[$

Fr. 159.

Fr. ifi.
]ros 'I $\sigma \mu\lceil\eta \nu$ (?)
]

Fr. 162.

$$
\begin{aligned}
& \text {] } \nu \tau \alpha \text { 入íav.[} \\
& \text {] द̀v каì đópov a[} \\
& \text {] тоит() ка[} \\
& \text {] }
\end{aligned}
$$

loving city of Thebes, bringing Apollo's garlanded feast. May he long crown the generations of the citizens with the flowers of sobriety and good government.'

1. The letter before the lacuna may also be o. For $\pi \rho_{i \nu} \ldots \pi \rho^{\prime} \nu$ cf. Pyth. ii. 9 r-2 $\pi \rho o ́ \sigma \theta \epsilon . ~ . ~ . ~ \pi \rho i ̀ v . ~$

3．$i \delta \dot{\omega} \nu \nu$ к．r．. ．seems to be epexegetical of $\dot{\epsilon} \pi i \quad \mu \dot{\epsilon} \tau \rho a$ ，i．e．the more a man has the greater should be his thankfulness．oikó θ etos is a new compound．
 тіктеv d̈入a日＇єas＂$\Omega \rho a s$.
 at Thebes in honour of Apollo Ismenius every ninth year；cf．Frs． 107 and 129－31．

II．For the Abderites．

1－5．＇Abderus with breastplate of brass，son of the Naiad Thronia and Poseidon， beginning from thee I will pursue this paean for the Ionian folk，hard by the shrine of Apollo of Derenus and Aphrodite ．．＇

1－2．This statement of the parentage of Abderus differs from the common version， according to which he was a son of Hermes（Steph．Byz．s．v．＂Aß8npa，Apollodor．Bibl．ii． 5．8）．［Naiठ os is due to Bury；it would be natural to make the paramour of Poseidon a Naiad．Some such epithet as $\epsilon \dot{\delta} \kappa \lambda$ 白白s would also be suitable，but that word is too long for the space．Abderus is said to have been beloved by Heracles，who founded in his honour the city of Abdera after he had been killed by the horses of the Thracian king Diomedes． It is noteworthy that，while Apollodorus l．c．calls Abderus＾окро̀s＇${ }^{\prime} \xi$＇ O то仑̂ขтоя，according to the Tabula Farnesiana（C．I．G．5984，c． 12 sqq．）he was a Өрoиıкós，i．e．a native of the Opuntian Thronium．That city was supposed to have been named after the nymph Thronia（Schol．1l．B 533），and the statement of the Tab．Farn．evidently reflects the same version of the legend as that here followed by Pindar．

Өஸ́pakos was no doubt followed by other words，though there is a short blank space after it ；matpiou was written by a different hand．
 the termination $-\theta \epsilon \nu$ having its proper ablatival meaning，àmò $\sigma o \hat{v} \tau \grave{\eta} \nu$ à $\rho \chi \grave{\eta} \nu \lambda \alpha \beta \omega{ }^{\prime} \nu$ as the
 Abdera by the Teians in the middle of the sixth century b．c．cf．Hdt．i．168，Strabo xiv．p． 644.

 кiр $\rho a \mu \epsilon \nu$ ，is less suitable to $\left[\sigma \sigma^{\prime} \theta\right] \epsilon \nu$ ．

 $\epsilon \bar{\epsilon} \nu$ Пatẫıv．The majority of the MSS．of Lycophron show the spelling $\Delta \eta p a i v o v$, one，Par．A， having $\Delta \epsilon \epsilon$ ．A supplement of three letters would suit the papyrus better than one of only two，but there is hardly any difference in the space occupied by η and ϵ ．There was perhaps a reference to the temple after［ $\mathbf{0}$ ］mou［，as in the scholium on Lycophron l．c．

The papyrus consistently makes this verse end with two short syllables in synaphia with the verse following；the division adopted in the text at the fourth syllable of 1． 6 has the advantage of placing the syllaba anceps at the end of the verse．An apparently mistaken division occurs also in the fourth line of the epode ；cf．note on 1.25 ．

24－36．‘．．．I dwell in this vine－bearing fruitful land of Thrace；may mighty time in future days ne＇er weary of a stable course for me．Young is my city，yet I have seen my mother＇s mother stricken with foemen＇s fire．But if a man in succour of his friends
fiercely withstands the enemy, his efforts coming to the conflict in season bring peace. O Paean, to whom we cry, we cry 1 may Paean never leave us.'
24. vaiw: the speaker is the personified Abdera.
25. The marginal ، marks the 900th line; cf. introd. and 659.67. We transjose -бáv тє каi to this verse in order to avoid the internal hiatus кпi єüкартоу.

 of Teos (Strabo xiv. p. 633, Pausan. vii. 3. 6) which in turn was the parent-city of Abdera (cf. schol. on l. 3 above). The meaningless $\epsilon \tau \epsilon \kappa \cap \nu$ of the papyrus requires some such emendation as that adopted in the text. The mark of length enclosed between two dots over the second syllable of $\tilde{\epsilon} \mu \pi a \nu$ was intended to replace or to be an alternative to the quantity mark first written. The a is long in $\tilde{\epsilon} \mu \pi a \nu$, short in $\tilde{\epsilon} \mu \pi a$. Either a long or short syllable would be admissible at this point; cf. 1. 65 . For $\epsilon \lambda[$ Bury suggests $\epsilon \bar{\epsilon}[$ tróot as a gloss on кáно.
 paraphrase of the text and may be restored in various ways.
 signifying a variant íaavrá $\xi \in \epsilon$, is not certainly by the first hand; the present tense is probably sound. In the marginal note opposite this line (and also in that on l. 34) it is not clear whether סúvatat is used impersonally = 'The sense of the passage is,' as apparently in the scholium on 1. 36 , or whether $\delta \mu_{0} x^{\prime} \theta$ os is the subject, for which of. 1.73 Súvatal фúpaєı àmoктєvєi.
 in these two passages means 'to descend into the arena' or has a wider sense 'to proceed' (with seasonableness or moderation), is uncertain. The former meaning is very appropriate in the present context.

37-8. The scholium [ठújvarat . . . $\lambda \hat{\eta} \mu \mu a$ apparently refers to $\bar{\lambda} \lambda \kappa \hat{a}$, though it does not seem very apposite. Perhaps $\hat{\eta}$ should be read for $\hat{\eta}$; of the following letter only the barest vestige remains, but this, so far as it goes, suits the base of a τ. In the second
 indicates a variant $\dot{d} \lambda \kappa \hat{a}$ for the $\dot{a} \lambda \kappa a i$ of the text; cf. l. 40 סātots, IV. 4 бato. It is true that there is only a very slight remnant of the supposed mark of short quantity above a λ кat, but there is certainly a trace of ink which it is not easy to interpret otherwise. The remainder of the note cites in comparison another passage of Pindar (Fr. 213), to which
 the citation is introduced by the word $\theta \epsilon \omega(\nu)$ is not clear. Possibly $\theta \epsilon \omega \nu$ occurred in the lacuna before $\dot{\alpha} \lambda \kappa \hat{a}$. To connect $\theta \in \omega(\nu)$ with kat and suppose a crasis of кaì ai $\theta_{\dot{\epsilon} \dot{\epsilon} \omega}$ is unsatisfactory on account of (1) the difference in the hands, (2) the absence of diaeresis over ι, (3) the difficulty of completing the sentence [- $\begin{gathered}\text { kaï } \\ \text { é } \omega \nu \text {]. A better hypothesis, }\end{gathered}$ we think, is to regard $\theta \epsilon \epsilon(\nu)$ as a critic who read $\dot{a} \lambda \kappa a ̂ ̣$; cf. the references to Zenodotus and others in Il. 61, IV. $58, \& \mathrm{c}$. The grammarian Theon, who flourished about the time of Augustus, wrote commentaries on poets, and it has been argued from an allusion in Schol. Ol. v. 42 that these included a work on Pindar; cf. Susemihl, Gesch. der. Griech. Litt. ii. pp. 215-7. This siew is now corroborated by the papyrus. si ψ dotov in the citation is inferior to the ordinary reading $\tilde{v} \psi \iota o \nu$ and is probably due to the occurrence of $\tilde{v} \psi \iota \sigma \tau o \nu$ in 1. 38 , where the superlative is appropriate. At the end of that line at is most probably the termination of a verb, and iorar at (Bury) has the advantage of being possible with either $\dot{a} \lambda \kappa a i$ or $\dot{\alpha} \lambda \kappa \hat{a}$. Other possibilities are $\gamma \boldsymbol{\gamma} \nu \epsilon \tau$ at or perhaps $\ddot{\epsilon} \sigma \sigma \epsilon \tau a u$, though a future
is not so natural；verbs like aîpєтat or $\beta \dot{a} \lambda \lambda \epsilon \tau a \iota$ would necessarily involve $\dot{a} \lambda \kappa \hat{a}$ ．The supposed a may，however，be ν ，though that is a less suitable reading．

 restoration is attractive，but it is not very close to what the scholiast gives as tò vón μ ．In 1． 44 the vestige before $\sigma \epsilon \lambda a s$ would suit σ ，but a supplement of 14 letters is rather long ； крaıтvoi would be slightly shorter and perhaps clearer．In 1． 4 I on the other hand μ＇γ a is hardly sufficient．

40．The marginal Saios with mark of length above at drew attention to the disyllabic scansion of the word in this passage，as also in Nem．viii．28．There is no necessity to assume that the s was wrongly marked with a diaeresis in the text．
 the scholium opposite ll． 43 sqq．At the beginning of the verse Blass suggested $\tau \boldsymbol{\tau} \hat{\omega} \delta \epsilon_{\text {．}}$ For the metrical arrangement of the lines here cf．1．5，note．

46．$\phi \theta 0 v \in \hat{\imath}$ suggests that \} $\mu a v i \epsilon \iota$ not $\mathfrak{\jmath \mu a \nu}{ }_{i} \epsilon \epsilon$ is the right division．$\mu a v i \epsilon \iota \nu$ is not found elsewhere in Pindar，but $\mu \mathrm{a} \nu \iota s$ occurs in Pyth．iv．I 59.

48．The scholium here is difficult and apparently corrupt（cf．Il．57－8，note），and owing to the mutilation of the passage to which it refers emendation is hazardous．The termination of the participles in the second line is probably－ras rather than－$\tau \in \mathbf{s}$ ；either
 à $\nu \geqslant$ ，but the letters $\mu \in \nu$ would be run together in an abnormal manner．None of these readings， however，produces a straightforward sentence，though the general sense is evident，that internal sedition gives external enemies their opportunity．ota⿱亠乂a＇\}ovtas кai mo入ıтєúovtas might be interpreted in the sense of the revolutionaries and the Government，but it is not improbable that some word like δ oa申óp ω_{s}（Blass）has dropped out after modıte［újovras．

 would be to alter $\delta \epsilon \in$ to $\tau \epsilon$ and make toùs ．．．σ табıábovтás $\langle\tau\rangle \in \kappa$ каî то入ıтєúovтas the subject
 ＇with more energy，or quickly．＇This also，however，is hardly convincing ；perhaps the

 dot over the u of ußpıar possibly represents a diaeresis．The first a in ota⿱㇒日勺ayovtas was altered from an.

Whichever view of the scholium be preferred，it seems likely that ${ }_{v} \beta \rho t s$ or $\dot{v} \beta \rho i \xi_{\epsilon} \epsilon \nu$

 probable that jot in 1.50 is an optative termination；but the disparity in the length of the supplements proposed for 11.48 and 50 is too great．

50－72．＇But the heart devoted to prudence and modesty ever enjoys gentle peace． Such may heaven bestow；the hostile envy of those who are long since dead has now passed away；and it is right that a man should take to his forbears a lot rich in glory． They gained by war a bountiful land and stored up wealth beyond the borders of Strymon，
the hallowed nurse of wild Paeonian warriors; but an adverse fate fell on them. Yet they endured, and the gods at last joined in accomplishing their desire. He who has wrought a good deed is made illustrious with praise ; and to them came surpassing glory against the foe before Melamphyllum. O Paean, to whom we cry; we cry! may Paean never leave us.'
50. The letters λ_{t} in $\epsilon v \beta$ ovitat are corrected.

 is long.

54-6. The ϕ Oóvos is that of the gods, traceable in the early vicissitudes of the colony;
 to $\dot{\epsilon \pi i}$ rois . . ., but the genitive is more naturally explained as simply objective. The reading of the third line of the note is far from secure. The second o of $\pi \rho \circ \theta$ avórt ${ }^{2}$ in 1.56 of the text is corrected from ϵ.

57-8. The meaning is that the descendant of ancestors who had shown such a good example should himself carry to them the tribute of a nobly spent life. Cf. Nem. vi. 4^{6}

 on the present passage $\delta \in \hat{i}\left[\right.$ rois $\vec{a}, \theta \lambda$ (ois) $\kappa_{.}$. λ. gives a practical interpretation which diverges rather widely from the general precept of the text, though it is not out of harmony with the spirit of the passage. It seems necessary to suppose an omission of the final s of tous and $\mu^{\prime} \lambda^{\prime} \lambda_{\text {or }}$ tas; for other mistakes in the marginalia cf. 1. 64 and note on 1. 48.
 apparently indicates the not very important fact that a critic whose name began with Ar wrote $\epsilon^{\epsilon} \gamma \kappa a \tau^{\prime} \theta \eta \kappa a \nu$. Which of the commentators on Pindar is meant is however not clear ; the name is nowhere written out in full, and several other abbreviations occur, which may or may not refer to the same person. In the present passage there is a with an angular mark above ρ, in Fr. 134. 9 (cf. Frs. 82.35, 94.3, and 129-31. i) apl σ^{σ}; elsewhere we find a or ap followed by a ν having a vertical stroke drawn through the middle: for the former cf. II. 75, VI. 89, for the latter VI. 181. o[in VIII. 35 may also well be one or other of these forms. If they all represent a single name, then that of Aristophanes of Byzantium is the most probable. But since Aristarchus, Aristodemus, and Aristonicus were also Pindaric critics who are quoted in the extant scholia, and four different compendia occur in the papyrus, it is not impossible that there may be references to all four scholars. At any rate it seems preferable to differentiate the group having a ν^{\prime}, and here there is the choice between Aristophanes and Aristonicus, a grammarian who flourished under Augustus and therefore not too late to be mentioned in this manuscript; cf. the possible allusion in II. 37 to his contemporary Theon. On the whole we are inclined in view of the greater importance of Aristarchus and Aristophanes to suppose that $a \rho$ and apt stand for the former, apv' and av' for the latter. Some support for the expansion of apv' as Aristophanes is to be found in the Paris Alcman papyrus, where in ii. 3 the analogous compendium

 трофоi and VI. 14 below. The scholium on ä̀дa к.т. λ. apparently refers to the failure of a previous attempt by Timesius of Clazomenae to establish a colony at Abdera,
 11. 54-6, note.

67 . The final ν of evaroptatot has been deleted (by the first hand ?) by a cross-stroke
and a dot placed above, but is necessary for the metre. $\phi \lambda \dot{\epsilon} \gamma \epsilon \epsilon \nu$ intr. has a similar sense in

69. Mє λ á $\mu \phi \nu \lambda \lambda$ ov is not otherwise known. According to Pliny, H. N. iv. ir. 18, Melamphyllus was the name of a Thracian mountain, and possibly this is here meant.
$73-80$. " But they shall put him to confusion when he has come near the river, matched with a small array against a great host." It fell out on the first day of the month; and the rosy-footed maiden, kindly Hecate, brought tidings of the word which was about to come to pass. And with her ... ?

73-5. The future indicative in фv́pott seems unintelligible except on the view that these three lines give the substance of an ancient oracle, which Blass suggested may have run
 arpatóv . . . The author or occasion of the prognostication was probably named in the lost marginal note opposite l. 73. The second o of $\mu_{0} \lambda o \nu \tau a$ was corrected from a and

 in the present passage had the sanction of Aristophanes (?), there being also a variant $\underset{\sim}{\boldsymbol{v}} \boldsymbol{\nu}$, of which the meaning is not easy to see. The supposed a is however doubtful, the remains being an oblique stroke which might be taken for a grave accent. But a grave accent here would be mistaken, and the papyrus is distinctly rubbed, while the analogy of VI. 89 is strongly in favour of the reading in the text.

Bury suggests that the word beginning with o in the scholium here and at 1.105 may be the name of the people with whom Abdera was at war, and proposes to make them the Thracian Odomanti ; but the vestige of the letter after o does not well suit δ.
77. фоьтко́лє ζ_{a} is applied to Demeter in Ol. vi. 94, where the epithet has been supposed by Boeckh and other critics to refer to the red colours of harvest ; but no such allusion can be claimed in the case of Hecate, and no doubt in both passages the adjective is used like joóón $\eta \chi^{v}$ s of personal charms simply.

In the first line of the scholium the letters taken for $\epsilon \lambda \lambda$ are blotted and apparently corrected; perhaps $\mu \alpha x^{\eta} \eta \nu$ was the word intended.

 in Fr. 84, 10 and IX. 35.
81. The object of калє́ovt $\begin{aligned} & \text { is probably Apollo, and } \dot{\epsilon} \kappa a т \alpha-\mid 乃 o ́ \lambda] \epsilon, ~ a s ~ B u r y ~ s u g g e s t s, ~\end{aligned}$ is a likely supplement.

96-108. '.. . the songs invoke (Apollo) on fragrant Pindus, and by the lofty rocks of Parnassus the glancing-eyed maidens of Delphi set the fleet-footed dance and sing a sweet strain with resonant voice. And for me, O Abderus, accomplishing gracious glory of noble deeds, may you prosper the horse-loving host with a final war. O Paean, to whom we cry, we cry! may Paean never leave us.'

97-102. Cf. VI. 15-8. à $\mu \phi \phi_{i}$ in 1.97 does not imply more than vicinity, the scene of the choruses being of course Delphi.
98. η in $v \psi \eta \lambda a \iota \sigma$ was altered from an a.

The accent and the π are on the main fragment, the $\kappa \omega$ being on a smaller detached strip which extends from this point as far as 1.106 ot $\pi \rho o 3 i$; ; and though metre and sense make the place of this strip in Col. viii sufficiently secure, its exact position at 1.99 is not certain. The recto being blank gives no assistance. The objection to the reading $\kappa \dot{\omega} \pi$ is that the accent would be expected to fall more to the right than it actually does; of the letter before the supposed ω only a tip remains, and $\epsilon \omega \pi$ would be palaeographically rather more satisfactory. The letter after π is represented by the merest speck. It must also be noticed that the supplement $\left[\epsilon \lambda_{i}\right]$ scarcely fills the lacuna, and $[\kappa a \lambda \nu]<\omega \pi \pi \delta \epsilon s$ (Bury ; cf. Homer, H. Dem. $8, \& \varepsilon^{c}$.) would in this respect be more suitable, though on the other hand in 11.102 and 104 also somewhat short supplements in a similar position seem to be justified by the context.
100. $\left.\chi^{a \lambda}{ }_{\bullet} \kappa^{\prime} \dot{a}\right]$ can hardly be avoided, for $\chi^{\lambda a}$, which might be read, gives no possible word. Though at first sight a not very appropriate epithet to apply to the song of mailens,

 Xàкьón η, and III. 94, where χ а λ_{κ} '́ $о \pi a$ apparently occurs.
 Bacchyl. viii. 43 oikє $\bar{\sigma}$ t. κ of $\gamma^{\lambda} \nu \kappa v \nu$ is over an erasure.

102-3. The right restoration of this passage is not obvious. If the emendation

 and $\dot{v} \mu \epsilon \tau \in \dot{\rho} \rho a \nu$ д́ápıv in VIII. 37. But the word at the end of 1. 102, where a bacchius is required after $\delta \dot{\epsilon}$, would remain a problem. Before the lacuna any round letter may stand, $\epsilon, \theta, o, \sigma, \phi$, or ω, and the letter preceding, if not ϵ, must be σ, next to which is part of a vertical stroke suggesting t or ν; further to the left the top of an acute accent is recognizable. The meaning of $\chi^{i} \rho t \nu$ moreover is quite uncertain, and the word may well

 áoioiis. Possibly, indeed, the marginal $\tau(\dot{\eta} \nu) \omega_{i} \delta \dot{\eta} \nu$ really alludes to χ áp ν, though being on a level with 1. 102 this gloss is more naturally referred to [$\nu^{\prime} \mu^{\prime}{ }^{\prime}$ ov. The reconstruction adopted in the text was suggested by Bury; it is close to the data of the papyrus and appropriate in itself, though каi in l. 104 seems rather otiose. $\epsilon^{\prime} \mu 0^{\circ} i$ of course is Abdera.
104. The second π in imioxáp aav seems to have been corrected.
105. Perhaps [ov́j'ía, as Blass suggested, though this produces a mixture of metaphors, and barely fills the lacuna (cf., however, note on l. 99); Bury would prefer $[\sigma \hat{a} \beta \beta] i a$. On the allusion in $\pi о \lambda \epsilon ́ \mu \varphi \tau \epsilon \epsilon \epsilon \nu[\tau a i] \varphi$ cf. introd. p. 17.
106. Blass wished to omit the final s of $\pi \rho o \beta t[\beta]$ ásors and so make Apollo the subject instead of Abderus. This may be right, but the mutilation of 11 . 102-o renders the correction hazardous. Our restoration assumes that the text is sound.

Fr. 5. The fifth line shows that this fragment belongs to the foregoing paean, and it may come either from Col. ii or Col. vii. L. 5, however, cannot be brought into direct connexion with Fr. 2. i. I by reading ' $A \beta 8[\eta$ ' pors.

III.

4.]os $\$$: there has perhaps been some correction, but o is clear.

5. There is a small mark rather high above the σ of aotoats, but it may be meaningless.
 or $\chi \rho v a$ oxaira. There would not be room for a broader letter than ι between τ and ν.
6. $\Sigma \in \lambda$ ávas: a mention of the moon-goddess seems appropriate in this context. The epithet $\dot{\epsilon} \lambda \iota \kappa \alpha ́ \mu \pi v \xi$ is applied to Semele in the only other passage where it occurs in Pindar (Fr. 75. 20).
7. This line is the rooth from II. ${ }^{2} 5$, which is marked in the papyrus as the 900 th line in the roll, and therefore $\kappa(=1000)$ would be expected to appear in the margin here. Presumably it was inserted at the top of following (lost) column. The extent of the gap after l. 17 is accurately determined by the occurrence of $\mu(=1200)$ in the margin opposite 1. 7 of VI. Of the intervening 200 lines, 125 are accounted for in the papyrus; there are therefore (assuming that the μ is correctly placed with relation to the ι at II. ${ }^{2}$ 5) 75 lines missing, i. e. 5 columns of I_{5} lines each. Since the strophe of III contains at least 18 lines, it is improbable that the 102 lines which separate II and IV were divided among two poems, and it may be safely concluded that the first ro lines of Col. xv belong to III.
 right than aủ $\begin{gathered}\text { óv. } \\ \text {. }\end{gathered}$
8. Schol. The letter between the supposed λ and u seems to have been altered, but is probably intended for \circ; there is not room for $[\kappa \tau]$ inou. δ might replace λ, and perhaps íoô should be read.

 missible. Fr. 47 ($\left.\beta a \theta] v \zeta^{\prime} \omega \nu[0 c]_{0}\right)$ is also unsuitable.
9. $] \delta 0\left[\tau^{\prime} \epsilon:\right.$ or $] \delta^{\prime} \dot{\sigma}^{\circ}(\gamma] \epsilon$?

IV. For the Ceans to Delos.

 The future xopev́ropat occurs in Aesch. Ag. 3 I.
3. Jos is probably the termination of a participle -ó $\mu \in \nu$ los.
4. The adscript σa тo indicates a variant $\notin \delta \nu \dot{\omega} \sigma a \tau o$. It is in a different hand from the rest of the note ; cf. p. ${ }^{5} 5$.
12. The accent on a qak $^{2} \boldsymbol{}$ a is somewhat doubtful.
13. The sense of the scholium is plain, though its right restoration is a matter of uncertainty. The slight vestiges before ιa suit μ better than α, and $\mu i \alpha$ is therefore preferable to Kap θ aia.
14. é $\lambda a]$ xúvotov: or $\beta p a] x \dot{v} \nu \omega \tau o v$ (oracle $a p$. Strabo vi. 262), when some other supplement than $\dot{a} \lambda a \theta \in \omega$, which is somewhat long for the supposed size of the lacuna, will become necessary.
15. It is noticeable that the letters $\omega \nu 0 \sigma a$ occur in the same position of the corresponding verse of the second strophe, l. 36 .
 note on l. 15 .
20. ix $\theta \dot{v} \sigma t$ is an allusion to the fishing industry of the Ceans; cf. the passage from Isthm. i quoted in note on Il. I-2.

21-53. 'Verily though I live on a rock I am known for prowess in Hellenic contests, and known for some display of the Muses' art ; verily too my acres bear a measure of Bacchus' life-giving cure in extremity. I have not horses nor share in the pasturage of kine; but neither would Melampus leave his fatherland to lord it in Argos, nor lay aside his gift of divination. Hail, hail, O Paean! The city and comrades of a man's home and his kinsmen are dear, and bring contentment. In happiness remote from foolish men I praise the words of lord Euxantius, who when his fellows were eager refused to rule or to take the seventh share of a hundred cities along with the sons of Pasiphaë; and he spake to them his prophecy: "I fear war with Zeus, I fear the crashing Shaker of Earth. With thunderbolt and trident sent they once the land and its whole host to the depths of Tartarus, but left my mother and all her well-fenced house. Then shall I, in pursuit of wealth and thrusting aside into utter neglect the decree of the blessed ones for our country, have elsewhere a great possession? How would this be quite secure for me? Dwell not, my heart, on the cypress-grove, dwell not on the pastures of Ida! To me little is given, a mere shrub of oak, but I have no lot in trouble or strife."'

22-3. For the hypallage of 'E $\lambda \lambda a v i \sigma \iota \nu$ which in sense belongs to ${ }^{1} \epsilon \in \lambda \omega \nu$ of. e.g.

 witnessed by the illustrious names of Simonides and Bacchylides.
24. The scribe at this point changed or mended his pen; the writing in the first three lines of the column is markedly larger and coarser than those which follow.
${ }^{25}$. Only a tip of the letter before кat remains, but η is not enough to fill the space, and ηc was probably written by mistake, although the smooth breathing shows that there was no confusion with $\dot{\eta}$. The breathing, however, is imperfectly preserved, and might be taken for the second half of a superscribed η, in which case something other than η must be supposed to have stood before кат.

 only o or ω will give any likely word. $\Delta t_{0} \theta \in \nu \pi$]ov is a possible but less attractive alterna-
 unattested, would not fill the lacuna.
 life' is not happy.

28-30. This is not the ordinary form of the myth concerning Melampus as given e. g. in Hdt. ix. 34, Apollod. i. 9. 12. 8, which represents him as sharing with his brother Bias in the sovereignty of Argos. It is, however, noticeable that the later kings of Argos traced descent from Bias through Adrastus, not from Melampus. Besides Pyth. iv. i26

29. $\pi a \tau \rho$ i $8 a$: sc. Pylos.

29-30. There is a break in the papyrus after apyt, but sufficient margin remains after the ι to indicate pretty clearly that the line is complete. It is therefore inadmissible to read [àmo| $\theta_{\epsilon} \mu \epsilon \nu \frac{}{c}$; but though $\tau i \theta_{\epsilon} \sigma a t$ in the sense of $\dot{a} \pi \sigma \tau i \theta \epsilon \sigma \theta a t$ is not found elsewhere in Pindar, such a use does not seem impossible; cf. the phrase $\theta_{\dot{\epsilon} \sigma \theta a t ~ \tau \dot{a}}^{\circ}$ ö $\pi \lambda a$ meaning to lay down
 be taken outside the negative and mean 'having made his own, adopted'; cf. raî̀a $\theta_{\epsilon}^{\prime} \sigma \theta a t$, \& c .
34. The letter after δ is either ϵ or 0 .
 reading is very doubtful, and we adopt it without much confidence. The surface of the papyrus is damaged, and if κ is right, it must be supposed that the lower diagonal stroke has entirely disappeared, giving the letter more the appearance of v. The a also is not very satisfactory, for rather more than the speck which actually survives would be expected to be visible. We had also thought of $\left[\because \not{ }^{\prime \prime} \tau^{\prime}\right]$ autrós, but that is a weak alternative.

E $\dot{j} \xi v v_{\mathbb{C}} \boldsymbol{\tau} i o v:$ some fresh light is thrown in the following passage upon the legend of Euxantius, which was treated at length in the unfortunately mutilated first ode of Bacchylides. An outline of the story is given in some scholia on the Ibis of Ovid, where it is said that Macello (Macedo, Macelo) and the other daughters of Damon had showed hospitality to Jupiter, and were therefore spared by him when he destroyed the Telchines, of whom Damon was the chief. Subsequently Minos arrived, and became the father of Euxantius by Dexithea (Dexione, Dexithone), one of Macello's sisters. The poem of Bacchylides (written for a Cean victor) begins to give a connected sense at the point when Minos arrives in Ceos and weds Dexithea; his treatment of the earlier part of the story can be only vaguely conjectured from a few scattered fragments. But there is one other reference to this legend which has an important bearing upon the present passage of Pindar. It o ccurs in Nonnus, Diony's. x viii. 11. 35-8, which in the MSS. run as follows:-

There is a lacuna between 11.35 and 36 , which contained a substantive agreeing with $\mu \hat{\imath}$, and the only necessary alteration in the traditional text is the simple correction of Maкє $\lambda \lambda \omega \nu$

 p. 444), by the Ibis scholia. But what are the Phlegyae doing in this context? Jebb suggests (l. c.) that Nonnus here alluded to two distinct legends: (a) the destruction of the Telchines by Zeus, (b) that of the Phlegyae by Poseidon (Euphor. Fr. 154 ap. Servius Aen. vi. 618 iratus Neptunus percussit tridente eam partem insulae quem Phlegyae tenebant, et omnes obruit). But the striking similarity of language in the lines of Nonnus and the present passage of Pindar
 copying Pindar, he was at any rate following the same tradition. The $\nu \hat{\eta} \sigma o s$ can hardly be other than Ceos, and unless the appearance of the Phlegyae is to be ascribed to a confusion on the part of Nonnus, which would be a rash assumption, it must be concluded that one form of the legend brought the Phlegyae and Telchines together at Ceos, and represented their destruction by Zeus and Poseidon as simultaneous.

The introduction of Euxantius into this paean shows that the obscurity of the myth is somewhat exaggerated by Jebb (Bacchylides, p. 449). Bacchylides' reference to Ceos as Ė̉javiía vẫov (ii. 8) might of itself be taken to imply a rather wider currency than Jebb admits. Euxantius' refusal to leave Ceos for a share in the kingdom of Minos, as narrated here by Pindar, is an entirely novel feature.
36. $\epsilon \pi a i v \in \sigma^{\prime}$: the corresponding word in the antistrophe (1.46) also begins with the

 predeceased his father Minos (Apollod, iii. 15. 5-7). If Pasiphaë's sons had a double
portion, a seventh share would remain for Euxantius. But Minos had more children by another marriage.

The transposition of the second syllable of vîô $\sigma \iota \nu$ is required for the correspondence with 1. 48. Blass thought that it would be an improvement to place the final syllable - $\sigma \iota \nu$ also in this line, and transfer μ_{0} in l. 49 to the previous verse. At the end of the second line of the scholium $\Pi_{a}^{\prime} \sigma^{\prime} \backslash \dot{\phi}^{\prime} \eta$ is a possible reading, but the letters are much mutilated.
39. tépas may be explained as referring to divine interposition described in 11.4^{2-5}, and there is no need to emend to $\gamma^{\text {épas. }}$

42-4. Cf. note on l. 35.
44. $\mu a t e ́ \rho a: ~ i . ~ e . ~ D e x i t h e a ~ ; ~ c f . ~ n o t e ~ o n ~ 1 . ~ 35, ~ B a c c h y l . ~ i . ~ c . ~ 8, ~ A p o l l o d . ~ i i i . ~ 1 . ~ 2 . ~$

48. A point has been inserted immediately below the line between ω and λ, this being the only instance in the papyrus of the use of a low stop. If [$\pi \hat{\omega} s$ (Bury) is rightly restored in l. 49 the neuter ${ }^{\epsilon} \mu \pi \epsilon \delta o \nu$ must be taken as referring vaguely to the preceding sentence. Blass proposed to read $[\sigma \hat{\omega}] s$ (cf. Pindar Fr. 22 I) and insert ou before $\lambda i a \nu, ~ \tilde{\epsilon} \mu \pi \epsilon \delta o \nu$ being
 tion of $\epsilon \chi \omega$ might be explained as a survival of the lost negative ; but the punctuation would make the synizesis of $\tilde{\epsilon}_{\chi \omega}$; $\langle o \dot{\nu}\rangle$ particularly awkward, and the sentence $\langle o \dot{\nu}\rangle . .$. кє would be weak. To read $[\sigma \hat{\omega}\rangle$ s without $\langle o \hat{i}\rangle$ and regard the words as ironical is also unsatisfactory.

The quantity of in inav may vary, but it is short in the only other Pindaric instance (Pyth. i. 90), and is more likely to be the same here. There is a similar ambiguity in the corresponding syllable of the strophe 1.38 víot]- (for the short quantity cf. e. g. Nem. vi. 25 vié $\omega \nu$).
49. [$\pi \bar{\omega}]$ s: the corresponding syllable in 1.39 is short, but there is no great objection to a syllaba anceps here, and the difficulty would be still slighter if $\mu \circ$ were transposed to the end of the preceding verse ; cf. note on l. $3^{8 .}$
$50-3=$ Pindar Fr. ${ }^{154}$, quoted by Plutarch, De exil. 9. p. 602, where the MS. tradition is now shown to be very corrupt. The lines there appear in the following form :

 obvious correction is the only one proposed by modern editors which is confirmed by the papyrus, and the passage affords a good illustration of the precariousness of the attempt to emend lyrics where the metre is uncertain. The genesis of some of the corruptions is now apparent: $\phi_{\ell} \lambda \boldsymbol{\epsilon} \epsilon \iota \nu$ was added to explain $\tilde{\epsilon} a$, and the proximity of this infinitive led
 become $\epsilon \lambda a \phi \rho a ́ v$, which fits in with the general sense of the passage (simplices liberalium hominum deliciae, says Schroeder) ; and Kpítas no doubt came in from the margin ; cf. the scholium of the papyrus. With regard to the latter part of Plutarch's citation the new evidence is somewhat ambiguous, but fortunately just sufficient is preserved to enable, with the help of the metre, a satisfactory restoration to be made. At first sight, what remains of the two topmost lines of Col. xix appears to belong to the main text, the writing being of the normal size; but to this view there are grave objections. Joorat must represent Plutarch's ס' $\delta 0$ orat, which is required by the metre in the middle of the verse, as also is ex $\lambda a y o v$ in the second line. But in the first place the break down the left side of the papyrus follows a practically straight line, and therefore something of lines 54 and 56 , containing 10 and 12 syllables respectively, would be expected to remain; the papyrus, however, is blank until l. 58 is reached, where before $] \pi \epsilon \rho t$ as many as I_{3} syllables have to be supplied. This disproportion is too great to be accounted for by collocations of vowels or variations in the size of the writing (cf. note on l. 2^{2}). Secondly, there is not sufficient
room in the lacunae to the right of $11.52-3$ for the completion of the verses．We therefore prefer to suppose that the remnants of 11.5^{2-3} are marginal variants added by the first hand，in favour of which，moreover，there is the positive consideration that before $\lambda a \chi \circ$［ in 1． 53 is a blank space large enough for $1 \frac{1}{2}-2$ letters．The size of the writing is no doubt something of a difficulty；but analogous cases occur at V．38，VI．83，172， Fr．20．28，where marginalia have been written by the original scribe in letters not appreciably smaller than those of the accompanying text．

To turn to the reconstruction of these two lines，modern criticism has rightly been suspicious of ${ }^{0} \theta \epsilon \nu$ ädpvs，which produced no tolerable sense，and is now shown not to scan ；but attempts at emendation have been wide of the mark．After $\delta \epsilon \in \delta o \tau a t$ the papyrus has a clear θ followed by a curved stroke，which pretty certainly represents either a or ω ， and given the metrical conditions（ $--\cup \smile$ ）Blass＇s $\theta a ́ \mu \nu o s ~ \delta \rho v o ́ s ~ s e e m s ~ c o n v i n c i n g ; ~ t h i s ~$ involves the ejection of the superfluous $\mu \grave{\varepsilon} \boldsymbol{\nu} \gamma \hat{a}$, which was no doubt added as an explana－ tion of oxizov．To alter oxizov to oxizos is unnecessary，and the suitability of the epithet might be called in question．A certain species of oak is still the characteristic tree of Ceos，and the acorns are the chief commercial product of the island．The metre of the last verse may be restored by means of a few simple alterations．What stood in the original text in place of ס́ধ́orat $\forall a ́ \mu \nu o s ~ r e m a i n s ~ a ~ r i d d l e ~ w h i c h ~ i s ~ n o t ~ l i k e l y ~ t o ~ b e ~ s o l v e d . ~$ The θ above χ of $\lambda \alpha^{\alpha} \alpha \sigma[\nu$ is also difficult．There is a dot to the left of it（to the right is a lacuna）indicating an alternative reading ；for a similar variant on a variant cf．V． 38. （ $\left.{ }^{\prime \prime}\right) \lambda a \theta o \nu$ would not give a sense．As for $\lambda \alpha_{\chi} \chi o[\nu$ ，the writer may merely have wished to emphasize the possibility of the division $\delta \dot{\epsilon} \lambda^{\prime} \hat{\chi}^{\prime} \chi^{\nu}$ as against $\delta^{\circ} \epsilon \lambda \lambda a \chi o \nu$ ，and it is therefore unnecessary to suppose that a different verb figured in the text．

In connexion with кuлápıб⿱宀八⿱亠乂 and the remark of the scholiast it may be noted that，as Bury reminds us，the Cretan $\mu \boldsymbol{\epsilon} \lambda a \theta \rho o \nu$ at Delphi mentioned in Pyth．v． 39 sqq．is described as китарíg $\frac{1}{}$

58． $\mathrm{Z} \mathrm{\eta}$（vó ®oros $^{\text {）}: ~ c f . ~ V I . ~ 55, ~ \& c ., ~ a n d ~ n o t e ~ o n ~ I I . ~ 61 . ~ T h e ~ r e a d i n g ~ o f ~ t h e ~ v a r i a n t ~ h e r e ~}$ attributed to Zenodotus is unfortunately doubtful．The δ may be a and the diagonal stroke of the supposed v has disappeared，what actually remains suggesting rather pı．It is noteworthy that $k \in a \rho$ ．［ apparently occurs three lines below，where a proper name is expected．But no name Kєáptos or Kéópoos is known，and Kєáplov ク̈pe＇would not scan in 1． 58 ．There is a further difficulty about the ω of $\eta \rho \omega$ ，the left－hand half of the letter having vanished，while the surface of the papyrus is apparently intact．If not ω ，the mark in question must be simply a mis－shapen point，and $\kappa \in \delta v o ̀ v \eta p$ could be read；but this is an unsatisfactory alternative．

60．We can find no other trace of this statement concerning the sons of Euxantius．
 тєтаүн́vó，another in Boeotia by Lysimachus in Schol．Soph．O．C．91，but both were quite obscure．K $\epsilon^{\epsilon} \omega \nu$ for K $\epsilon \in \omega$ cannot be read．

61．кєap．［and vió（s）к．т． $\boldsymbol{\lambda}$ ．below are in a different hand from that of twè］s．．
 possibly a correction．The letter after ρ may be \imath ；cf．note on 1． 5^{8} ．＇Oveitns was a son of Heracles and Deianira，but he does not seem to fit in with the context．For $\hat{a}] \nu(\tau i ̀ ~ t o \hat{v})$ cf．e．g．l． 4 ；an alternative restoration is＇$\left.{ }^{\prime} \rho(\iota \sigma \tau o \phi i)\right] \nu(\eta s)$ ，but in the other probable instances of that name the ν is not written above the line ；cf．note on II．6I．

V. To Delos.

1. Cf. Soph. O. T. 154 iŋ́le $\Delta a ́ \lambda ı \epsilon ~ П a t a ́ v . ~$
2. A verse has dropped out here. Possibly the marginal insertion opposite 1.45 ,
 no bearing on the context there, and they happen to coincide metrically with the conclusion of the missing line. aik ${ }^{\circ} \mathrm{ov}$ is obscure; aik ${ }^{\circ} \mathrm{os}$ according to Hesychius meant ai ywriat roù
 cf. Apollod. iii. I5. I.

35-48. ' . . . they took Euboea and dwelt there. O Apollo of Delos, to whom we cry ! They made homes in the scattered isles where the sheep abound, and laid hands on far-famed Delos, for Apollo of the golden locks gave them the body of Asteria to inhabit. O Apollo of Delos, to whom we cry! There may the children of Leto graciously receive me your servant, to the honeyed sounding strains of a glorious paean.'
36. $\bar{\epsilon} \lambda o \nu$: the subject is oi $\dot{a} \pi \grave{\partial}{ }^{\prime} A \theta \eta \nu \omega ิ \nu{ }^{"} I \omega \nu \epsilon s$, as indicated by the context and the remains of the scholium opposite 1.35 .
38. There is little to choose between the alternatives $\phi \epsilon \rho \epsilon \mu_{\dot{\eta} \lambda o v s ~ a n d ~}^{\pi} \pi \boldsymbol{\lambda} \nu \mu \dot{\eta} \lambda o v s$, though in favour of the latter must be set the fact that this compound occurs twice elsewhere in Pindar (Ol. i. у 2, Pyth. ix. 6) whereas $\phi \epsilon \rho^{\prime} \kappa \eta \lambda$ os is not otherwise recorded. The MSS. show the same variation in the spelling of $-\mu \eta \lambda o s$ at $O l$. i. 12 , but the form with η is preferable.
39. The scribe began to write a round letter after $\varepsilon \rho \iota \kappa v \delta \varepsilon a$ and then corrected it to a τ.
40. $\omega \nu$ in $a \pi o \lambda \lambda \omega \nu$ corr.
 Delos, which is sometimes called simply Asteria, e. g. Callim. Del. 300 ; cf. Fr. 19. 11.21 sqq.

44. év $\begin{aligned} \\ \text { á } \\ \mu \mathrm{E} \text { : trochaic (and sometimes also spondaic) words followed by enclitics }\end{aligned}$ received two accents according to the grammarians, and instances of such accentuation are found in MSS.: cf. Kühner-Blass I. p. 34 I. Other examples in this papyrus occur at VI. 87 and 132, Fr. 93.4 ; cf. the Berlin Corinna papyrus, Berl. Klassikertexte V. (2) xiv. 1. 16 тavíxá vuv, 2. 89 dák $\rho o v ́ ~ \tau \epsilon$.
 note on 1.15 .
48. The papyrus is so rubbed that no part of the addition in the margin, which is in a good-sized hand, is clear. It is doubtful whether there were really letters at the two places marked by dots outside the brackets, the traces of ink at those points being very slight.

VI. 'For the Delphians to Pytho.'

1-19. 'By Zeus of Olympus I pray thee, golden Pytho famed for prophecy, and ye Graces and Aphrodite, to receive me at the sacred season, the spokesman of the tuneful Pierides. For I hear that there are wanting men to dance to the music of the Castalian fount by the brazen-gated stream, and am therefore come relieving thy townsmen's need, and furthering mine own honour. I have obeyed my heart as a child his kind mother, and gone down to Apollo's grove, the home of garlands and festivity, where oft by the shady pivot of earth the maidens of Delphi beat the ground with nimble foot as they sing of the son of Leto.'
$1-6=$ Pindar Fr. 90, quoted by Aelius Aristides ii. 160 (ed. Keil). Hartung was right in attributing the lines to a paean, tut wrong in connecting them with Pindar Fr. 148. A marginal asterisk similar to that here occurs at the end of a poem in the Bacchylides papyrus vii. 54 (Facsimile Col. xiv).

5. $\chi \rho \delta{ }^{\circ} \varphi \varphi$, the traditional reading ($\chi \dot{\omega} \rho \omega$ U, Boeckh) accepted by Keil and Schroeder, is confirmed by the papyrus; Apive Schneidewin, Ty. Mommsen, Christ, रop $\hat{\varphi}$ Bergk, Hartung. ̧áteos χ póvos here means, as Keil points out, the season of the Pythian festival

 $-\nu \omega$ occurs in the same position of a corresponding verse at 1.87 , and oovo- at 1.127 . Other similar correspondences in this paean are ll. 6 and $128-a \nu$, 10 and $132-\omega \nu, 12$ and

6. Either doiíl μ ov (so Aristid. MSS.) or áoioi $\mu \omega \nu$ may be genuine. The interlinear ω is not certainly by the first hand. $\Pi \iota \epsilon i \omega \nu$ for $\Pi_{\iota \epsilon \rho i} \delta \omega \nu$ MSS., emended by Canter. For $\pi \rho \circ \not$ átav cf. Bacchyl. viii. 3 Movoầ . . . трофátas.
7. The marginal μ marks the 1200 th line; cf. II. ${ }^{2}$, and note on III. 17. The brazen lions' heads mentioned by the scholiast do not appear to be otherwise known; that he calls the stream the Cephisus, which was on the northern side of Parnassus, is also strange.

8-9. A meaning somewhat different from that given in our translation would be obtained by connecting Kacta入ias with ṽoazı and 廿ópov with xopev́atos: 'I hear a sound of dancing in which men are unrepresented,' i.e. the maidens dance alone (cf. ll. 15 sqq.). This construction is preferred by Bury.
10. Of the variants ${ }^{\circ}[\lambda\rfloor \xi \xi \omega \nu$, the reading first written, seems the best (cf. e. g. Ol. xiii. 9 $\left.\dot{a} \lambda \epsilon \dot{\xi} \xi \epsilon \nu{ }^{"} Y \beta \rho \nu \nu\right)$; á $\rho \eta \eta_{\gamma \epsilon \iota \nu}$ is used in the same way by Aeschylus and Euripides (e.g. Med. 1275 dip $\hat{\xi}$ at фóvov. . . $\tau \in \in \kappa \nu o u s)$, but not by Pindar. á ${ }^{\prime} \xi(\omega \nu$ would not give the requisite sense. катà кowo [$\mathbf{u}]$ in the marginal note below refers to the zeugmatic use in this passage of $\dot{a} \lambda \in \xi \in \epsilon \nu$, which with the acc. means 'ward off' and with the dat. 'assist.' The rough breathing on the ϵ of ${ }^{\prime \prime}$ taus in the papyrus is unusual.
14. тоофóv is far preferable to the marginal кגutóv. Cf. II. 63 and Pyth. i. 1-2.
18. The correction of кротєi[$\nu \tau \iota$ to кротє́ovtı is necessary metri gratia. With $\pi о \delta i$. .
 50. Perhaps á̇ar[ázoss " $\epsilon \iota s$] (Bury), with a reference to $11.87-9$, or $\delta \bar{\eta} \rho \iota s$ for $\ddot{\epsilon} \rho \iota s$ if the shortened final syllable of èjpuфapé $p a v$ in 1. II I is regarded as illegitimate; cf. note ad loc.

51-65. 'The gods are able to persuade the wise of these things, but for mortals it is impossible to find the way. But since ye have received this as your ordained right, O maidens sharing alike in all things with your father whom the dark clouds hide and Mnemosyne, hear me now : my tongue is fain to pay its best and sweetest honey-tribute when I have gone down to the broad lists of Loxias at the festival of the gods. For sacrifice is made for All-Hellas the glorious, which the Delphic folk prayed (to be saved from ?) famine . . .'
51. $\theta_{\epsilon 0 i \sigma t}$ is a disyllable, if 1.112 is rightly restored. It is noticeable that the scansion of $[\theta]$ jós in that line is similar.
52. $\pi \varepsilon \theta \epsilon i \nu$ is metrically preferable to $\pi \epsilon i \theta \epsilon t \nu$ if the restoration of $1 . I_{3}$ is correct.
54. The end of this line is a crux. $\mu 0[l] \sigma a t$ is inevitable, since μo, though imperfect, is practically certain, and o and σ are so close together that there is room for only a very
narrow letter between them．Since the Muses are evidently addressed it seems obvious at first sight to write Mo［i］ Jat ；but then the difficulty is to find a plausible restitution of the preceding dactyl and a construction for π ávea in 1． 55 ．It is simpler to suppose that $\mu 0_{[}[]$rat is the termination of a feminine participle in agreement with map θ évot and governing mávia．Yet even on this hypothesis some alteration of the text appears necessary．The letter after $t \sigma$ ，if not o must be another σ ，which gives no word．At a short distance from this is a vertical stroke which we suppose is the second upright of an ν ；it might also be γ, ι, τ, v ，or the first half of ν or π ．With any of these letters，however，with the doubtful exception of τ ，there will be a short preceding lacuna to be filled（e．g．$\sigma \sigma \rho\left[\cdot \sigma_{i}\right.$ ），and the metre will be wrong．To the reading adopted there is the objection that part of the diagonal stroke of a ν would be expected to be visible；but the surface of the papyrus is damaged，and the diagonal stroke may have been drawn somewhat higher than usual． If $\epsilon \ddot{\ell} \phi \rho \nu^{\prime}$ in 1.115 be scanned as a disyllable，as written in the papyrus，the alternatives remain of regarding ioo．$\mu o t \sigma a$ as a compound verb，in which case the termina－

 and reading $\boldsymbol{i} \sigma\langle a\rangle[\nu \epsilon] \mu \sigma[i] \sigma a$, the sense of $\boldsymbol{r}^{\prime} \mu \epsilon \epsilon \nu$ being the same as e．g．in Ol．ii． 12
 though it is lengthened in the compound ivooai $\mu \omega \nu$ ，Nem．iv． 84 ；and hence we have adopted with some hesitation Bury＇s proposal to write $\epsilon^{\prime} \dot{\sim} \phi \rho o \nu^{\prime}$ in J^{\prime} II 5 and insert $\gamma \epsilon$ after ioov．The errors in the papyrus are commonly due to omission of letters；and diaeresis is neglected e．g．in 1.77.

55．Only the top of the supposed η of $[\mathrm{Z}] \eta$（ vóootos）survives．A variant $\kappa \in \lambda$ avє ϕ ќï seems
 is a Homeric epithet of Zeus not elsewhere so used by Pindar．The Muses were the daughters of Zeus and Mnemosyne ；cf．Fr．i6．í below．

57．Tє θ ］uóv：sc．the inspiration of poets，tò $\pi \imath \theta$ eiv ooфoús（1．52）．
58．A comparison with l．II9 shows that the mark of short quantity above $\nu v \nu$ is erroneous．

59．$\pi \rho \frac{\chi}{\epsilon} \epsilon \epsilon \downarrow$ cis is only one of several possible restorations；кєגa $\delta \bar{\eta} \sigma a t$ e．g．would also be suitable，cis being unnecessary with катаЗávтa（cf．Pyth．iv． 55 Пú⿴囗十ov vaòv катаßávтa）． A difficulty，however，is raised by the note $\dot{a} v(\tau i x ~ r o \hat{u}) ~ d \dot{\omega} r o u$, which would seem to imply that its author did not construct ämov with an infinitive coming after $\gamma \lambda \nu \kappa \dot{v} v$. The reading of Zenodotus is unfortunately beyond recovery ；it ends with a sloping dash which might mark an abbreviation or belong to an hastily written ν ．For the language of 1 ． 59

 is in favour of the correction nogia．

61．$\theta \epsilon \bar{\omega} \nu \quad \xi \in v i a=\theta \epsilon \sigma \xi \in v i o s$ ．In the following lines the institution of this festival is referred to the occasion of a famine，－a fact explained in the mutilated scholium but apparently not otherwise recorded．The local cults of Apollo were frequently brought into connexion with deliverance from such visitations，e．g．Pausan，i．3．4，where a statue to Apollo ádє $\boldsymbol{\xi}_{\text {iкака }}$ is said to commemorate the plague in the Peloponnesian war，and
 cf．also schol．on 1 ． 125 below．

 the disparity in the size of the writing are decisive against this combination．

72．［חv］${ }^{\prime} \omega$ wotefev：of．Pyth．v．105．The transposition of the first syllable from the
preceding verse is required by the metre ; 1. 93, the corresponding verse in the antistrophe, as originally written was also a syllable short.
74. חávOoos was a priest of Apollo at Delphi and subsequently at Troy; cf. Verg.
 ${ }_{\epsilon} \beta$ av.
75. For the shortened first syllable in Tpwia of. e. g. Nem. iv. ${ }_{5}$, where the MSS. have Tpoitar as an anapaest. But several editors substitute Tpotay, and the interlineation in the papyrus shows that the question between ω and o in such cases is an ancient one. A

 allusion to Diomedes, Iliad E 115 sqq. The occurrence of π dits as a disyllable here is of interest in connexion with the corrupt passage in Ol. ii. 76, where matis has been conjectured, and 659.70 (Pindar, Partheneion), where the probability of the vocative mái is now increased.

78-123. '(Diomedes), whom the far-darting god in the mortal form of Paris smote with an arrow and estopped from battle. And straightway he put off the capture of Ilium, quelling by a bold deed of blood the doughty son of dark-tressed Thetis of the sea, the trusty defence of the Achaeans. What was his strife with white-armed Hera, as he matched against her his invincible power, what with Polias! In return for their great pains they would have razed the city of Dardanus, had not Apollo been on guard. But Zeus, the ruler of the gods, seated on the golden clouds and peaks of Olympus, dared not relax the decrees of fate: for high-coifed Helen's sake must the flaming fire's ray blot out wide Pergamon. And when they had placed in the sore-lamented tomb the mighty corse of the son of Peleus, went messengers over the sea-waves and came again bringing from Scyros Neoptolemus, great in strength, who sacked the city of Ilion. Yet saw he not thereafter his kind mother, nor roused he forth in the fields of his fathers the horses of the Myrmidons, a brass-accoutred host. He reached the Molossian land hard by Tomarus ; but he escaped not the winds nor the far-darter with the broad quiver. For the god swore that he who killed aged Priam when he had sprung upon the altar in the court should come to no comfortable path in life nor reach old age ; and he slew him, as he strove with the attendants about their allotted rights, in his beloved enclosure by the broad pivot of the earth. Oh hail, hail! Now for the paean in full measure! Oh hail, ye youths!'

78-80. Cf. Iliad $\Lambda 369$ sqq. Homer, however, does not ascribe the wounding of Diomedes by Paris to any special intervention of Apollo. The a of $\delta \epsilon \mu u$ is corrected. For ékaßodos cf. l. II I below; the rough breathing is probable, but not certain.
81. Either 'Itio or 'IXiov may stand. The genitive is more natural, but it would therefore be less liable to alteration.
83. The metre shows киагот入óкoo to be the right reading. Both кvavóллокоs and

84. A dot has been placed above and below the δ in θ er δo os indicating that it should be omitted. Ө́́tios is the Pindaric form ; cf. Ol. ix. 76, Isthm. viii. 5^{2}.
 In the Iliad Apollo appears consistently on the side of the Trojans, Athene on that of the Greeks.
87. $\tilde{\epsilon} \rho \xi \epsilon$: the Doric aorist is sufficiently common in Pindar, and hardly deserved a note; cf. e. g. l. I 33 є́ $\gamma \gamma v a ̃ \lambda ı \xi \epsilon \nu$.
88. Both a grave and an acute accent are placed above the a of $a \nu[].\} \rho \epsilon \ell \delta \omega \nu$, the former being enclosed between two dots like the letters of variants (e.g. ll. 8 I and 83). The
purpose was to indicate a choice between the alternative readings $\alpha i[\tau]$ peti $i \omega \nu$ (grave accent) and $u v\left[\tau^{\prime}(a)\right]$ ' $\rho \in i \delta \omega \nu$ (acute). Editors write divtepeious in Pyth. iv. 37. A similar double accent is found in IX. I 7.
89. ö σa : the variant $\ddot{\sigma} \sigma \sigma a$ attributed to Aristophanes implies a syllaba ancefts at the beginning of the verse, but the syllable is short in the other surviving instances, 11.7 , 68 , and 129 .

 perhaps a parallel ; áırì пóvol occurs in Isthm. v. 25.
91. $\tilde{\epsilon \pi \rho a \theta\langle 0\rangle \nu: ~} \epsilon \pi \rho a \theta \in \nu$ Pap., but there seems to be no reason, as Bury observes, for dissociating Hera and Athene here, and the singular may easily have come in from the adjacent verbs.

92-3. The final o of $o \lambda v \mu \pi o t o$ was added at the beginning of 1.93 after κ was written. The omission may have been simply an oversight ; but the papyrus is damaged at the end of 1.92 , and it is possible that the final o was at first placed there, and then deleted; cf. note on 1.72. There is no sign of odv \quad.
94. àva[$\lambda]$ úev: for the Doric infin. cf. IX. 36 ovráyєv, Ol. i. 3 rapúєv, Pyth. iv. il 5

 robur indicat, according to Fennell, who compares Thucydides i. 6. 3, refers to an eastern fashion of wearing the hair. The latter explanation would suit the present passage. The accent on the o is not quite certain.
96. A small difficulty occurs at the end of this line. The supposed \imath is doubtrul,
 a space between v and a would remain unaccounted for. Пépyapos (Ol. viii. 42) meaning Troy is always feminine wherever the gender is determinable, and therefore $\epsilon \dot{\nu} \nu i[\nu]$ is inadmissible unless it be here declined as an adjective of two terminations on the analogy
 that an a was actually written after δ, for though there is no trace of ink the surface of the papyrus is worn. a is long in cüoroìv in the only other Pindaric instance, $P_{y} \not t h$. iii. 37 .
97. at θ ouevos was a slip, perhaps due to $\pi v \rho o s$. The s is practically certain.
99. There was certainly one letter, probably either ، or (better) ν, immediately after $-\delta a$, and some traces of ink beyond may belong to a second. $\Pi \eta \lambda \epsilon i \hat{i} a \nu$ would be intelligible whether $\nu^{\prime} \kappa v \nu$ was taken adjectivally or in apposition with the proper name; but the genitive is more likely to be correct.

So far as the general appearance of the papyrus and the recto is concerned, Fr. 66 might be placed near the end of this line in the gap between Cols. xxix and xxx ; but there is nothing in the scholium which suggests any comnexion with the text.
107. The marginal numeral is placed midway between this and the following line; l. 107 is the 100 th from the preceding $\mu(1.7)$.
108. As the text stands $\chi^{\omega \lambda} \lambda$. [$\left.{ }^{0}\right]_{\mu} \lambda^{\prime} \lambda_{\nu}$ is in apposition with $\tilde{i} \pi \pi o v s$. There is not room
 is not necessary.

 the end of 1 . 110 the choice of supplements secms to lie between $\left.\tilde{\epsilon}^{\prime \prime} \mu \boldsymbol{\mu} \theta\right] \in \nu$ (cf. Nim. vii. $1_{17}-8$

quantity which is visible above the lost vowel, and might naturally have been added to obviate confusion with $\epsilon \lambda \eta \theta \epsilon \nu$, whereas with $\epsilon_{\epsilon} \mu a \theta \epsilon \nu$ no mistake could arise. Cf. moreover
 first three lines of the scholium perhaps contained some reference to Aegina or the Aeginetans. It was the following passage concerning the death of Neoptolemus which gave offence in Aegina; cf. note on 11. 117-9 and introd. p. 20. The three lower lines, which are in a different hand, are so nearly effaced that the obliteration seems intentional.
III. The scribe has marked the final syllable of evpuфafétpav as short, which, if correct, implies the existence of a form in -ă side by side with that in -ās (Pyth. ix. 26), as in the

 Vergil, Aen. ii. 499-553.
$115 . \mu \nu, v . l . \nu v \nu:$ cf. Fr. 19. 24. Fluctuation between the two forms is common in the MSS. of Pindar. Mommsen and Bergk practically eliminate $\mu \nu \nu$ in spite of a consensus of tradition in several passages. $\mu \nu \nu$ stands alone in II. 73, Fr. 19. 26 and Fr. 131. 18, νv in IV. 15, Fr. 82. 32 and IX. 47.

 The papyrus proves the antiquity of the mis-spelling $\mu \nu \rho \hat{a} \nu$ which Boeckh, comparing
 $\tau \tau \mu \hat{\nu} \nu \tau o i ̂ s ~ \Delta \epsilon \lambda \phi o i ̂ s$, was the first to correct to $\mu o \iota p t a ̂ \nu$. The letter after v is not indeed certain, but the remains suit ρ better than any other letter and are not consistent with θ. $\mu v \rho \iota a ̂ \nu$ cannot be defended; and the choice rests between Boeckh's emendation and the reading attributed in the margin of the papyrus to Zenodotus, nudiâv. The latter gives an excellent sense and may well be right, but it appears on the whole more probable that $\Pi \nu \theta$ tâ ν was an attempt to emend $\mu \nu \rho \iota a ̂ \nu$ than that $\mu \nu \rho\langle\hat{\nu} \nu$ was a corruption of an original $\Pi v \theta i a ̂ \nu$. The interchange of v and ot is too common to require illustration. $\mu a \rho \nu \alpha \mu^{\mu} \varepsilon \nu \nu$, if not to be explained by the supposition that the citation was made from memory, must be a gloss
 form; but we can suggest no more satisfactory restoration: ávtáģuv is not used in the middle voice.

 Хр $\boldsymbol{\mu} \alpha^{\prime} \tau \omega \nu$ к.т.入.

119-20. The size of the lacuna shows that a syllable is missing at the beginning of l . $\mathbf{1 2 0}$. The reading $\kappa \pi a v \epsilon \mid \mu \epsilon \nu$ attributed in the marginal note to Zenodotus would be metrical ; but a finite verb would be much more natural, and it is probable that the oblique construction has been wrongly carried on from ll. 115-7. At any rate a future not an aorist infinitive would be expected to balance $\mathfrak{i \xi} \epsilon \mu \epsilon \nu$. ктav ${ }^{\prime} \mu \in \nu$ is therefore very likely a graphical error for $\kappa \tau \dot{v} \nu \in \nu \dot{\epsilon} \nu$, due to the influence of $\kappa \tau a v \epsilon i v$ in the text; the homoioteleuton would of course make the loss of $\epsilon^{\prime} \nu$ particularly easy. μ in ктavé $\mu \epsilon \nu$ is hardly certain, but is more suitable than ν.

121-2. The metre requires in in in l. 121, in only in l. 122.
123-40. 'An island of glorious name thou reignest amid the Dorian sea, bright
star of Hellenic Zeus! Therefore will we not lay thee to rest without a feast of paeans, but thou shalt receive our surging songs, and declare whence came to thee the god who guides thy helm and thy care for the right of the stranger. He who brings all things to pass in their diversity, the far-seeing son of Cronos, placed in thy hand thy happiness: by the waters of Asopus he once carried off from the threshold the deep-breasted maiden Aegina ; then the golden tresses of the mists hid the shaded ridges of your land, that upon the immortal couch . . :

123 sqq. The abrupt transition to Aegina, which is addressed in the following passage, is in the Pindaric manner. The point of connexion is to be found in the Aeacid ancestry of Neoptolemus, Aegina being the mythical home of the line, as narrated below in the legend of the birth of its founder. This pointed juxtaposition of Neoptolemus and Aegina helps to explain the soreness of the Aeginetans at what appeared to them an unfortunate description of the manner of Neoptolemus' death ; cf. note on ll. 117-9 and introd. p. 20. But they certainly had no cause to complain of the tone of 11. 123-32.

ঠ̀оцакли́та is quoted from Pindar by Schol. T. on Iliad $\mathrm{X}_{5^{1}}$ ($=$ Bergk Fr. 301) perhaps from the present passage; the feminine termination is also found in vavuıкえúra, another Pindaric epithet of Aegina (Nem. v. 9). For $\Delta \omega \rho \iota \epsilon \hat{\imath}$ cf. Nem. iii. $3 \Delta \omega p i 8 a$ và̃ov Aizıvav, and Pindar Fr. 1. 3.
124. ф'́fetau in the marginal note probably means ' is found in', of a reading; the word is so used in an unpublished Oxyrhynchus fragment of Apollonius Rhodius with scholia.

 $\mu \epsilon \tau a \delta o ́ \rho \pi t a v$.

In ápecáv two short syllables appear in place of a long one (1. $9 \boldsymbol{\eta} \lambda \theta a v, 1.9$ r 'A $\left.A \sigma^{\prime} \lambda^{\prime} \lambda^{\prime} \omega{ }^{\prime} \nu_{\nu}\right)$; the same variation occurs in the case of the same word in the epode at 1. 176. Bury notes that this resolution supports the traditional reading in Nem. iii. 14, where dyapá in a similar position in correspondence with a spondee has been commonly rejected.

133. The variant ধ́ryvádıॄov would presumably imply $\pi a i$ for $\pi a i ̂ s, ~ p r o d u c i n g ~ a ~ h i a t u s . ~$ The indicative is no doubt correct.
134. The correction of vóarı to vidát $\sigma \sigma \sigma$ is necessary for the metre. Asopus was the

 Pyth. i. 12. Cf. ßaiúswas.

 would seem to be etymologically correct.

138．The meaningless and unmetrical єкрvұarav of the papyrus perhaps arose from a dittography of ψ a．

172．пovvá is an alternative reading．The mark of short quantity rather suggests $\pi o v v a i$ as a variant on π utvât，but a final ι was certainly not written．
${ }^{1755}$ ．In the absence of the context there are no means of deciding between $\gamma \epsilon$ and the v．l．$\tau \epsilon$ ．

176．In àpetás $\cup \cup ー=-ー$ ；cf．note on ll．130－1．
178．$\pi a]$ ］$\rho \omega \boldsymbol{i a \nu}$ ：or ］T $\rho \omega$ tav ；in either case the ω is shortened；cf． 1.75 ．
180．$\nu \nu \nu$ is apparently a variant for $\pi \hat{a} \nu$ ．There is a short blank space between the final ν and the very slight vestige of the following letter，which was perhaps the initial of the name of the critic who supported the reading．

182－3．пatáv：matâv Pap．According to Ahrens，De dial．Dor．p．26，пatáv，＇Iáv，\＆c．，was the Doric accent；but different systems may have obtained among grammarians．If $\delta \epsilon \in=$ ＇and＇the acute accent shows that an enclitic（（rot？）followed．

The Zenodotean reading recorded in the margin is obscure．The letters are for the most part clear．

VII．

 addressed．

3．av̉̀áv probably means＇temple＇；cf．Nem．iv． 24 ＇Hpak入éos ỏ β ßià $\pi \rho o ̀ s ~ a v ̉ \lambda a ́ v . ~$
4．In front of the cross at the beginning of this line are some ink marks which might represent ω s，but are more likely to be accidental．

12．${ }^{a} \nu=\alpha{ }^{2} \nu \alpha ́$ ．
15．$\pi \rho o ̀ ~ \beta \omega \mu\left[a \hat{v}\left(-\mu[\overline{\omega \nu}\right.\right.$ ？$)$ ：or $\pi \rho \rho \beta \dot{\omega} \mu \mu_{\imath}$ los；cf．Frs．129－31． 20 below．
16．］$\pi a \rho o[$ is written slightly smaller and less regularly than the adjoining letters，and is possibly part of a marginal entry．

18．є̇avińs is not found elsewhere except in Apoll．Rhod．iv．I 48 ev̉avtéa Boîva єфор $\boldsymbol{q}^{\prime} \nu$.

B．Frs．${ }^{16-25}$ ．On the general characteristics of this group of fragments cf．introd． p．12．Whether any of them belong to Paean VII，or，if so，which，is doubtful．There are some resemblances in rhythm，but no correspondence can be established．

Fr．16．5．$\kappa \in \lambda a \delta \eta^{\prime} \sigma \alpha \theta^{\prime}$ is probably a variant for some other verb．The conjunction of

 Bury and Schroeder．Cf．VII．if кє $\bar{\alpha}$ á $\delta \eta \sigma a \nu$ aủ $\delta a ́ v . ~$

6．Possibly кaт＇ápa乡ıróv，as in Pyth．iv． 247 ：only the scantiest traces remain of the word between $i] \pi \pi o \nu$ and $\dot{\alpha} \mu a \xi$ ．

7．Evpiaus：the first letter seems to be σ rather than o，or θ ovpiats would be an easier

 represented only by the top of the crossbar，which might belong equally well to e．g． γ or σ ．

10－7．＇（I pray）to the fair－robed child of Uranus，Mnemosyne，and to her daughters to grant fullness of resource．For blind are the minds of men，whoever without the maids
of Helicon seeks the stcep path of them who walked it by their wisdom. To me they have handed on this immortal work . . .'

Abstract

 11. єipaxaviav: cf. Isthm. iv. 2, where the word means rather abundance of opportunity than resourcefulness on the part of the poet. The latter sense is more appropriate in the

 present passage.
 ait $\dot{\eta} \nu$ тaîs aít $\bar{\nu}$ aoфiaus: ' whoever emulates the masters of poctry' must be guided by the Muses.' The allusion is perhaps to Homer; cf. Fr. 17. Bury would prefer to connect

 simplification, but that is hardly warrantable. For $\beta a \theta$ eial cf. Pyth. v. 88 ádòs β ateíav кé̀ $\lambda \in \ell \theta o \nu$ àvoí $\gamma \omega \nu$.
16. The paragraphus marks the commencement of a new metrical section. If Fr. 16 belongs to Paean VII this section will be an epode, since the metre of 1 . 6 differs from that of VII. i.
17. π óvov seems to be the right reading ; π ópov would keep up the metaphor of $\delta \delta_{o ́ v}^{v}$ in

Fr. 17. The appearance of this fragment suggests that it is closely connected with Fr. 19, though whether it should be placed somewhere in Il. 1-9 or belongs to the succeeding column is doubtful ; the recto is consistent with either position. A suitable collocation could be produced by making Fr. 17. l. i the next verse to Fr. r6. 1. 17 and connecting пóvov with 'o μ そ́pov; the papyrus being broken immediately above the latter word, there is no means of determining whether that line was the first of a column.

Fr. 18. The beginning of 1.10 in Fr. 16 seems to be a rather likely place for this small fragment.

Fr. 19. The first column of this fragment may follow immediately on Fr. i6. Such a position would suit the recto, which on the other hand indicates that Fr. 16 is not to be placed next to Fr. 19, Col. ii.

 a slight additional argument for making Fr. 16 and Fr. 19, Col. i successive columns, and placing Fr .17 at the top of the latter.
10. The scholium indicates a reference to Leto ; cf. 1. 12 and 11.20 sqq.
 'А $л о \lambda \lambda \omega \nu$.

16-8. Whether Fr. 20 should be assigned to this column is very doubtful ; ধ̈ббато is not very suitable to the context in 11. 20 sqq. The fragment is unlikely, owing to its difference in colour, to belong to Fr. 19, Col. i, but it may be the top of the column represented by Fr. 21. In the first line of the scholium it is tempting to read $\left.\tau_{\eta} \nu \Delta \bar{\eta}\right] \lambda[o v$ $\lambda \epsilon^{\prime} \gamma \in \iota^{\prime} A[\sigma][\epsilon]$ piav (cf. V. 42, note), but though the supposed π is quite uncertain and could well be τ (or $\boldsymbol{\gamma}$ or $\boldsymbol{\sigma}$), there does not seem to be room for $\boldsymbol{\sigma} \tau \epsilon$ between the α and ρ.
18. Only a short horizontal stroke, which we take for an elongated base of a δ, is visible before the lacuna ; it is too near to the line above to be a paragraphus.
 speaker is Asteria, as the next lines show.

 this use does not occur elsewhere in Pindar, and Bury would interpret η here on the analogy
 question and $\bar{\eta}$ is taken by some critics as equivalent to é $\phi \eta$.
22. Koiov $\theta v \gamma a ́ t \eta \rho: ~ i . ~ e . ~ A s t e r i a, ~ n o t ~ L e t o . ~$
23. Of the last five letters the bases only remain ; $\delta \epsilon \delta \delta[t] \leqslant a$ seems to be right, but π or ν might be read in place of the following к. Some infinitive such as $\lambda \epsilon \hat{\epsilon} \gamma \epsilon \nu$ or $\ddot{a} \delta \epsilon \epsilon \nu$ seems to be required to complete the sentence, though this profession of scepticism on the part of
 äтเбтоу.
24. For the variant $\nu \nu \nu$ cf. VI. II 5 , note. In the incomplete state of the text it is difficult to decide between the claims of $\dot{\epsilon} \nu$ and $\nexists \nu$. The a is probably by the original scribe; whether the overwritten ν in this line and v in the next are also due to him is much more doubtful.
25. єuay'áa, v. l. єuavy'a: the dot to the right of the interlinear v is lost. The present passage is one of the few authorities for the spelling evavyns, which Hemsterhuis wished to restore in all passages where the word means 'clear' or 'conspicuous.' In Arist. De Nundo 5. p. 397. 16 one MS. has ciavyéqтatos, and ciavyia is found as a variant on єiaria in Iambl. Protrept. p. 152. 23. It does not seem possible to read the first letter of the scholium as ϵ, and if]avay ϵ [is right, the stem must be vavar-, which would presumably be another $v . l$., although the entry is in the small cursive hand in which explanations, not variants, are commonly given, and vavay- in any form would produce a difference of metre. The supposed $\gamma \epsilon$ could equally well be ν.

 a hole between a and ι, which are farther apart than usual, but there would not be room for $\pi a \lambda a[t o]_{\iota}$ unless the o was abnormally small.

 desired the island as the place for the birth of Apollo. A more natural interpretation would be to connect tâs with γ óvov, but this is inadmissible since râs must refer to Asteria, who was not the mother of Apollo. Perhaps tâs should be ảs $=\tilde{\epsilon} \omega s$ (Ol. x. 5^{1}), when
 The metre being uncertain we cannot decide between крátıбтоs and кápтьбтos; the confusion of spelling is not unfrequent in Pindar, e. g. Pyth. xi. 18, where there is authority for

 γ of γ ovov has apparently been corrected from σ.

The present context, as suggested by Blass, would be appropriate to Fr. 90, reading

 of strophe and antistrophe．The difference of hand creates no real difficulty，for if C and D belong to the same MS．as A and B，which there is good ground for supposing（cf． introd．p．23），a change of scribe necessarily occurred at some point，and there is no reason why the point should not be at the end of Col．ii of Fr．19．The appearance of the papyrus，however，is very dissimilar in the two fragments ；and the metrical argument is not strong，for the line of fracture on the left side of Fr． 90 is practically straight，and it is hardly likely that both $u v-]$ in 1.24 and $\cup v-v$ ］in 1.26 would have occupied the same space as $-x$ ］in 1.25 ．We have therefore refrained from bringing Fr． 90 into immediate relation with Fr．19，though the combination is undoubtedly attractive．

Fr．21．The position of this fragment in relation to Frs． 16 and 17 is altogether uncertain ；it may precede Fr． 16 or follow Fr．17．The recto is practically illegible．

7．$\tilde{\epsilon}^{\boldsymbol{\epsilon}} \sigma \sigma \epsilon \tau a t$ ，which is probably a variant for $[\tilde{\epsilon} \sigma]$ rat ，seems to be independent of $a \mu a[$ ， being not quite in the same straight line，and apparently by a different hand．

Fr．22．3．Neither the circumflex accent nor the rough breathing is clear．i $\sigma \hat{\eta}$（subj．of $\tilde{i}^{(\sigma a \mu \iota)}$ is conjectured by Bury in Nem．iv． 9 r．

Fr．26．This fragment and Fr． 27 are distinguished by the fact that the recto is in a different hand from that of the rest of A and B ，and may be the same as that of D ，where the text on the verso is by a second scribe．Fr． 27 is of a darker colour than Fr．26，and does not apparently join directly on to it．

5．$\nu \eta \lambda \in \in \ddot{i} \theta \dot{\eta} \rho \mu[$ ：or possibly N $\eta \rho$ éiov $i \mu[\epsilon \rho \ldots$ ．．（？），but the letter before μ is rather more like ρ than ι ，and there is a mark above the preceding letter，which has to be ignored if this be read as ν but can well be an accent on an η ．

6．k $\rho[\cdot]$ av ：the supposed t is rather tall and may be ϕ ．
 vestige of an a ，but $\left[{ }^{\circ} \chi \theta a\right]$ cs alone would not fill the lacuna．

Fr．28．2．$\beta a \theta v \delta[0 \xi \ldots$ ．．：cf．II．58，\＆c．$\beta a \theta v \zeta[\omega \nu$ ．．．may also be read，but a combina－ tion with III． 99 is not possible ；cf．note ad loc．

Fr．33．2．Perhaps àv］a ${ }^{\prime} \sigma^{\prime}$ or ］as σ^{\prime} ：but the first σ is possibly a rubbed a ，and $] \lambda a s$ or juos e．g．might be read．

3．Possibly＂A］ro入入ov；but the relative length of the next four lines renders it unlikely that this line is the first verse of a strophe from V ．

4．The first ϵ of $\nu \in \mu \epsilon$ is extremely doubtful，but ι or o are equally unsatisfactory ；$\lambda \epsilon$ or λ_{0} may be read for $a \sigma$ ．

Fr．44．It is not certain which way up this fragment should be placed．
Fr．46．2．The mark of length above the a is not quite certain．
3．An alternative reading $\dot{a} \nu \theta^{\prime} \dot{\epsilon} \mu \nu \sigma$［ for $\dot{a} \nu \theta \theta^{\prime} \mu \omega \nu \beta a[$ is apparently indicated by the interlinear insertion．

4．Joкє ：or ］$\omega \kappa \pi$ ．If $\kappa \epsilon \lambda \eta s$ is right the next word may be＇lóvios：iovt［ cannot be read．
Fr．47．2．］iaגıo［：so probably rather than ］$\delta a \lambda \iota a[$ ．In any case this line cannot be the first of one of the strophes of V（iníe $\left.\Delta i \lambda \imath^{\prime}{ }^{\prime \prime} A \pi a \lambda \lambda o \nu\right)$ ，since $] u \zeta^{\omega} \omega \cdot[(\beta a \theta] u \zeta \omega \nu[$ ？）in the line below does not suit the metre of the following verse $-\cup \cup-\cup \cup ー$－

Fr．48．This fragment cannot be placed at VI．68－9 ；cf．note ad loc．

Frs. 49, 50. These two fragments are of the same light colour, but do not join.
Fr. 54. 2. The letter after η must be either a or δ. The insertion above the line is in lighter ink and somewhat blurred.

Fr. 55. I. The insertion (which is not certainly by the first hand) is at the distance of an ordinary verse from l. 2 ; the note is therefore a marginal one, and]rova[came near the end of a line.

Frs. 59-60. The appearance of these two small fragments suggests a connexion with Col. viii of A owing to the fact that the recto there has a broad strip of papyrus gummed on to it, the writing on which runs in the reverse direction to the cursive of the recto, and the recto of Frs. 59 and 60 is covered in the same way with pieces from the same document. The strip down Col. viii, however, is practically complete except at ll. 102-4, and since neither of the fragments can be fitted on there, they may come from quite another part of the manuscript. The recto of Fr. 68 is similar.

Frs. $6_{5}-8 \mathbf{I}$. Of these seventeen fragments of scholia the recto of five, namely Frs. $7 \mathbf{I}$, $75,76,78$, and 8 I is blank, and they may therefore come from either $\mathrm{A}-\mathrm{B}, \mathrm{C}$ or D ; in the case of Frs. 77 and 81 the remains on the recto are insufficient to identify the hand. The remainder, as is shown by the recto, belong either to $\mathrm{A}-\mathrm{B}$ or C , the majority more probably to the former. Fr. 8I, which is in small sloping uncials, should perhaps rather be referred to C or D .

Fr. 66. This fragment is composed of two pieces, the combination of which, though probable, is not quite free from doubt. The line of junction is at the lacunae after $\gamma \in \nu$ [and tar.

Fr. 71. 4. Perhaps ó $\delta \grave{\epsilon}$ חív $\delta \alpha \rho \rho]_{s} \lambda \epsilon \in \gamma \in \iota$ [as in Fr. 82. 3.
C. The hand of the text changes at this point ; cf. introd. p. 12 .

VIII.

Fr. 82. i sqq. This scholium not improbably refers, like ll. $7-11$, to Clymenus and Erginus (cf. note ad loc.), but its subject is obscured by mutilation.
2. If $\bar{\epsilon}] \xi \tilde{\eta} \lambda \theta \epsilon s \gamma^{\prime}\left[\epsilon \nu \in \eta^{\prime} v\right.$ is right the oracle was quoted verbatim.
4. The word after $\mathfrak{\eta} v i k a$ is perhaps kaí; the vestiges are too slight for certain identification.

 cf. Schol. Ol. xiv. 2.
8. Perhaps]vo'v, but hardly 'Eprív'o]u, since 'Epfivos is presumably the subject of
 doubtful, and palaeographically v would be more satisfactory.
 meant, and δv may represent $a \hat{v}$, 'further'; $\langle\sigma\rangle \grave{v} \tau \epsilon \lambda \epsilon \in \omega s \dot{\epsilon} \pi \tau \tau \epsilon \lambda \hat{\epsilon}[\sigma \epsilon \epsilon s$ is less likely.

20-33. ' (Seeing Paris) hasting forth, straightway her godliest inspired heart cried out
with grievous moan and made utterance with such purport of speech :-O infinite far-seeing son of Cronos, now wilt thou accomplish the calamity fated of old what time Hecabe declared to the sons of Dardanus the vision which she once saw when she carried this man in her womb; she thought she bore a fiery hundred-handed Fury, who with cruel violence hurled down to the ground all Ilium. And she said . . .'
20. $\sigma \pi \epsilon \dot{\delta} \delta o u \tau^{\prime}$ refers to Paris, hastening to set out for Sparta. The removal of the final ν of $\epsilon \kappa \lambda a \gamma \xi \epsilon \nu$ is indicated by a dot placed above and below the letter, as in 1.25 below; cf. II. 67.
iep 向tatoy: cf. note on Fr. 87. 3.
21. к'́ap: i. e. that of Cassandra, кє́ap being used paraphrastically for the person as
 ... 子óoto.
22. The accent and mark of quantity on σ tovaxaus show that the scribe carelessly mistook the dative for the nominative.
 iii. 80λ रó $\boldsymbol{\omega} \boldsymbol{\nu}$ бvvé $\mu \in \nu$ корифáv. The analogy of these passages makes $\lambda o ́ \gamma \omega \nu$ in 1.24 preferable to the v.l. तóyov. With what object the curved marks were placed beneath the
 $\mathrm{T} \eta \nu$ in the name T $\mathrm{T}_{\boldsymbol{\nu}} \boldsymbol{f} \rho a \nu$ are similarly underlined. Such signs are used e.g. in the Bacchylides papyrus to connect the constituent parts of compound words (iii. $23 \delta a \mu a \sigma i \pi \pi o v$, v. 19 evpvávaktos, \&c.), but though the stroke would serve to warn the reader that $\mathrm{T} \eta \nu$ in Tívepon was not the article, and that rotao δ e was one word, not two, no similar explanation will apply to kopvфât or λ éxet. In the former word next to the circumflex accent is a mark which we can only explain as a sign of short quantity indicating kopuфai, though this is contradicted by the accent and корифai would not construe.

бámatvev: the interlinear ν is in a lighter ink, and was perhaps added by a later hand.
24. λ ó $\gamma \omega \nu$: cf. note on 1. 23. The adjective $\pi a v a \pi \epsilon i \rho \omega \nu$ is found only in Orph. H.
 sense or $\pi a \nu a \pi \eta \mu_{\mu} \nu$ (Hesiod, Op. 8ir, Anth. Pal. ix. 525.17 ; cf. Pindar, Pyth. x.

${ }^{25}$. The reading $\tau \epsilon \lambda \epsilon i s$ was altered to $\tau \in \lambda \epsilon t$ (imperative), a dot having been placed above and below the final σ (cf. l. 20), and the accent of $\tau \epsilon \lambda \epsilon t$ added. The indicative $\tau \epsilon \lambda \epsilon$ is is preferable, since Cassandra did not wish for the accomplishment of the ruin of Troy, but only foresaw it.
29. tóv ' avé ρ^{\prime} means of course Paris.

30 sqq. On this well-known story of Hecuba's dream cf. e. g. Apollod. iii. 12. 5

 каієе

33 sqq. These mutilated lines probably refer to the interpretation of the dream, of which different accounts are preserved. According to Apollod. l. c. the interpreter was Priam's son Aesacus, at whose recommendation the child was exposed, but ineffectually (cf. 1. 35 (?) $\left.{ }^{\mu} \sigma \phi a\right] \lambda \epsilon \pi \rho о \mu \dot{\mu} \theta_{\epsilon}(a)$.
 read in place of a, but not o.

Frs. 83-4. That Fr. 83 should be placed at the top of this column is made almost
certain by the combination of three considerations：（I）the similar appearance of the verso of Frs． 83 and 84，（2）the fact that a strengthening strip from a cursive document has been gummed on the recto of both of them，（3）the coincidence that when the fragment is so placed a column of exactly the right length results．On grounds analogous to（i） and（2）Fr． 85 is also to be placed in the upper part of the column，probably close to Fr． 84.

1－2．$\epsilon \nu \omega[$ and $\mu \epsilon$ ．［ are probably the beginnings of lines．
8．The vestiges at the end of this line may belong to a scholium．
 $\kappa \lambda$ ．viòv（？）кє入áón白．кגıөєis in the present passage will mean simply＇reclining．＇

12．$\pi \rho a \hat{a} \xi^{\prime} \nu$ is apparently the neuter participle future agreeing with $\ddot{\epsilon} \pi o s$, though the expression is somewhat strange．

13．If the marginal $\mathrm{X} \rho v \sigma($ ）gives the name of the speaker，possibly the Trojan Chryses，who was a priest of Apollo，or the Cretan Chrysothemis，who is said to have been the first winner in the contest of singing a hymn to Apollo at Delphi（Pausan．x．7．2）， may be meant．But on the analogy of the other abbreviated names of Pindaric com－ mentators which occur in this papyrus it is more probable that $\mathrm{X} \rho v \sigma()$ stands for the critic Xpvorintos，who is frequently referred to in the extant scholia．
 the latter word followed in the text．The reading is practically certain，and τ cannot be substituted for δ ，though it should perhaps be restored in accordance with the usual Pindaric declension．

Fr．86．r．This line was probably，but not certainly，the first of a column．The frag－ ment cannot be combined with Fr． $88 \theta^{\circ} \hat{i} \mid \pi \in \rho t a ́ t a$, \＆c．

Fr．87．3．There is a remarkable coincidence between the remains of this line and Fr．82．20；the word iєp＇́tarov probably occurs in both verses，and the same ambiguity of metre in the preceding word is also found in both cases．But the hypothesis that the two verses are in strophic correspondence is open to the objection that Fr．87． 4 ］eveधs does not agree with Fr．82． 2 I ${ }^{j} \lambda o a i \mid \sigma \iota$ ；this difficulty，however，could easily be overcome by writing ỏ入otaî $\sigma \iota$ ．

Fr．90．On the grounds for and against bringing this fragment into connexion with Fr． 19 see note on 11．28－30 ad loc．

Fr．91．This fragment may contain the beginnings of lines．
Fr．93．For the double accent on önतoos cf．note on V．44．The rough breathing is not clear．

Fr．95．5．Perhaps a critical note，if $\not{\epsilon} \nu \tau \tau \sigma \iota=$＇in some copies．＇
Fr．96．I．$\theta \rho a \sigma u ́ s$ seems to be a variant for $\tau a \chi u ́ s$. If＇A $A \in \xi a v \delta[\rho$ below is a reference to Paris，the fragment may come from the column following Fr．82．ii ；cf．Frs．129－31．r．

Frs．103－4．These two fragments are very similar in appearance，and probably go close together．
 from the branches of laurel which the singers carried，and according to Proclus，Chrest．ap．
 γ^{\prime} vos nitret．The $\delta a \phi \nu \eta \phi o p i a$ was specially associated with the Ismenion at Thebes．Cf． introd．p． 24.

Fr．108．$\pi \rho]$ $]$ oó8 $\delta[0 \nu$ seems a likely restoration；on its possible significance cf．introd． p． 24.

Fr．ro9．The occurrence of an elision mark between e and ω leads us to regard this line as belonging to the text in spite of the rather small size of the letters．

Fr．irir．Probably from the top of a column．The first line may be part of a scholium．

Fr．in6．The vestiges below the third line seem to represent lectional signs rather than letters．

Fr．117．2．The supposed high stop may be the end of an acute accent．
Fr．124．The writing in this fragment is slightly more cursive than usual in the notes by the first hand．

D．Frs． $\mathbf{1}^{26-39}$ are distinguished from those under C by the presence of a different hand on the recto．

IX．For the Thebans．

$1-2 \mathrm{I}=$ Pindar Fr．107，preserved in Dionys．Hal．De Demosth．dict．c． 7 taìта каі̀ тà

 к．т．入．The general accuracy of Dionysius＇quotation is confirmed by the metre as determined by 11.34 sqq．，though some small improvements can now be effected．On the class of composition to which the ode belongs cf．introd．p． 23 ．

1－2．τi（Dionys．）suits the metre and makes good sense．
 $\grave{\imath} \mu \eta^{\prime} \sigma a o$ Bergk）$\AA \mu \bar{\tau} \tau \epsilon \rho$ is confirmed by the metre．

3．An additional short syllable is required before $\epsilon \theta \eta k a s$ to produce a correspondence with 1.43 ，which there is no reason to suspect．Perhaps $\nu v \nu$ ，which might easily have dropped out after $\kappa \lambda \epsilon \pi \tau 宀 \pi \pi \epsilon \nu \nu \nu$ ，or $\tau \dot{v} \gamma^{\prime}$ should be inserted．＇テ̈ $\theta \eta \kappa a s$ is likely to be sound ；cf．

 Dionys．（лтavò̀ סpá⿱宀八九 Paris．1745）．Though the syllable may be long or short（short in 11.14 and 34 ，long in 1．44），it is better to write $-\sigma \omega$ than $-\sigma \iota$ since $-\sigma \iota \nu$ recurs in the same position in 1．14．Other similar correspondences in this poem are 11.5 and 15 －rov ．．． $-\mu \epsilon \nu-$ ，11． 8 and $3^{8-\epsilon \dot{v} \omega}$ ．

7．ìm
9－11．Our identification of Fr． 127 is of course uncertain，but the accents on ］${ }^{2} \lambda[$ and ］ór［ both happen to suit，and，moreover，the recto is blank as it should be if the fragment belongs to Col．ii of Fr． 126.

9．［ ϵ is］：ϵ＇s Dionys．，but the syllable is long in 11.19 and 49 ．
13．The remains of the first letter are consistent with either o or ω ，but the con－ ditions seem less difficult if the two initial feet are taken to be［ $\cup \omega \nu$ our $\left[-\right.$ rather than $u-{ }^{\circ}{ }^{\circ} \bar{\sigma} \sigma$ ． Above the ω or o is a dot which is more probably the tip of a lectional sign，e．g．a grave or circumflex accent，than of an over－written letter．The doubtful σ might be ϵ, \circ or ω ， but hardly θ ．
 and $\pi о \lambda \dot{\epsilon} \mu$ o七o δe^{\prime} can now be confidently restored with the aid of the metre in 1． 43 ．
 but then a short syllable is wanting before $\pi_{\mu} \mu$ ．〈 $\left.\pi^{\prime} p^{\prime}\right\rangle$（Blass）would serve．

17．For the alternative accents on π aүєтоу cf．VI．88．The word is commonly made

 $\theta_{\epsilon}^{\prime}$ pos, but does not seem to have been illuminating.

22-33. It appears probable that a single column is the extent of the loss between 11. 18 and 34. This column would have contained fifteen or sixteen lines, giving an epode of the very suitable number either of ten verses, which is also the length of the strophe, or of eleven, for which there is an exact parallel in IV.
11. 34-49. 'I have been perfected by some divine influence hard by the immortal couch of Melia to compose a noble strain with flute and cunning of the mind, for your sake. I supplicate thee, Far-darter, consecrating to the Muses' arts this shrine . . . wherein Oceanus' daughter Melia once shared thy couch, O god of Pytho, and bore mighty Tenerus, the chosen interpreter of heaven's decrees. To his care didst thou, father with unshorn locks, commit the host of Cadmus and the city of Zeathus, on account of his wise fortitude. For the sea-dwelling wielder of the trident honoured him above other mortals, and he hastened (to ?) the region of the Euripus . ..'

34, The use of $\boldsymbol{\epsilon} \kappa \rho \dot{a} \nu \theta \eta \nu$ is somewhat strange ; the idea appears to be the need of divine help if the poet is to attain perfection in his art. $\bar{\epsilon} \pi \iota \tau \epsilon \lambda \epsilon \bar{i} \theta \theta a$, which is given as an equivalent, occurs in a different sense in Fr. 82. 20.
35. According to the explanation of the scholiast, the 'couch of Melia' means the Theban Ismenion, or temple of Apollo Ismenius. Melia, the daughter of Oceanus, was the mother of the seer Tenerus by Apollo, and like her son was revered at Thebes, where there was a spring which bore her name, close to the Ismenion; cf. 11. 41-3 below, Pyth. xi. 4-6 and Schol. ad. loc., Pausan. ix. 10. 5, \&c.
 Opoóv $\tilde{v}^{\mu} \mu \omega \nu$ סóvel. In the fragmentary scholium in the margin $\mu \in[$ may well be part of the
 Cf. the preceding note.
38. The letters τa in єкатаßодє are crossed through, and also have dots above them ; that éxaßò $\bar{\epsilon}$ is here the correct form is proved by the metre.
 $\mu a \lambda \theta a \kappa \hat{\omega}$, where, however, the verb has an abstract object.
40. The latter half of this line presents difficulties. λ and o are clear, and if τ, which is nearly certain, is right, the intervening letter must be ν. It is doubtful whether the traces before λ_{0} o represent two letters or only one; if there are two a π would be best for the first, though η, ζ, ξ, or perhaps κ might also be read; of the second there is only a small speck, which would suit any letter beginning with a more or less upright stroke. If on the other hand there is only one letter, it can hardly be other than ω, and some narrow letter should stand between it and the $\lambda .--\lambda_{o \nu} \tau^{\prime}[\Delta \pi] i$, as suggested by Blass, would
 better accord with a single antecedent substantive. It is rather tempting to read [ω. $\pi \sigma[\lambda] \lambda_{o \nu}$ $\tau\left[\epsilon_{j}\right]_{\nu}$; the supposed acute accent, of which only a tiny top remains, over the first syllable might well be a mark of elision or crasis, and the o, though not very satisfactory, is possible. The difficulty lies in reading anything but ι for the final letter. \mathfrak{l} and the second upright of ν are indistinguishable in form, but some part of the diagonal stroke of a ν would be expected to be visible. The papyrus, however, is damaged, and it is perhaps too much to say that a ν is to be excluded, though a restoration requiring it cannot be regarded as convincing, Bury suggests $\tau \dot{\sigma} \theta \theta]$, which might be accepted if no better solution is forthcoming.
41. On the myth of Tenerus cf. note on 1. 35 .

 parently an otherwise unattested form of $Z \dot{\eta} \theta o s$, who with his twin brother Amphion took and fortified Thebes and was buried there.
47. There is not too much space for the or of ' $\mathrm{O} \rho \sigma$ or or piaiva, which is the regular Pindaric form (Ol. viii. 48, Pyth. ii. 12, Nem. iv. 86), and perhaps 'Opotrp. was written;
 from that of 'Oроorpiauva (ápoós).
 лogias.
49. Without the complete context the meaning of avvéteve cannot be clearly defined, but it appears to be equivalent to contendit, 'hastened,' a sense found in late writers;
 cis тò ä ä́v.

The subject of Fr. 139, where some one is said to have gone to Aulis and made prophecies there, is very probably Tenerus, but that note cannot be the continuation of
 Col. iv and the next too great, and it is pretty clear from the width of its lower margin that Fr . 39 ran underneath a column (cf. Fr. 126. ii and Fr. 129), whereas $\mu \epsilon \tau a \pi o$ ofevөìvaı does not. It is, however, likely enough that Fr. 139 comes from the bottom of the column following Col. iv and referred to a passage standing in close relation to Eípítov tє ovvétetve $\chi \omega ิ \rho \frac{\nu}{}$.

Frs. 129-31. The metre shows that these two fragmentary columns do not belong to IX ; the strophe or epode contained at least fourteen verses (ll. 2-15).
3. "ैvar with what seems to be the top of a mark of long quantity above the letter after the τ is presumably èváta or évátav, and the references to an èvact and below the column are to be connected with this. This Theban $\delta a \phi \nu \eta \phi о \rho i a$ was held סi' '̇vactnpions according to Proclus, Chrest. ap. Photius Bibl. 239.

 partially quoted at the beginning of the note. The sentence is probably complete at
 к.т. λ. and $\lambda_{\text {ovar }}$ к. .т. λ. indicates that the two lines belong to distinct notcs.
6. Schol. below line. The number of letters lost in the gap between the two halves of this note is uncertain, but may be estimated at about sixteen. It is not possible to read δ à $\left.\theta{ }_{\epsilon}^{\prime \prime} \tau\right] \hat{\omega} \nu$, as would be expected (cf. note on 1. 3) ; but perhaps ϵ is a graphical error for θ, or there may have been some question whether the $\delta a \phi \nu \eta$ apia occurred at intervals
 íepéa évıaúrov.

Frs. $\mathbf{1}^{\mathbf{2}}{ }^{2-3}$. If these two fragments are to be assigned to the foregoing column, they
 Fr. 132 above and in the same straight line with Fr. ${ }_{3} 33$, the edges of the papyrus in neither case directly joining. We are led to this arrangement by the coincidence that the fragments, like Fr. 130, have a strengthening strip gummed on to the recto, and also show a selis. But since the recto is in both cases nearly blank, it is not absolutely certain (though probable) that these fragments belong to D rather than to C .

15. The paragraphus below this line marks the conclusion of a strophic section.
18. $\iota[$: or perhaps $\tau \pi[$; the tops of the letters are lost.
19. кeivov is also a possibility, but not кeivov on account of the accent.
20. The accent indicates $\pi[\rho] 0 \beta \omega \mu[\cos$ or $-\nu$.

Fr. 134. 3. The interlinear $\mathfrak{\kappa \alpha} \alpha \delta^{2}$ seems to be the same word as that which occurs in the reading attributed to Aristophanes in 1. 9 eikáosos, which, if sound, must be an adjective derived from eikás, otherwise attested only as a proper name. According to the Etym. Mag. s. v. there was a festival of Apollo on the 20th of the month.
4. $]<\tau()$: or $\left.] \eta \tau()\left(K_{\rho}\right] \eta \tau() ?\right)$.
9. Cf. note on l. 3 .

Fr. 137. 2. The paragraphus below the line shows that " $\rho \chi \in[\sigma \theta a t$ is the beginning of a sentence.

Fr. 139. Cf. note on IX. 49. Jo() in l. 2 is possibly Eúpır]o().
Frs. I $40-62$. The recto of these small fragments is blank or practically so, and there is consequently no safe criterion for determining whether they belong to C or D . The texture and colour of the papyrus, however, suggests that Frs. 140, 146, and 161 come from D, and most of the others from C. Fr. $15 \mathbf{I}$ perhaps does not belong to this papyrus.

Fr. 145. 2. The letters are only slightly smaller than those above, and since the two lines are the ordinary distance apart, $] \delta \in o v[$ may be part of the text, not of a scholium.

Fr. 154.] ω followed by a dot is an interlinear variant. The circumflex accent is doubtful.
Fr. 156. i. The supposed mark of length over a may be a mark of short quantity or a grave accent.

Fr. 161. Cf. IX. Col. iv and Fr. 138.
Fr. 162. I. This line is in a different hand from that of the rest of the text, and seems to be over an erasure. The hand of 11. 2-3, however, indicates that the fragment, which probably is from the bottom of a column, belongs to C-D.

842. Theopompus (OR Cratippus), Hellenica.

Height $2 \mathrm{I} \cdot 2 \mathrm{~cm}$. Plates IV and V (Cols. v-vi and xi-xii.).
Since the discovery of the 'A $\theta \eta \nu a i \omega \nu$ По入ıтєia in 1890 Egypt has not produced any historical papyrus at all comparable in importance to these portions of a lost Greek historian, obviously of the first rank, dealing in minute detail with the events of the Greek world in the years 396 and 395 B. C. The papyrus, which with the exception of the manuscript of Plato's Symposium (843) is the largest literary text that has been found at Oxyrhynchus, originally consisted of about 230 fragments of varying sizes. These have been so far pieced together that only about fifty-five, none of which is large, remain unplaced, and it is improbable that further efforts at combination will yield results of much importance. Like the manuscript of Pindar's Paeans (841) the historical work, though written in uncials, is on the verso of an official document. This is a land-survey register giving a long list of cultivators, and the entries in most
cases follow the same scheme, which gives (1) the gcographical relation of the plot of land in question to its predecessor, (2) the name of the owner or lessee, (3) the rent and area, (4) the adjacent plots, (5) the changes introduced with regard to rent. The village of Ibion Argaei, which was in the south-west of the Arsinoite nome, is mentioned as being in the vicinity of one of the plots of land, and the land-survey was no doubt drawn up at some village near Ibion, but whether the historical work was also written in that district or at Oxyrhynchus is uncertain. Various years, ranging from the 4 th to the 12 th, of an unnamed emperor are mentioned, and the handwriting shows that he belonged to the second century. Since the survey was probably written soon after the 12 th year, the reign of Commodus, which in Egypt was reckoned from his father's accession and therefore begins with his 20th year, is out of the question; the reign of Hadrian or Antoninus is as likely to be meant as that of Marcus Aurelius. The land-survey has of course been of the utmost service in determining the place of detached fragments of the historian, and is in itself of no slight interest : the text of portions of it will be given in Part VI. The writing in some places is concealed by strips of papyrus which were gummed on in order to strengthen the roll when the verso came to be used.

Of the historical work at least twenty-one columns are to be distinguished, written in two hands. Postponing for the moment the question of the right order of these columns, and assuming the correctness of the numbers assigned to them by us, the first hand is responsible for Cols. i-iv, vi. 27-xxi, and all the loose fragments except Frs. 3 and perhaps 16. The scribe employs a small neat uncial of the sloping oval type, representing a transitional stage between the earlier specimens of this style, e.g. the Oxyrhynchus papyrus of Demosthenes' $\Pi_{\rho о о} / \mu \iota a$ $\delta \eta \mu \eta \gamma \circ \rho \iota \kappa \alpha \alpha^{(26)}$) of the late first or early second century, and the ordinary third century type illustrated e.g. by 23 and 232 . N at the end of a line is generally indicated by a horizontal stroke above the final letter, a practice already found in the second century, and a few of the conventional abbreviations occur at the ends of lines, κ^{\prime} for $\kappa a i$ in ix. 25 , xiv. $13, \mathrm{xx} .20$ and $25, \mu^{\prime}$ for $\mu^{\prime} \nu$ in xviii. 24 and 35 , these being similar to the abbreviations found in e.g. the 'A $\theta \eta v a l \omega v$ Подเтєia. A peculiar characteristic of this scribe is his tendency (especially at the ends of lines) to combine the letters M and H or H and N so that the last vertical stroke of the first letter serves also as the first of the second, e.g. I $\sigma \mu \eta_{l} \nu \iota a v$ in xiii. 10 , $\mu \eta \nu \omega v$ in xvi. $2, \tau \eta v$ in xix. 36. The beginning of a new section is marked by a coronis or paragraphus, a small blank space being left where the transition occurs in the middle of a line; but there are no stops, and only two accents (xx. 36, Fr. 45. 3), and a couple of breathings (xi. 2, xx. 32). Diaereses are sometimes placed over ι and v. In a few cases omitted words or letters have
been inserted above the line by the scribe himself (xii. 25 , xvi. 2, xxi. i8 and 33 , Fr. 33.8), but not nearly so often as was desirable, the number of words omitted being considerable ; cf. i. 5, note. Some serious corruptions occur, e. g. $\pi \rho o s \Pi_{a \rho v \eta v} \pi o \lambda \iota \nu$ for $\pi a \rho \Upsilon_{a \mu \pi o \lambda \iota v}$ in xv. 26, П $\eta \gamma \eta s$ (sic) for $\Pi_{\epsilon \rho \sigma \eta s}$ in $\mathrm{xx} .3^{6}$, ovt ω for $v \pi o$ in xvi. 3^{1} (cf. also i. 27 , vi. 12, xii. 27,39 , xiv. $15, \mathrm{xx} .3 \mathrm{I}$, and xxi. 3^{2}), and the spelling of proper names is frequently inconsistent, cf. e.g. xii. $34-5$, note. The second hand, which is responsible for v. I-vi. 27 with Frs. 3 and perhaps 16 , is smaller and rougher than the first. N at the end of a line is often written as a horizontal stroke; and a diaeresis occurs in v. 44. Stops (high points) are freely employed, a slight space being also left to mark the pause, and sometimes the space occurs where the stop is omitted; cf. v. i, note. A paragraphus is found in vi. Io marking a transition which the first hand would have ignored. In the margin against v. 45 occurs $\bar{\delta}$, perhaps denoting the 400 th line of the MS. ; cf. note ad loc. Unlike the first scribe, the second hand writes ι adscript. A slip occurs in vi. 18. With regard to the date of the MS., the survey on the recto was, as we have said, written about the middle of the second century, and we should ascribe the text on the verso to the end of that century or the early part of the third. A late third-century date is out of the question. The first hand is not very uniform either in the size or spacing of his letters ; at the end of a line they are sometimes very small and cramped, and the beginnings of lines tend gradually to move further to the left as the column proceeds. Hence, though the columns measure about $16.7 \times 9 \mathrm{~cm}$. with tolerable regularity, there is much variation in the number of lines in a column and the number of letters in a line. Col. i has only 37 lines, but Col. ii has 40 , Col. iii 43, and Col. iv. 42 (?). In Col. vii the number is as high as 45 , the scribe being influenced by the more compact writing employed by the second hand, who in Col. v , the only extant column entirely due to him, reaches the exceptionally large number of 60 lines; even Col. vi, which is divided between the two scribes, has 53. After Col. vii the numbers tend to diminish again. Col. viii has 42 lines, Cols. xi-xii, xv, xviii-xxi 39, Cols. xiii, xiv and xvii 40 , Col. xvi 38 . Few lines by the first hand exceed 45 or fall below 35 letters, the average being about 40 . In vi. $5-27$, the only complete or nearly complete lines by the second hand, the average is also about 40. Cols. $i-i i$, vi, and xi-xxi, representing about two-thirds of a total of approximately 800 lines, are well preserved, and in all but a few passages admit of a satisfactory restoration of the lacunae. Of Col. iii only about half of each line is extant, and in Cols. v, vii, and viii still less, but the sense can occasionally be caught ; Cols. $i v, i x$, and x, however, are hopeless.

These twenty-one columns are not continuous, but are divided into four
distinct sections, separated from each other by gaps of uncertain length in which several columns are or may be missing. We have called these sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D. A consists of Cols. i-iv, including Frs. I and 2, only i-ii and iii-iv being continuous, but that Col. iii with Fr. I follows immediately after Col. ii is certain both from internal evidence and from the recto ; cf. iii. $1-5$, note. Whether the small Fr. 2 belongs to iii. 40-43, as we suppose, is more doubtful. B consists of Cols. v-viii with Frs. 3-7, and contains Cols. v, vi and the beginnings of lines of vii on the same piece of papyrus. The place of Frs. 3, 4, and 7, though separated from the main body of B, is definitely fixed (cf. notes on v. 4 I , vii. $1-2$, and viii. 3) ; hence it is certain that Col. viii immediately follows vii. That Frs. 5 and 6 belong to Col. vii is practically secure, and we have assigned them to $11.16-24$ and $35-41$ respectively, but their exact position is doubtful ; cf. notes ad loc. C contains only the two quite fragmentary Cols. ix and x with Frs. 8-15, which seem to belong to this section. D, by far the largest section, has Cols. xi-xxi, which are continuous.

The first problem that arises is the order of these four sections, which unfortunately is in some respects not clear, in spite of the fact that our author (whom in order not to prejudice the question of his identity with any known historian we henceforth call P) seems to have arranged his work on chronological principles almost as strictly as Thucydides and much more carefully than Xenophon. That D comes after A and B is certain from internal evidence, for it contains (xviii. 33 sqq.) the account of the campaign of Agesilaus in the late summer and autumn of 395 , whereas B narrates (v. 6-vii. 4) his campaign in the spring and early summer of the same year, and the general description of the anti-Spartan feeling in Greece in A (i. 33 sqq.) must obviously have preceded the much more detailed account in D of the Theban intrigues which led first to the war with Phocis and then to an open breach with Sparta (xi. 34 sqq.). That D comes last of the four sections is also indicated by the land-survey on the recto, the writing of which runs in the opposite direction to that of the verso, and which accordingly begins on the other side of Col. xxi. For Col. i of the land-survey is in a different hand from the rest, and follows a different formula, being apparently a register of land ка θ^{\prime} v̈ $\delta a \tau о \varsigma$, and concluding $\gamma^{\prime} \nu о(\nu \tau а \iota) \kappa а \theta^{\prime}$
 detailed survey-list, though only in a few cases is it stated that individual plots were under water. Hence the presumption is that the land-survey on the recto of A, B, and C comes later than that of D , i.e. that the writing on the verso of A, B, and C precedes D . With regard to the position of C (Cols. $\mathrm{ix}-\mathrm{x}$), owing to its hopelessly mutilated condition there is no internal evidence to guide us, so that beyond the presumption just indicated that it precedes D its relation to the
other sections is wholly uncertain, and it may be placed before A, between A and B , or between B and D . Our choice of the last alternative is quite arbitrary, and the question is of secondary importance. The main problem with regard to the order of the sections concerns A and B-which of these two is to be placed first? The external evidence is conflicting. On the one hand, before Col. i of A is a blank margin $4 \frac{1}{2} \mathrm{~cm}$. in width, whereas the ordinary width of the margin between two columns of this papyrus is only $1 \frac{1}{2} \mathrm{~cm}$. Since Col. i. I is obviously the beginning of a new chapter it is clear that the broad margin before it is no mere accident, and that Col. i is either the absolute beginning of the roll, or was intentionally separated widely from preceding columns in order to mark the commencement of a new division (probably a new book) of the author's work. That the roll originally extended beyond the present starting-point of A is known from the land-survey on the recto of the margin of Col. i , which breaks off in the middles of lines; but since no regard would be paid to the writing on the recto when the verso came to be used, it is quite possible that the vertical fracture down the left edge of the margin of A is the result not of injury when the MS. was thrown away, but of design when the verso was prepared for use. On the other hand A is written by the second of the two scribes who appear in B, so that if A follows B it is necessary to assume only one change of hands, whereas if A precedes B it must be supposed that the first scribe gave way to the second at some point in the gap between Cols. iv and v and then resumed at vi. 27 . The hypothesis that B comes first has therefore the advantage of greater simplicity, and is supported by the analogy of the landsurvey, in which we justifiably used the identity of the hand on the recto of A, B, and C with the second hand on the recto of D as an argument for placing the recto of $\mathrm{A}-\mathrm{C}$ after D . In fact, the priority of B to A has so much prima facie probability that at first and for a long time we adopted that sequence ; it was only when we came to examine in detail the historical problems connected with A that we decided to place it before B. The relative order of these two sections makes a considerable difference to the interpretation of A , for since B is known from other sources to refer to the spring and early summer of 395 , the θ 'f pos in A iii. 9, on which the whole chronology of A depends, must, if A comes after B, refer to 395, whereas, if A precedes B, the summer of 396 is meant, an earlier year being for various reasons out of the question. A unfortunately mentions no event of which the precise date is fixed by independent evidence, for though the arrival of Conon's reinforcements from Phoenicia (iii. 23-7) is also recorded by Diodorus, that historian's account of the naval war is too brief and his chronology too uncertain to help in choosing between the rival dates for the events recorded in A. The two principal difficulties which
arise from the attribution of A to 395 instead of 396 , and which have therefore induced us to place A before B, are discussed in detail in the notes on iii. 9, 21, and $23-6$. To summarize the results there reached, the view that the θ 'िpos in iii. 9 refers to 395 inevitably leads to the conclusion that the year which P took as a kind of fresh starting-point after the close of the Peloponnesian war corresponds to the archonship of Micon 402-1, in which no incident of particular note took place, whereas the view that the θ épos is that of 396 will make P's starting-point after the war 403-2, approximately the archonship of Euclides, which is a most natural and reasonable year to select for the commencement of a fresh epoch. Secondly, the hypothesis that A concerns 395 leads to great confusion with regard to the Spartan vavapxol, of whom two seem to arrive in the same summer, an inference which can only be avoided by encountering worse obstacles, whereas if A refers to 396 all difficulty is removed. Thirdly, the view that A concerns 396 has the advantage of allowing more time for the change of policy on the part of the moderate democrats at Athens with regard to a war with Sparta; cf. i. 16, note. We therefore prefer the arrangement adopted in the text, according to which A precedes B and relates to 396 ; and sceing that A in any case begins a new division or book, we are disposed to regard it as the actual commencement of the whole roll. A parallel for the changes of hands, whereby the portion written by a second scribe comes between two portions written by the first, is to be found in the MS. of the 'A $\begin{aligned} & \text { quaion Пo^ıтéa. There the third }\end{aligned}$ hand, which begins in Col. xx and continues up to the end of the second roll at Col. xxiv, is also responsible for the fourth roll containing Cols. xxxi-vii, the intervening roll containing Cols. xxv-xxx being written by the fourth hand.

We proceed to a short analysis of the contents of the papyrus, which for the convenience of future reference we have divided into chapters and sections, though in the present edition we generally refer to columns and lines only. A commences with an account of the sailing from Athens of a trireme commanded by a certain Demaenetus without official sanction to assist Conon, and the unsuccessful efforts of the Spartan harmost at Aegina to intercept it (i. 1-iii. 7). This incident, to which a passing allusion occurs in Aeschines (cf. i. 3, note), is of slight importance ; but the commotion at Athens caused by it enables P to give a very interesting description of the attitude towards Sparta of the various Athenian parties at the time (i. 9 -ii. I), from which he diverges into an important excursus upon the origin of the anti-Spartan feeling in Greece (ii. 1-35). The adjectives used by P in describing the contending parties at Athens and his severe judgement upon the extreme democrats, whom he not only charges with accepting Persian bribes but with desiring a war with Sparta for purely selfish reasons (i. 33, note), betray his aristocratic proclivities;
but on the other hand he controverts strongly the theory, no doubt put forward by the Spartans, that the mission of Timocrates was instrumental in bringing about the anti-Spartan league, and exhibits a considerable historical insight into the political situation, of which he takes on the whole a very just view. The first of a long series of conflicts with Xenophon occurs in connexion with the date of the sending of Timocrates, whom Xenophon (supported by Pausanias and Plutarch) represents as dispatched by Tithraustes in the summer of 395 , while P connects him with Pharnabazus (therein agreeing with Polyaenus), and implies that the mission took place much earlier, i.e. in 397 or early in 396. P and Xenophon also come into conflict on the question of the acceptance of Timocrates' bribes by the Athenians, and the part played by those bribes in bringing about the antiSpartan confederacy, on both of which points P's version is again, in our opinion, superior (i. 33, note). An allusion to Pharax as ó $\pi \rho o ́ \tau \epsilon \rho o v ~ v a v ́ a \rho \chi o s ~ g o e s ~ f a r ~ t o ~ s o l v e ~$ the much disputed problem of the date of that admiral's year of office (i. 30 , note). The mention of Timolaus in connexion with the opposition to Sparta at Corinth gives rise to a digression on some former exploits of his in the Decelean war. These are not mentioned by Thucydides, and the fact that the second one, which probably occurred just after the latest events recorded by that historian, had already been noticed by P probably in its proper chronological position, is an important indication of the scope of our author's work (ii. I7, note).

In iii. 7 begins a new chapter (IV), which starts by recording the commencement of a new year (the 8th) from the event chosen by P as a fresh point of departure after the conclusion of the Peloponnesian war. Unfortunately the lacunae, which prevent any continuous restoration of Col. iii after 1.5 , render the interpretation of this crucial passage doubtful in several respects, and it is not clear whether the $\theta \epsilon \rho \rho$ with which the new year begins is the spring or midsummer, or what event was taken as the commencement of the epoch. Unless, however, A is placed after B (cf. p. II4), the archonship of Euclides (403-2) seems to be the first year on the new reckoning, and the Of́pos is that of 396 , not 395 (iii. 9, note). The rest of Col. iii (II-43) is concerned with the naval war, to which P gives great prominence (cf. xi. I-34, xv. 32-xviii. 33), and of which he shows the most detailed knowledge, especially with regard to Conon. He thus presents a marked contrast to Xenophon, who after mentioning the stir caused at Sparta in the winter of $397-6$ by the news of the Persian naval preparations (Hell. iii. 4. $1-2$) entirely ignores Conon's proceedings until the battle of Cnidus in 394 (which itself is only introduced incidentally in iv. 3. 10-14 in connexion with the news of it reaching Agesilaus), in order that the stage may be left free for the Spartan king. That Xenophon was himself conscious of his deficiency is shown by his excuses in iv. 8. J, where he justifies his silence concerning the naval war
 narrative in Chapter IV is for the most part too incomplete to be intelligible, but the arrival of a new Spartan rav́apxos, probably Pollis, is chronicled (cf. iii. 2 I note), and at the same time (apparently the summer of 39^{6}) Conon, whose headquarters were at Caunus in Caria, receives reinforcements from Ihoenicia. This event is also referred to by Diodorus in words so similar that they must be derived directly or indirectly from P, though probably with an error as to the chronology, for Diodorus puts the arrival of the Phoenician ships after the revolt of Rhodes, whereas P seems to place the revolt after the arrival of the reinforcements, which is much more likely to be correct (iii. 23-6, note, where the vexed question of the chronology of the naval war is discussed in full). Whether the scanty remains of Col. iv, with which A concludes, are also concerned with the naval war or deal with a fresh subject is uncertain. The gap between A and B need not be very extensive, for apart from Agesilaus' doings in Asia no events of much importance took place in 396 , unless indeed P took account of Sicilian history, which is not probable, and the dispatch of Agesilaus to Asia and the early part of the campaign are likely to have been described before Col. i in the preceding book or division of P's work.

13, where it becomes intelligible, begins with an account of Agesilaus' campaign in the spring and early summer of 395 , which occupies v .6 -vii. 4, v. 1-5 being perhaps concerned with his preparations during the winter, but possibly with quite a different subject. The narrative is not only more detailed than Xenophon's two accounts of this campaign in the Hcllenica and Agcsilaus, but differs widely from them, particularly as to the disposition of Tissaphernes' forces, of which the infantry were according to Xenophon sent by mistake to Caria, and the nature of the chicf engagement which resulted according to both authorities in the capture of the Persian camp. On the other hand P agrees closely with the somewhat less detailed account of Diodorus, especially with regard to Agesilaus' route (v. 8, note), the part taken in the campaign by the Persian infantry, on which point Pausanias supports Diodorus (v. 13-6, note), the formation of the Greek troops in column (v. 9, note), the description of the ambush by which the Greeks secured the victory (v. 59, note), and Agesilaus' withdrawal from the interior owing to unfavourable auspices (vi. 30, note). There are some discrepancies between P and Diodorus concerning firstly the number of the Persian forces (v. 13-6, note) and of the slain (vi. 2I, note), and secondly the mancuvres connected with the ambush; apart, however, from these inconsiderable differences there is, except some conventional details added to Diodorus' account of the ambush (e.g. the fact that the Greeks raised a paean, as is usual in Diodorus' battles), really nothing in his account of this campaign that is not
found in P. In fact Diodorus' narrative looks like an abridgement of P with some variations of the language, which rarely coincides verbally with that of P . Whether P's or Xenophon's account is superior in credibility is open to dispute, but P's version has considerable claims to acceptance in spite of the fact that Xenophon is apparently describing the campaign from first-hand knowledge (v. 59, note). The rest of B, vii. 4-viii. 42 (Chapter VIII), deals in most elaborate detail with the superseding of Tissaphernes by Tithraustes and the assassination of the former, events which are briefly recorded by Xenophon in a few words. This chapter is badly mutilated, and no continuous restoration is possible; but enough remains to trace the close agreement between P and firstly Diodorus, who again seems to be giving an abridgement of P, and secondly Polyaenus, who is fuller than Diodorus but somewhat less detailed than P (vii. 4, 2I-5, 36-4I, viii. 18, 21, 25, 27-30, notes). The story told by Nepos that Tissaphernes' replacement by Tithraustes was brought about by Conon finds no confirmation, and the date for Conon's visit to the Persian court indicated by Nepos and supported by Pausanias (the winter of $396-5$), which has generally been preferred to the date implied by Diodorus (the winter of 395-4), is clearly inconsistent with P, who probably agreed with Diodorus on this point (vii. 4, note ; cf. xv. 37, note). Persian affairs are still under discussion when B breaks off. A later reference to the negotiations between Tithraustes and Agesilaus (xviii. 37, note) shows that the account of these occurred in the gap between B and D , probably in the column following viii. This gap also comprised the earlier portion of the account of the revolution at Rhodes, of which the conclusion is extant in Col. xi, but whether C, containing the two fragmentary columns ix and x, is rightly placed between B and D is wholly uncertain ; cf. pp. II3-4. Nothing can be made out of these two columns except that in Col. x P seems to be giving an appreciative charactersketch of some general or politician whose identity is uncertain (ix. I6, note).

When D, by far the longest and best preserved section of the papyrus, begins, P has reverted to the naval war, xi. $\mathrm{I}-34$ describing a revolution at Rhodes whereby the democrats with the connivance of Conon overthrew the existing oligarchic government, which was in the hands of the Diagoreans, one of the leading Rhodian families. Xenophon ignores this revolution, to which there is a brief allusion in a quotation from Androtion in Pausanias. It has hitherto been connected closely with the revolt of Rhodes from Sparta, which is mentioned by Diodorus, but P now shows that the two events were by no means contemporaneous, the revolution taking place in the summer of 395 , the revolt from Sparta in the preceding winter or earlier (iii. $23-6$, xi. 1 , notes). The mention of the Diagoreans throws an interesting light on the treatment of an illustrious member of that family, Dorieus, by the Spartans (xi. IO, note), and
the reference to Conon's two chief lieutenants, Hieronymus and Nicophemus, supplies another point of contact with Diodorus (xi. 10-1, note). The cautious policy of Conon and the moderation displayed by the victorious democrats receive due recognition from P , who here shows no trace of an aristocratic bias. In xi. 34 the subject changes to the war between Boentia and Phocis in the summer of 395 , but this is not actually reached until xiv. 16 sqq., since P enters upon a series of digressions. A mention of the state of faction existing at Thebes (xi. 35^{-8}) leads to what is the most valuable portion of the whole papyrus, a description of the constitution of Boeotia in 395 (xi. $3^{8-x i i . ~ 31), ~}$ which settles a number of important and highly disputed questions, and provides much new information. The nature of the four boulai referred to by Thucydides is explained, and while Köhler is shown to be right in connecting them with the four boulai which the oligarchs at Athens wished to set up in 411 , the surprising fact is now ascertained that these boulai belonged to the individual cities of the league, not to the federation as a whole, which had a single boule of 660 members not invested with the supreme powers of the local boulai. The vexed question of the number of the Boeotarchs at the time of the Peloponnesian war is fixed at eleven, corresponding to a division of the Boeotians into eleven units, and what is still more important, we now have for the first time a complete list of the states forming the league and their distribution among the several units, according to which they shared the rights and duties of membership of the confederation (xi. $3^{8,}$ note). Of special interest are the details concerning the Boeotarchs appointed by Thebes (xii. 12-3, note), Orchomenus (xii. 16, note), and Tanagra (xii. 17, note). In xii. 31 P reverts to parties at Thebes, about which he shows himself very well informed. The description of the anti-Spartan faction is on the whole very impartial, and the analysis of their motives shows considerable historical acumen (xiii. Io, note; cf. xiv. 6 sqq.). A reference to the change in the Theban policy caused by the control of public affairs passing from the pro-Spartan to the anti-Spartan party leads to another interesting digression (xiii. I 5 sqq.) upon the causes of the increase of Boeotian prosperity in the forty years preceding 395, and this excursus leads on to yet another (xiii. $3^{6-x i v} .5$) upon the lavish adornment of Attica in the same period. P then, after describing the political schemes of the anti-Spartan party (xiv. 6-21), at length reaches the origin of the Boeotian war. His account of the intrigues from which it arose (xiv. $21-\mathrm{xv} .15$) is not only more detailed than Xenophon's, but differs in several important particulars-e.g. on the questions whether the Locrians concerned in the border dispute were the Opuntian (so Xen.) or the Hesperian (so P and Pausanias), whether the first act of aggression came from the side of the Locrians (so Xen. and Paus.) or from the Phocians
(so P), and what methods were employed by the Theban instigators of the war. The unsuccessful attempt of the Spartans to settle the dispute peaceably (xv. 7-II), which is recorded by no other historian, puts the policy of Sparta with regard to Boeotia in a new light, and this does not harmonize very well with the subsequent state of feeling at Sparta as described by Xenophon, whose account of the origin of this war is perhaps preferable in some respects to that of P (xiv. 21, note). The details of the invasion of Phocis (xv. 15-32) are all new but of no special interest. Incidentally P's treatment of the whole dispute between the Phocians and the Locrians provides some important indications that he wrote his account before the conclusion, at any rate, of the Sacred War ; cf. p. 134 .

In xv. 32 -xviii. 33 P once more returns to the naval war, and begins by recording the arrival (in the late summer) of a hitherto unknown Spartan vavapxos Cheiricrates, thereby producing a conflict with Xenophon, who represents Pisander as having been appointed vaváapos by Agesilaus at about this period (xv. 33, note). An otherwise unrelated visit of Conon to Sardis in order to obtain money (xv. 37, note) leads to a digression on the financial difficulties experienced by Greeks in the pay of Persia (xvi. 3-15). A passage which implies that the Persian empire was still standing shows that this history was composed before the conquest of Persia by Alexander (xiv. 3, note). After narrating the results of Conon's mission and the departure of Tithraustes for the Persian court (xvi. 16-29), P proceeds to describe minutely a mutiny at Caunus of Conon's forces upon the return of their commander. This event, which nearly led to the dispersion of Conon's fleet, has been passed over by all historians except Justin, whose reference to it, though brief, seems to be derived indirectly from P (xvi. 29, note). The revolt was ultimately quelled by the efforts of Conon, whose $\pi \rho o \theta v \mu i a$ receives special praise from our author (xviii. 32). In xvi. 33 P reverts to Agesilaus, and describes his campaign in the late summer and autumn of 395 up to his arrival at Dascylium, where he passed the winter, at which point the papyrus breaks off. Diodorus omits this campaign altogether, and, as in the account of the war in the earlier half of the year (v. 6-vii. 4), P differs widely from Xenophon, who, omitting the not very exciting incidents of Agesilaus' march, concentrates his descriptive powers upon one or two episodes which were capable of picturesque treatment, e.g. the negotiations of Agesilaus with the king of Paphlagonia and later with Pharnabazus. P, on the other hand, gives a plain, straightforward account of the military operations, showing considerable acquaintance with the geography of Asia Minor and the details of the campaign (xviii. 39, note). When he reaches the Paphlagonian incident he devotes only a few lines to it, but manages nevertheless to conflict
with Xenophon both about the name of the Paphlagonian king (on this point being also in disagrecment with Thcopompus and Nepos), and the method by which the negotiations were conducted (xx. 37, note). A description of an ambush (xix. 22-39) resembles with slight variations that in v. 59 sqq. Concerning Spithradates, a Persian noble who deserted to Agesilaus, somewhat less information is given than by Xenophon; but with regard to Spithradates' son Megabates P speaks openly of Agesilaus' attachment to him, which is only hinted at in the Hellenica, though amply illustrated by the Agesilaus (xx. 9, note). The papyrus concludes in the middle of a description of an abortive scheme for invading Cappadocia, concerning which country erroneous gcographical ideas prevailed even down to Roman times (xxi.35-9, note). The unplaced fragments ($16-7^{2}$) are too small to give any historical information.

To summarize the chief characteristics of our author, we have in this papyrus a very elaborate and detailed work of a historian of obviously great importance, who shows himself equally well informed whether dealing with events in Greece, the campaigns of Agesilaus in Asia, or the naval war. In the arrangement of his material he has adopted an annalistic method, evidently imitated from Thucydides, whereby events are narrated in chronological order and divided into years beginning in the 'summer' (whether spring or midsummer is not clear), and he has not grouped together according to subject events separated by any considcrable distance of time. Hence there are abrupt transitions to and from different parts of the world, e. g. the account of the origin of the Bocotian war is inserted between two chapters dealing with the naval war. Whether P adhered strictly to this chronological arrangement there is not sufficient evidence to show; but so far as the extant portions of his work go, he seems to keep closely to it. On the other hand he is extremcly fond of digressions, whether excursions into earlier history, e.g. the exploits of Timolaus and the rise of Theban prosperity, or general descriptions which serve to illustrate the background of the events which he is recording, e.g. the sketch of the constitution of Bocotia. These digressions, though adding greatly to the interest and variety of P's work, are seldom very relevant, and cause serious interruptions to the narrative. How easily he was led on from one excursus to another is well illustrated, firstly by i. 20 sqq., where, starting from the privateering expedition of Demaenetus, he reaches the achievements of the Corinthian Timolaus in the Decelean war through the intermediate stages of the origin of the anti-Spartan feeling first at Athens, then in Grecce in general, and at Corinth in particular,-secondly by xii. 31 sqq., where, from the war between Boeotia and Phocis, he procceds through the description of parties at Thebes, the causes of the previous preponderance of the aristocrats and the growing prosperity of Thebes, to a sketch of the flourishing
condition of Attica prior to the fortification of Decelea. With regard to the scope of his work, it is clear that it included, besides the events of 396 and 395, the history of the seven years between 39^{6} and the close of the Peloponnesian war, the year 403-2, corresponding approximately to the archonship of Euclides, being taken by P as marking a kind of epoch. That his history, however, did not begin with 403-2, but comprised that portion of the Peloponnesian war which Thucydides did not live to narrate, is rendered probable by the reference to a former description of an incident of B.C. 4 II in ii. 27 . Since events prior to 4 II are several times mentioned, but in no case with a reference to a former description of them, there is a strong presumption that P's history began where Thucydides' left off, and was intended to be a continuation of it. To what point beyond 395 the narrative was carried there is no internal evidence to show, except that which indicates the period of the composition of the work itself. The description of the constitution of Boeotia, which is contrasted with the conditions existing in the writer's own day, was certainly written after 3^{87}, when at the peace of Antalcidas the Boeotian league underwent considerable changes. On the other hand the fact that the Persian empire is spoken of in terms implying that it was still standing (cf. p. 120), proves that P's history was not written later than 330, and the use of the present tense in regard to the border disputes between Phocis and Locris, coupled with the absence of any reference to the Sacred War which resulted in the destruction of the Phocians, indicates that P's work was composed before the conclusion of that war in 346, to say nothing of the general probability that an author so well informed (cf. e.g. the extremely minute description of the mutiny in xvi. 29 sqq., which is likely to have been obtained from an eyewitness) was not writing more than a couple of generations later than the events which he narrates. It is therefore possible that the history reached a point some twenty or thirty years later than 395, but considering its elaborate scale this is not at all likely, and there is nothing to suggest that it went further than the battle of Cnidus in 394, with which Theopompus' Hellenica concluded.

That P's sympathies were aristocratic not democratic, and therefore on the whole with Sparta, is shown by his description of the parties at Athens, particularly his opinion of the motives influencing the extreme section of the democrats. In his account also of the intrigues which led to the Boeotian war he seems to acquiesce in the Spartan claims to the hegemony of Greece at this period. But so far from laying himself open to the charge of exaggerated partisanship, P compares favourably with Xenophon by his impartiality. While admitting (probably rightly) the fact of the acceptance of Persian gold by the Athenians in common with the Thebans, Argives, and Corinthians, he expressly defends those states from the accusation of Medizing, by controverting the pro-Spartan view
and minimizing the extent to which the mission of Timocrates was responsible for creating the anti-Spartan league. The moderation of the section of the Athenian democratic party headed by Thrasybulus and Anytus and of the victorious democrats at Rhodes is plainly recognized, and it is noteworthy that the leaders of the anti-Spartan faction at Thebes are classed among the $\beta \epsilon^{\prime} \lambda \tau \iota \sigma \tau \circ \iota$ $\kappa а i ̀ \gamma \nu \omega \rho \iota \mu \dot{\epsilon} \tau a \tau o \iota$ no less than their opponents. Of an anti-Theban bias, which is so marked in Xenophon, there is no trace ; and it is clear that P wished to do full justice to the chief enemy and destined conqueror of Sparta. A still more remarkable example of his fairness towards Sparta's enemies is the prominence assigned by him to Conon, who figures no less conspicuously than Agesilaus, while there is a noticeable contrast between the dry and unenthusiastic catalogue of Agesilaus' achievements, which evoke hardly a word of praise, and the more lively narrative of the incidents of the naval war with its outspoken expression of admiration for Conon's skill in overcoming difficulties (xviii. 3^{2}). Nothing illustrates P's merits as a historian and his superiority to Xenophon better than the correct perspective in which he draws the two chief actors on his stage, refusing to allow the brilliant and showy but ultimately fruitless triumphs of Agesilaus in the East to obscure the slow but in the end successful steps by which Conon destroyed the Spartan sea power and restored Athens to a position among the leading Greek states.

A characteristic of P, which separates him from most Greek historians, is his dislike of rhetoric and apparent avoidance of speeches, of which there is only one consisting of but nine words (xi. 22-3), so that he almost seems to have taken the eighth book of Thucydides as his model. Allowance must, however, be made not only for the fact that the events recorded in the extant fragments do not offer any very favourable opportunities for inserting speeches (even Thucydides in Books i-vii and Xenophon have long sections without them), but also for the possibility that speeches occurred in the lost portions of P's history. His seeming divergence from the common method of employing speeches to indicate motives and illustrate situations is compensated by a frequent analysis of causes, which shows much historical insight into the politics of the early fourth century, e.g. the discussions of the growth of anti-Spartan feeling in Greece, and of the policy of the anti-Spartan party at Thebes. That our author was sparing in comments, whether of approval or of the reverse, upon the actions of his characters is clear; it is unfortunate that the only passage in which he seems to have entered on a general criticism of some one's character is hopelessly mutilated (Col. x).

While P's excellences as a narrator of facts, his wealth of information, his impartiality, his acuteness of judgement, and his seriousness, entitle him to very
high place among Greek historians, it is impossible to award much praise to his style. This, though correct and easy, is somewhat frigid, colourless, and verbose, rather like that of Polybius, and its monotonous flow is but seldom stirred to a little life, as in the descriptions of the democratic rising at Rhodes, the mutiny of Conon's troops, and the adornment of Attica. So far from displaying any richness of vocabulary, he is decidedly careless about repeating words at very short intervais, and shows a marked fondness for certain expressions, e.g. $\beta a \delta i \zeta_{\epsilon \iota \nu,} \pi a \rho o \xi \dot{v} \nu \epsilon \iota v$, and $\tau v \gamma \not \bar{a} \nu \epsilon \epsilon v$ with a participle in place of the simple verb. $\mu \epsilon ̀ \nu . . \delta \delta \epsilon$ are wont to recur with dull regularity, and the tendency to overload sentences with participles and parentheses, e.g. xiv. 8-16, sometimes produces a heavy effect. Some words and phrases recall Polybius, e.g. (raîs mó $\boldsymbol{\lambda \epsilon \sigma}$) raîs
 in i. 9 cf. Ar. Pol. Z 5, I 320 b 7. The nearest parallel to the curious expression
 The hypothesis that he wrote his work later than 346 is excluded by internal evidence (cf. p. 122), and the style does not suggest a much earlier date. Hiatus is as a rule avoided, even at the cost of producing an unnatural order of words,
 π плîtal, द̇ πi roùs rvpávvovs. Eight instances, however (cf. i. 4, note), of hiatus occur, and though most of these can be got rid of without difficulty by slight alterations of the text, we have preferred to allow them to stand. The avoidance of hiatus proves little as regards the date of composition, for it is common to the Isocrateans, Polybius, and even Plutarch.

Turning to P's relation to other historians, everything in the papyrus leads to the conclusion that he was quite independent of Xenophon, and it is not even certain that Xenophon's Hellenica was published before P wrote his work, for the Hellenica is now generally supposed to have been issued between 360 and 350 , and the limits within which P composed his history are 387 and 346 ; cf. p. 122. If the Hellenica was published first, P shows a complete disregard for it, not only describing much that Xenophon had omitted, but frequently conflicting with him where the two writers cover the same ground. P may even have intended his work to be a contrast to Xenophon's onesided and unsatisfactory account. With Diodorus P exhibits a remarkably close connexion ; Diod. xiv. 80, which describes Agesilaus' campaign in the early part of 395 and the supersession of Tissaphernes, is practically an abridgement of v-viii, and with regard to the naval war also Diodorus (xiv. 79. 4^{-8}) has obtained his scanty details from P, though in the process apparently disturbing the sequence of events. The question whether the use of P by Diodorus was direct or indirect we postpone until we reach the question of P's identity (cf. pp. 135-7), but we may remark that
with the discovery of P the criticism of Diod. xiii and xiv in any case enters on a new phase. Another late writer with whom P exhibits some noteworthy cases of agreement, though to a less extent than with Diodorus, is Polyaenus, whose account of the removal of Tissaphernes (Strat. vii. I6) seems to be an abridgement of vii-viii, and who alone of ancient writers agrees with P in associating the mission of Timocrates with Pharnabazus instead of with Tithraustes, though it is possible that this may be due to an accident (i. 33, note). Pausanias, too, presents some points of connexion with P, but generally mingled with points of difference. Thus he agrees with P that Epicrates and Cephalus took Persian gold (i. 33, note), and like P associates Amphitheus (whom he calls Amphithemis) with Ismenias and Androclidas (xii. 34-5, note); but on the date of Pisander's appointment as vaváapos (xv. 33, note) and that of Timocrates' mission and its effects he agrces with Xenophon against P, the view which Pausanias accepted being expressly controverted in ii. I sqq. Again with regard to the origin of the Boeotian war Pausanias agrees with P against Xenophon that the Locrians concerned were the Hesperian, not the Opuntian; but the embassy of the Athenians mentioned by Pausanias is not at all likely to have occurred in P's narrative, and Pausanias, like Xenophon, makes the Locrians the aggressors. On the question whether Tissaphernes' infantry took part in the campaign round Sardis Pausanias agrees with P against Xenophon, but his allusion to it is very brief, and that he himself used P in composing iii. 9 is most unlikely, though P may have to some extent influenced Pausanias' sources. The only ancient historian who mentions the mutiny of Conon's troops described in xvi. 29 sqq. is Justin, whose reference though brief seems to be derived ultimately from P'. In the other late writers we have been unable to detect any trace of P's influence. With Nepos P comes into conflict both concerning the nature of the campaign of 395 and the date of the visit of Conon to the Persian court and his responsibility for the dismissal of Tissaphernes, and also in regard to the name of the Paphlagonian king, while Plutarch in his Agesilaus closely follows Xenophon's account of the campaign of 395 , ignoring P altogether, and neither his Lysander nor his Artaxerxes betray any use of our author.

Such being in brief the evidence concerning the character of P's history, the way is now clear for the discussion of the most interesting problem of all-can he be identified with any of the known historians of the fourth century? For the authorship of so important a historical work the first names that naturally suggest themselves are those of the two famous pupils of Isocrates, Ephorus of Cyme and Theopompus of Chios. The close agreement between P and Diodorus at once suggests an identification with Ephorus, whose history is known

 tenants，who is stated by Harpocration to have been mentioned in Books xviii and xix of Ephorus（cf．Diod．xiv．81．4），occurs in xi．10，and the spelling ＇Aкрaí申vıv instead of＇Aкрaí申ıv in xii． 20 is in accordance with Ephorus＇use （Fr．67）of the adjectives＇Aкраіфvıos and＇Aкраıфv七ө́t \bar{s} ．Neither of these coincidences，however，is really very striking，for any historian of this period who （unlike Xenophon）described the naval war in detail would be bound to mention Hieronymus，and Harpocration expressly says that other（unspecified）historians did so，while the insertion of the ν in＇Aкраí申ıov and its derivatives occurred in Theopompus also and was probably a common practice outside Boeotia． Some characteristics of P would suit Ephorus very well，e．g．his intimate know－ ledge of Asia Minor，with which country Ephorus，whose home was at Cyme and who was a good geographer，must have been well acquainted，his proneness to digressions，of which Ephorus was fond（cf．Polyb．xii． 28 סєєvótarós è $\sigma \tau \iota \nu$ $\left.\hat{\epsilon}^{2} \nu \tau a i ̂ s \pi a \rho \epsilon \kappa \beta \dot{\alpha} \sigma \epsilon \sigma \iota\right)$ ，and his full information concerning Theban affairs，which is thought to have characterized Ephorus also（Busolt，Gr．Gesch．iii．p．710）． P＇s divergence from Xenophon and points of agreement with other later writers besides Diodorus，e．g．Pausanias，Justin，and Polyaenus，would be in accordance with the views of modern critics concerning the relation of these authors to Ephorus ；cf．e．g．E．Schwartz in Pauly－Wissowa，Real－Encycl．s．v．Ephoros， pp．11－2，Melber，Fahrb．d．Class．Philol．Supplementbd．xiv．pp． 419 sqq．， Busolt，op．cit．，iii．pp． 245 sqq．，though the explanation of divergences in late writers from Thucydides and Xenophon by reference to Ephorus has in our opinion often been carried too far．For forming an opinion upon Ephorus＇style the extant fragments which very rarely quote his actual words afford but slight material ；the awkward repetition of the words $\Delta \epsilon \rho \kappa \nu \lambda i \delta \alpha \nu \stackrel{\xi}{\epsilon} \pi \epsilon \mu \psi \alpha \nu$ after a brief interval（Fr．I 30 from Book xviii）recalls P＇s carelessness in that respect（cf．p．124）， and there is at any rate no marked discrepancy of style between the extant fragments of Ephorus and P．The judgements of ancient critics who regarded Ephorus＇style as smooth but tame are by no means inappropriate to P ；cf． Cicero Hortens．Fr． 12 quid ．．．Ephoro mitius inveniri potest，Brut． 204 lenis－ simum Ephori ingenium ；Dion．Chrys．xvii．p． 283 ＂Eфopos $\delta \grave{\epsilon} \pi o \lambda \lambda \grave{\eta} v \mu$ $\mu \mathrm{v} v$ írooplav
 trast between him and Theopompus is frequently drawn，e．g．in the well－known saying of Isocrates that the latter required the bit，the former the spur，and if it were necessary to identify P with one of these two the argument from style would be all in favour of Ephorus．On the other hand some of the charac－ teristics ascribed by ancient critics to Ephorus are not illustrated by P，e．g．his
 use of speeches (cf. Plutarch, Mor. 803 b, quoted on p. 132) ; and if modern criticism (cf e.g. Busolt, Gr. Gesch. iii. p. 707) is right in supposing that Ephorus was a pronounced partisan of Athens and opponent of Sparta, and that he abandoned altogether the annalistic arrangement adopted by Thucydides, grouping events together according to subject without sharp chronological distinctions, in both these features he differed from P, whose work moreover attains a higher degree of historical value than critics have generally been disposed to allow to Ephorus. It is difficult for instance to believe that P could have written anything so unreasonable as Ephorus' account of the causes of the Peloponnesian war. But the really fatal objection to the identification of P with Ephorus, and one which caused Blass, who was at first disposed to favour that view, to reject it decisively, is that Ephorus wrote a universal history, which, although it became more detailed as he approached his own times, can hardly have described with very great minuteness the period covered by P , whereas not only is P's narrative extremely elaborate (compared with the parallel portions of Xenophon P is much longer), but there are distinct indications in the work itself that it began at the point where Thucydides broke off and not earlier (cf. p. 116). Hence in spite of the remarkable agreement between P and Diodorus, we have no hesitation in rejecting the view that Ephorus is the author of the papyrus, and the same objection to the identification of P with Ephorus is equally fatal to his identification with Anaximenes or any other fourth-century writer of a universal history. The primary condition which must be satisfied with regard to the authorship of P's work is that the historian whose claims are put forward wrote a continuation of Thucydides on a very elaborate scale.

That condition is fulfilled by Theopompus, whose Hellenica in twelve books began where Thucydides left off, and ended with the battle of Cnidus in 394, as is known from Diod. xiii. 42, xiv. 84, and Theopompus is in fact regarded by both E. Meyer and Wilamowitz-Möllendorff as the author of the papyrus, though that hypothesis was unhesitatingly rejected by Blass. Of Theopompus' Hellenica, which was certainly written before the same historian's more famous and longer work, the Philippica, only about twenty fragments survive, of which only four (nos. $7,15,15 a$, and 23) consist of more than a few words. The events from $41 I$ up to the close of the war seem to have been related comparatively briefly, for already in Book ii there occurs a reference to a Lacedaemonian harmost who has generally been thought to have been appointed by Lysander, though that inference is not certain. After this, however, the history became much more detailed : Book viii, from which the names of certain places in Bithynia are quoted by Stephanus Byz., no doubt contained the accounts of the campaign of

Dercylidas in $398-7$. The solitary extant quotation from Book ix cannot be dated precisely, but Book x included a character-sketch of Lysander emphasizing his moderation (Athen. xii. p. 543), a passage which is also referred to by Plutarch (Lysand. 30), who introduces it in connexion with Lysander's death. Hence it is probable, as Meyer remarks, that in Theopompus also the sketch occurred at the point where he described Lysander's death at the battle of Haliartus. Since this event took place in the autumn of 395 and the concluding chapters of P narrate Agesilaus' campaign in the same autumn, while the battle of Haliartus has yet to be related, it is clear that Cols. xi-xxi, assuming that Athenaeus has quoted the number of the book correctly, cannot come from a later book than x . That they would, if Theopompus were the author, belong to Book x not to Book ix is made probable by the statement of Porphyry (ap. Euseb. Praep. Evang. p. 465) that Theopompus' account of the negotiations between Agesilaus and Pharnabazus corresponding to Xen. Hell. iv. i. 29-40 (cf. p. 120) occurred in Book xi ; for these negotiations took place in the winter of 395-4 soon after the events recorded in Col. xxi, and it is unlikely that the narrative of events in Greece in the autumn of 395 occupied a whole book. Cols. $\mathrm{i}-\mathrm{x}$ might still come from Book ix, but since there is some reason to believe that Col. i commences a new book (cf. p. II5), it is more satisfactory to refer Cols. xi-xxi to the same book. In that case Book x of Theopompus' Hellenica would comprise an account of events from the expedition of Demaenetus in the first half of 396 (cf. p. II5) down to the end of the year 395, the battle of Haliartus falling near the conclusion of this book, and the negotiations of Agesilaus with Pharnabazus near the beginning of the next. This would lead to the difficulty that Books xi and xii together would cover only the period from about January 394 to August (the approximate date of the battle of Cnidus is fixed by an eclipse), and even allowing for considerable digressions and the possible recital of events in other parts of the world such an arrangement seems disproportionate. The difficulty could be avoided by assigning Cols. xi-xxi to Book xi and assuming either that the sketch of Lysander referred to by Athenaeus occurred in Book x not in connexion with the battle of Haliartus or else that Athenaeus has erred in referring the passage in question to Book x instead of to Book xi. But Fr. 23 of Theopompus from Book xi seems to relate to the homeward march of Agesilaus from the Hellespont, which is likely to have been narrated in the book following that to which Cols. xi-xxi would belong, so that it is preferable to suppose that these columns would be part of Book x. Book xii is in any case something of a mystery. No quotations from it are extant, and possibly Suidas was right in stating that the Hellenica contained only eleven books.

The hypothesis that P's important work, which continued Thucydides'
history and has clearly had a large influence upon later historians, is to be identificd with a known continuation of Thucydides written by a historian of the first rank, who was undoubtedly much used by his successors in the same field, possesses obvious advantages and, especially when it comes to be advocated by Meyer in his own words, is sure to find wide acceptance. The positive arguments by which he in agreement with Wilamowitz-Möllendorff supports it against the rival theory of Blass, to be discussed later, are in the main as follows. Firstly, Theopompus, who as a child was exiled with his father from Chios on account of the latter's philo-Laconian views, is known to have been an aristocrat and on the whole in favour of Sparta as against Athens (cf. e.g. Fr. 17), though as would be expected from so great a historian, his personal feelings did not lead him into violent partisanship-witness his censure of the Spartans in the abstract of Philipfica xii preserved by Photius is 'A $\begin{aligned} & \eta \nu a i ́ \omega \nu \\ & \eta\end{aligned} \pi o ́ \lambda / s$ тais $\pi \rho \partial े s$
 ràs $\sigma v v \theta i j k a s$ (cf. Blass' defence of Theopompus from the charge of extreme partiality in Att. Bereds. ii. pp. $4^{1} 5$ sqq., and for a much less favourable view of Theopompus E. Schwartz, Hermes xxxv. pp. 109-10). This combination of aristocratic leanings with a sincere desire for truth corresponds, as Meyer thinks, to the attitude adopted by P, especially in his account of parties at Athens. Secondly, there is no reason to suppose that the characteristic. vigour and eloquence of Theopompus were displayed in ordinary narrative such as that which occupies so large a part of the papyrus, and in fact the extant fragments of the Hellenica are not dissimilar in style from P. Of

 cf. i. 7 ; $\sigma \tau \rho a ́ \tau \epsilon v \mu a$ occurs frequently in P); (2) Fr. 15 a àvaкowvô̂vtat t $\hat{\nu} v$
 (for $\mu \in \tau \alpha \dot{d}$ in preference to $\sigma v v^{\prime} \mathrm{cf} . \mathrm{vi} .17, \& \mathrm{c}$., and for the historic present

 $\kappa а \lambda о \tilde{\mu} \mu \nu^{\prime} \circ \nu$ are words of frequent occurrence in P ; with the inversion $\dot{\omega} \mu \hat{\omega} s$ ठıáкєเтає каi $\pi \iota \kappa \rho \omega \bar{s}$ to avoid hiatus with the following єioi cf. ii. 34 and xi. 22); (4) Fr. 23 (from Hell. xi and Philip. xiii according to Athen. xiv. p. 65i) kai oi

 $\delta \delta \delta^{\prime}$ 'A $\gamma \eta \sigma^{\prime} \lambda \lambda_{\text {aos }} \kappa . \tau . \lambda$. is particularly like the style of P). This argument for the general similarity of the style of the Hellenica with that of P can, we may remark, be supplemented by the occurrence of certain linguistic agreements between P and Theopompus, including two possible references to extant portions of P in quotations from Theopompus (p. 13I). Thirdly, enough is known about the contents of the Philippica, particularly from the abstract of Book xii preserved by Photius, to show that Theopompus was extremely prone to digressions on all kinds of subjects, many of them very remotely connected with his main narrative, a feature which is notably prominent in P also (cf. p. 121). Fourthly, several points in the probably just criticism of Theopompus as a historian by Dionysius of Halicarnassus (Ep. ad Cn. Pomp. pp. 782-7) apply very well to P. Thus Dionysius speaks of both Hellenica and Philippica as being єi̇таракодои́ө ттоь каì бафєís, and praises the careful and diligent preparations which Theopompus had made in collecting materials and obtaining information, and the wide range of subjects treated ($\tau \grave{o} \pi о \lambda \hat{v}_{\mu}{ }^{\prime} \rho \phi о \nu \tau \hat{\eta}_{S} \gamma \rho a \phi \hat{\eta}_{S}$), which included descriptions of states, laws, constitutions ($\pi \circ \lambda \iota \tau \epsilon \epsilon \omega \nu \sigma_{\chi} \eta \dot{\eta} a \tau \alpha$; cf. P's excursus on the constitution of Boeotia), important individuals, \&c. Dionysius specially singles out as Theopompus' most remarkable characteristic, which distinguished him from both older and younger historians, his deep insight into causes and

 analysis of the motives of the various anti-Spartan parties in i. 33 sqq. and of the policy of Ismenias' party at Thebes in xii. 37-xiv. 21. Fifthly, that Theopompus' works were serious histories like that of P, and very far from being over-rhetorical, is shown by the unfavourable verdict passed upon him by one of his successors, Duris of Samos, a writer who sacrificed historical accuracy to

 $\dot{\epsilon} \pi \epsilon \mu \epsilon \lambda \dot{\eta} \theta \eta \sigma a \nu$. Sixthly, the blame passed on Theopompus in common with Ephorus and Timaeus by Polybius (xii. 25 f .6) for his want of knowledge in describing battles would accord with the suspiciously conventional character of the account of the two ambuscades in v. 59 sqq. and xix. 22 sqq.

The combined weight of Meyer's arguments, of which the first three seem
to us the strongest，is undoubtedly considerable，and we can reinforce them by several linguistic coincidences of which the last two are particularly striking， and perhaps provide direct evidence of P＇s identity with Theopompus．Of P＇s favourite expressions（cf．p．124）$\tau v \gamma \chi^{\alpha} \nu \epsilon \omega \omega$ with a participle in place of the simple verb occurs in Theop．Fr．I49，mapoそúretv in Fr．100，while x由piov．．． $\kappa а т \epsilon \sigma \kappa \epsilon v a \sigma \mu \epsilon ́ \nu о \nu$ кал ω s is found both in xx． 30 （какшs Pap．by an error）and Theop．Fr．33．The agreement of P with Theopompus as to the insertion of ν in the name＇Aкраiфьо（cf．＇Aкраıфиiov xii．20，note）proves little，for Ephorus used the forms＇Aкраíфvıos and＇Акраєфı七ө́тŋs（cf．p．126）and the insertion of ν was probably common；moreover，Stephanus Byz．ascribes the form＇Aкрai申viov to Pausanias，and（ $\tau \grave{a}$ ）＇Aкраiфvı to Theopompus．Similarly the circumstance that Theopompus＇description of Mesogis and Celaenae（Fr．290）is in accordance with vi． 45 －vii． 2 （cf．note $a d$ loc．），that of Parapotamii（Fr．264）with xv．17－8，is of slight account．But the occurrence in xviii． 39 （cf．viii．22）of the verb катápaı in the rather rare sense of $\hat{\epsilon} \lambda \theta \epsilon \hat{\imath} \nu$ ，a use which is attributed to Theopompus （Fr．327）by a grammarian in Bekk．Anecd．p．104．15，is significant in any case， and it is possible that this passage in P was the grammarian＇s authority，while a still more noteworthy coincidence between P and Theopompus is found in con－ nexion with the form Kap $a \sigma \epsilon \operatorname{v}^{\prime}(x v i .37$ ，xvii．16），meaning a man of Carpasus（in

 generally assumed that the 1oth Book in question belonged to the more com－ monly quoted Philippica rather than to the Hellenica，and C．Müller explains it （Fr．Hist．Gr．Theop．Fr．93）by the supposition that the Carpasians were mentioned in connexion with Cimon＇s expedition to Sicily，Cimon being men－ tioned in another fragment（94）of Phil．Book x．But both the assumption and the suggested explanation are mere guesses，and if the Ioth Book belongs to the Hcllenica the agreement with P is very remarkable，for，as we have shown （p．128），Cols．xi－xxi，if not the whole of the papyrus，would belong to that Book．This coincidence may indeed seem to clinch the argument for the identification of P with Theopompus，but before deciding in favour of that view it is necessary to examine the objections to it．

In the first place P and Theopompus seem to disagree as to the name of the Paphlagonian king，who is called Гúns in xxi．II but ©ús by Theopompus accord－ ing to Athenaeus，while Nepos，who is no doubt following Theopompus，calls him Thuy＇s（xx．37，note）．Meyer evades the difficulty by supposing a corruption in the papyrus，which is admittedly not very trustworthy，especially as to proper names．But 「úns is not in itself an unlikely form for an Asiatic name which，as
the variations of it in Xenophon (Kótvs and "Otvs) show, could not be represented satisfactorily in Greek, and the apparent disagreement between P and Theopompus is prima facie evidence against the identity of the two. Secondly, according to Porphyry ap. Eusebius, Praep. Evang. p. $4^{6} 5$ b-c Theopo mpus in his

 the account of the negotiations between Agesilaus and Pharnabazus which Xenophon (Hell. iv. 1. 29-40) had described $\pi a ́ v v ~ \chi a \rho \iota \epsilon ́ v \tau \omega s ~ к a i ̀ ~ \pi \rho \epsilon \pi o ́ v \tau \omega s ~ a ̀ \mu \phi o ̂ ̀ v . ~$ It is very unfortunate that the papyrus breaks off shortly before that episode was reached, but the total disregard of Xenophon exhibited in the extant portions of P renders it improbable that he borrowed from that author, and though, as Meyer remarks, Xenophon is likely to have been the only historian who could describe those negotiations from first-hand knowledge, the divergence between P and Xenophon in regard to the treatment of the earlier negotiations between Agesilaus and the king of Paphlagonia (xx. 37, note), for the details of which Xenophon was equally in all probability the sole first-hand authority, renders it in our opinion very difficult to believe that P used Xenophon's account when describing the negotiations with Pharnabazus. Hence if P is Theopompus, the general charge of plagiarism from Xenophon brought against him by Porphyry must certainly be dismissed, and it would, we think, be preferable to explain the specific instance alleged as also due to a misunderstanding. Whether Porphyry carries very much weight on a question of literary criticism may be doubted, but his evidence, so far as it goes, distinctly tells against the identification of P with Theopompus. Thirdly, the absence of speeches in P offers a point of contrast with Theopompus, who certainly employed them, as is shown not only by the censure passed upon him in common with Ephorus and Anaximenes by Plutarch Mor.

 $\pi \epsilon ́ \lambda a s$, but by two recently discovered fragments of the $\Phi \iota \lambda \iota \pi \pi \iota \kappa \alpha ́$ (Didymus, De Demosth. Comm., ed. Diels and Schubart, pp. I9 and 35). It is possible however that the absence of speeches in P is due to accident; cf. p. 123. Fourthly, P's account of Agesilaus does not accord at all well with what is known of the treatment of him in Theopompus. That the latter had a very high admiration for Agesilaus is clear from the fact that Plutarch quotes his

 from Hell. xi, and probably in a slightly different form in Phil. xiii (cf. p. 129) recalls the stories about Agesilaus which Xenophon tells of his hero. P on the other hand shows no tendency to illustrate the personal character
of Agesilaus nor any enthusiasm over his achievements (though of. v. 17-9, note). It is moreover very noticeable that Plutarch, who is generally considered to have derived much information from Thcopompus (cf. e. g. Busolt, Gr. Gesch. iii. pp. 727 sqq.), and who in his Ages. mentions him four times, besides clearly referring in ch. 3^{6} to the version in Theopompus' Philippica of the story about the gifts offered to the king, nevertheless ignores the divergences between P and Xenophon with regard to Agesilaus' campaigns in 395 and shows practically no trace of connexion with P anywhere. That P's account of the war in 39.5 , which has influenced Diodorus and other writers of the Roman period and must have been still extant in Plutarch's time, was so completely neglected by him is somewhat remarkable in any case; but the identification of P with Theopompus makes this neglect much more difficult of explanation, and the view, which has been widely held, that Plutarch had firsthand knowledge of Theopompus, becomes almost untenable, with regard to the Hcllcnica at any rate, if P was the author of that work. Fifthly, while the agreements between P and Pausanias, Justin, and Polyaenus present no obstacles to Meyer's view, the acceptance of it leads to considerable complications when we try to account for the agreement between P and Diodorus, and to reconcile the dates at which P's work and Theopompus' Hellenica were probably composed. Meyer, from the standpoint of most modern criticism of Diodorus, which believes that 'die starke Abhängigkeit Diodors von Ephoros von dem neunten Buche der Bibliothek ab (i.e. to Book xv) eincs der sichersten Ergebnisse der Quellenforschung ist ' (Bauer, Die Forschungen zur Gr. Gesch. I888-98, p. 265), explains the clear dependence of Diodorus upon P by the hypothesis that Diodorus' source, Ephorus, was using Theopompus. This leads, however, to a chronological difficulty. Theopompus was probably born about 376, since according to Photius he was 45 years of age, when through Alexander's intervention he returned to Chios from exile apparently in 332 (cf. Blass, op. cit. p. 400 ; Rohde, Rhein. Mus. xlix. p. 623). The statement of Suidas that Theopompus, like Ephorus, was $\gamma \epsilon \gamma$ ovis . . . in the 93 rd Olympiad (B.C. 408) is now universally regarded as containing an error in the figures, $\gamma \in \gamma 0 \nu^{\prime} \omega$ s meaning not 'born' but 'lived ' (cf. Blass, l.c.). He survived the death of Alexander, for Photius relates that he took refuge in Egypt with Ptolemy, but when and where he died is uncertain. Concerning Ephorus' life even less is known. Probably he was born about the same time as Theopompus and died some time before him, for the latest event recorded about him is his refusal to accept an invitation to Alexander's court (Plut. De stoic. repugn. c. 20), and whereas part of Theopompus' Philippica must have been written after the death of Philip in 33n, the 29th Book of Ephorus' history only reached 356 , the 30 th Book which reaches 340 being edited after the
historian's death by his son (Diod. xvi. 14). Meyer thinks that Theopompus wrote the Hellenica not much later than 350, and that the 18 th and 19th Books of Ephorus, which covered the same ground, were not composed until after 330, for it is of course very difficult to reconcile the supposed dependence of Ephorus upon Theopompus without assuming an interval of some 15 or 20 years between the composition of the Hellenica and the parallel portions of Ephorus' history. But to this view there are two serious objections. That P wrote his history not much, if at all, later than 350 is probable enough; for, as Mr. E. M. Walker was the first to point out and as Meyer now admits, the account of the border dispute between Phocis and Locris in xiv. 25 sqq., where P speaks of the $\dot{\alpha} \mu \phi \iota \sigma \beta \eta \tau \eta \sigma \iota \mu \sigma$
 and 29) and contrasts in 11. 30-37 the former peaceful methods of settling the quarrel with the war which was kindled on that occasion, cannot have been written after the end of the Sacred War, which began in 356 with a struggle between the Phocians and the very same Locrians, and ended in 346 with the complete ruin of Phocis, whose place on the Amphictyonic Council was transferred to Macedonia. Hence 346 may be regarded as the terminus ad quem for the date at which P composed his history. Mr. Walker is even prepared to place it before 356 , on the ground that a reference to the Sacred War would be expected in xiv. 25 sqq. if it had actually begun ; but we do not wish to press this point, for the use of the present tense is quite compatible with the war being already in progress. If P wrote before 356 , it is of course impossible to identify him with Theopompus without abandoning the current view concerning the date of Theopompus' birth, and even if he was writing between 350 and 346, which we regard as on the whole the most likely date for the composition of P's work, it is not at all easy to reconcile this with the evidence that Theopompus was born in about 376. A work so detailed and elaborate as that of P implies a large amount of research on the part of its author, especially since he disregarded Xenophon. Theopompus may have begun writing his Hellenica at the age of 23 or 24 , but that he composed the loth Book before the age of 30 seems to us distinctly improbable, so that taking 376 as the correct date of Theopompus' birth, the terminus a quo for the date of the composition of Book x is 347-6. Since the terminus ad quem for P's work is, as we have said, 346 , the margin of time available for the supposed composition of it by Theopompus is reduced to the narrowest possible limits, if it does not disappear altogether. The margin may be extended for a year or two by supposing that when Photius gave Theopompus' age at his return from exile as 45 years, that figure was approximate, and he should have strictly said 46 or 47. But if the date of Theopompus' birth is pushed back before about 378 it becomes
necessary to alter the number of the year in Photius' account, and to this there are two objections: firstly, that Photius seems to be drawing his details concerning Theopompus' life from a trustworthy source, and that the mistake, if there be one, must be attributed not to him but to his copyists ; secondly, that, in view of the fact that Theopompus was living in Egypt under Ptolemy Soter and may even have survived the year 300,376 is a sufficiently early date for his birth, and a date before 3^{80} is not at all probable.

The theory of the identity of P with Theopompus thus leads to a grave chronological difficulty with regard to the date of the 10th Book of the Hellenica, the composition of which would on general grounds of probability be assigned to a year later than 346 , whereas in order to satisfy the exigencies of the theory the date has to be prior to 346 , and it is open to the further objection that P's most prominent features as a historian (cf. pp. 122-3) do not in the least suggest the work of a very young man, but on the contrary are rather characteristic of maturity or even old age ; cf. also p. I39. With regard to Ephorus on the other hand, Meyer's supposition that he wrote the last twelve out of 29 Books of his history after 330 seems rather hazardous in view of the fact that he is not known to have outlived that year. The interval, therefore, between the publication of the Hellenica and the composition of Books xviii and xix of Ephorus is likely to have been rather brief, and then the question arises whether it is probable that Ephorus would have neglected Xenophon and been content to reproduce in a shortened form the recently published work of his contemporary Theopompus as (granting that Diodorus in Book xiv is closely following Ephorus) he would seem to have done for the events of 396-5. Ephorus may have been a writer without much originality (cf. Wilamowitz, Arist. u. Athen ii. p. 16), but that he should have selected Theopompus as his principal or sole authority for the period covered by the Hellenica is strange. If P is identified with Theopompus, can the difficulty of admitting that Theopompus was Ephorus' source in Books xviii and xix be evaded by supposing a direct use of Theopompus by Diodorus for the period from 411-394?

The question whether Diodorus borrowed from Theopompus has long been disputed, but since Volquardsen in 1869 propounded the view that Books xi-xv of Diodorus were mainly derived from Ephorus and Theopompus was not used, nearly all modern critics have ranged themselves on his side. Neither the scepticism of Holm (Gr. Gesch. iii. p. 19) nor the attempt of W. Stern (Commentationes in hon. G. Studemund, 1889 , pp. 245 sqq.) to prove on stylistic grounds that Diodorus had extensively used Theopompus in Books $\mathrm{i}-\mathrm{xx}$ have won support, and the only concession sometimes made to the advocates of a use of Theopompus by Diodorus is in connexion with Book xvi, which deals with the period from
$360-336$, and of which Volquardsen left the source in doubt. Here F. Reuss' conclusion (Fahrb.f. class. Philol. cliii. pp. 317 sqq.) that parts of this Book are based on Theopompus is accepted by Bauer (op. cit. p. 266), but not by E. Schwartz (Pauly-Wissowa, Real-Encycl. v. p. 682), though cf. Reuss, Bursians Fahresber. cxxvii. p. 37, where he suggests that Diod. xvi. 34. 5 is derived from Theopompus on the evidence of the new fragment in Diels-Schubart, Didymus Comm. de Demosth. xii. 43-9. The conditions of the problem are now entirely altered by the discovery of our papyrus. Volquardsen (Unters. iiber die Quellen Diod. pp. 67 sqq.) found five arguments against the use of Theopompus by Diodorus: (1) Theopompus is never cited by Diodorus; the mentions of his history in xiii. 42 and xiv. 84 do not count, because they belong to the extracts from a chronological epitome incorporated in Diodorus' history. (2) There is no correspondence between the fragments of Theopompus and Diodorus. (3) There is no trace in Diodorus of Theopompus' aristocratic bias. (4) The style of Diodorus does not resemble that of Theopompus. (5) For the period from 394-360 Diodorus could only have utilized Theopompus if he had searched up and down through the Philippica, and it is unlikely that he would have used a work arranged on so unsystematic a plan. If, however, P is Theopompus, these arguments break down completely, with regard to the Hellenica at any rate. As for (2), there would be a close agreement between Diodorus xiv and Theopompus; as for (3), since Theopompus' aristocratic bias would be very slight, and on the whole he would have to be regarded as a decidedly impartial historian, there would be no reason to expect an aristocratic bias to be traceable in Diodorus. With regard to (4) the identification of P with Theopompus necessitates a radical alteration in the ordinary conception of Theopompus' style (cf. pp. 137-9), and so far from the style of Diodorus being different from that of Theopompus' Hellenica, it would present considerable resemblance to it. Volquardsen's fifth reason does not apply to the period covered by the Hellenica, which moreover, being arranged on a chronological system, would be more convenient as a basis for a history arranged on Diodorus' plan than a less strictly chronological work, such as Ephorus is supposed to have written. There remains, therefore, only the first argument, which, seeing that Diodorus is not in the habit of quoting his sources (e.g. Hieronymus of Cardia is generally thought to have been largely used in Books xviii-xx), is hardly serious, and it is clear that if P is Theopompus the whole question of the relation of Diodorus to Theopompus will have to be reconsidered. Into that problem we do not propose to enter in detail ; what we wish chiefly to insist upon is that the identification of P with Theopompus tends to disturb the prevailing view of the relation of Ephorus to Diodorus more scriously than an identification
with e.g. Cratippus, who may well have been used by Ephorus (cf. p. 141), and, secondly, the hypothesis which Meyer adopts so readily that Ephorus used Theopompus' Hellenica, is based not only on a somewhat hazardous assumption concerning the dates at which these historians wrote, but on conclusions concerning the relation of Diodorus to Ephorus and Theopompus which the identification of P with Theopompus goes some way to undermine. That Diodorus used P directly docs not seem to us probable: for though the general agreement bctween them is very close, the verbal coincidences are not on the whole very striking (cf. p. 216); and, as Mr. Walker remarks, the fact that Diodorus, though adopting an annalistic arrangement like that of P , nevertheless commits the egregious blunder of first omitting the events of Greek history altogether during the two years preceding that in which he places the dispatch of Agesilaus, and then combining into one year his account of the two campaigns of Agesilaus which really belong to different years, is almost incredible if he was excerpting an author whose chronology was as clear as that of P. Such an error, however, is readily explicable on the assumption that Diodorus was using an author like Ephorus, who (as is generally supposed) grouped events together without strict regard to chronology. That Diodorus' close connexion with P is due to his use of Ephorus who was based on P is much the most satisfactory hypothesis, but the acceptance of it, so far from providing an argument for the identification of P with Theopompus, creatcs somewhat formidable difficulties. It is not Diodorus but Plutarch who, if P is Theopompus, ought to exhibit traces of his influence ; but these, as we have said (p. I33), are not forthcoming.

To these objections which we have brought against the identification of P with Theopompus may be added the great obstacle, which from the outset lcd Blass (and Dittenberger also) to reject that view, namely the absence in P of several of Theopompus' most prominent characteristics, especially in regard to style. Thus Theopompus was noted for his comments either of praise or blame (principally the latter), a feature which is abundantly illustrated by the extant fragments of the Philippica, whereas P, except apparently in the fragmentary Col. \mathbf{x}, shows no disposition to moralize upon his characters, preferring to let their actions speak for themselves. Even so important a personage as Ismenias is introduced (xii. 34) without remark, and Agesilaus' relations to Megabates are stated, but neither excused nor censured. We hear, indeed, of Conon's $\pi \rho o \theta v \mu i a$, an expression which is also used of Cyrus (xvi.9) and an obscure Persian general ($\mathbf{x x} .35$), but for Agesilaus the extant portions of P have, except perhaps in v . ${ }^{17-9}$ (cf. note ad loc.), no word of praise. The notorious bitterness of Theopompus, which Cicero singles out when summing him up in a single epithet (Hortens.

Fr. 12 quid. . . Theopompo acrius), and which is exemplified in his diatribes against Athens (Frs. 117, 238, and 297), however well deserved these may be, goes far beyond the censure implied rather than openly expressed, upon the extreme democrats in ii. 10-14; and in the plain unrhetorical composition of P we look in vain for any traces of the fire and passion which Theopompus put into his vivid and powerful description of the friends of Philip (Fr. 249), or

 Thucydides and Philistus on account of the elatio atque altitudo orationis suae was compared by Cicero (Brut. 66) to the superiority of Demosthenes to Lysias, and whose $\lambda \in \xi^{\prime} \xi$ s Dionysius (Ep. ad Cn. Pomp. p. 786) compares to that of Isocrates,

 attained so high a reputation as a stylist is incredible, if his other work resembled these fragments. It is also noticeable that out of three points which are censured by Dionysius (p .787) in Theopompus, his over-anxiety to avoid hiatus, his continual rhythmical periods, and his wearisome epideictic figures ($\tau \hat{\eta} s \tau \epsilon$
 $\delta^{\circ} \mu \circ \epsilon \iota \delta \epsilon i a s \tau \hat{\omega} \nu \sigma \chi \eta \mu a \tau \iota \sigma \mu \hat{\omega} \nu$), P exhibits only avoidance of hiatus (a rule which is subject to exceptions both in P and the extant fragments of Theopompus). Elaborate rhythmical periods and rhetorical antitheses, parisa, and paromoia
 oủk $\dot{a} \pi \hat{\eta} v$; in Theop. Fr. 249) are foreign to P's sober, unadorned style. In order to identify P with Theopompus it is practically necessary, as Meyer and Wilamowitz admit, to suppose that the Hellenica was written in a manner much
less ornate than that of the Philippica. In support of such a view of the development of Theopompus' style can be cited the difference in Xenophon's treatment of the period before and after the end of the Peloponnesian war, and the circumstance that Theopompus seems to have begun his historical researches tamely enough by writing an epitome of Herodotus, and when composing the Hellcnica may have been to some extent under the influence of Thucydides. But on the other hand the ancient critics draw no distinction between the characteristics of the Hell. and Phil., and in the case of a writer with so vigorous an individuality and such marked features of style as Theopompus it is certainly surprising, even apart from the story about the bit and the spur (cf. p. 126), that he should have been able as a young man (cf. p. 135) to curb his tendency to rhetoric so successfully as he has done, if he be indeed the author of the papyrus. That he
 Fr. 26, which probably is derived from the preface to the Philippica, and the conception of history in the Isocratean school was in the words of the master

Our comparison, thercfore, of P's work with the Hellenica of Theopompus, though it has not presented any single insuperable obstacle to the identification of one with the other, if that hypothesis can be made probable on other grounds, and though even as regards style there are some points of agreement between the two (cf. p. 129), undoubtedly has shown the existence of a number of weighty objections to the identification of P with Theopompus. Can these be avoided by identifying P with another historian? To reject Theopompus and take refuge in complete agnosticism is most unsatisfactory, for admittedly P was a historian of much importance who has largely influenced later tradition, and since his work survived far into the second century his name at any rate must be known.

This being granted, there is besides Theopompus only one known historian, Cratippus, who seems to fulfil the primary condition required for identification with P, that he should have written a continuation of Thucydides, and it is Cratippus whom Blass wished to regard as the author of the papyrus. Concerning this writer our information is scanty, and his date has been much disputed. Dionysius Halic. (De Thucyd. 16) says є̌oเкєv (sc. Thucydides) àtє $\bar{\eta} \hat{\eta}$ ग̀̀v íбтopíav

 a quotation from Cratippus' $\pi \rho o o i \mu \iota v$). From this it is clear that Dionysius regarded Cratippus as a contemporary of Thucydides, and that Cratippus strongly objected to the speeches. More definite information about the period which his history covered is supplied by Plutarch (De glor. Ath. p. 345 C-E àv $\gamma \grave{a} \rho$ àv $\nu \lambda \lambda l s$

 This shows that Cratippus' work, like Theopompus' Hellenica and probably the history of P , included the period from 4 II to the battle of Cnidus in 394. Apparently he went over again part of the ground covered by the last Book of Thucydides, for the expulsion of the oligarchs by Theramenes is narrated in viii. 89 sqq., and Thrasyllus' proceedings at Lesbos are recorded (very briefly) in viii. 100. That Plutarch should have here placed Cratippus on the same level as Thucydides indicates that he must have been a very important historian, and it is remarkable that there are only two other extant references to him: (I) Ps.Plut. Vit. Orat. p. 834, where he is quoted in reference to the Hermocopidae, a subject which he may have treated in connexion with the return of Alcibiades;

 It appears from this that Cratippus was not older than Zopyrus, and Susemihl, identifying this Zopyrus with the friend of Timon of Phlius (Gesch. d. Gr. Lit. in d. Alexandrinerzeit, ii. p. 468), thinks that Cratippus lived in the third or second century B.c. (op. cit. i. p. 646). But it is quite uncertain which Zopyrus is meant : he may, for instance, have been the contemporary of Socrates (Herbst, Philol. xlix. p. 174). That Cratippus lived even later still has been maintained by Stahl,
 the sense) being generally altered to ${ }^{\prime} \nu \nu^{\prime}$ 'A $\tau \tau \iota \kappa \hat{\eta}$; but, as Blass suggested, the passage in question is perhaps in iambic trimeters, though his proposal to regard it as a quotation from the Chronica of Apollodorus is unhesitatingly rejected by Wilamowitz. The lines can be restored thus:

```
                                    \epsilon'\gamma\omegaे \deltaє Z\omegá\pi
```



```
\lambda\etaр\epsilon\hat{\nu}\nuо\mui\zeta\omega, кâ\nu ả\lambda\eta0\epsilonv́\epsilon\iota\nu \deltaок\hat{\}
K\rhoá\tau\iota\pi\pios av̉тòv . . .
\tauò \delta' \epsiloṅv 'Iта\lambdaíą Tí\mua\iotaov aủròv \chiả\tau\epsiloń\rhoovs
к\epsiloni\sigma0a\iota \lambda\epsiloń\gamma\epsilon\iota\nu \mu\etaे каi \sigmaфó\delta\rhoа ката\gamma\epsiloń\lambdaа\sigmaто\nu \etaֶ.)
```

who boldy emends av่т仑̣̂ (i. c. Thucydides) after $\sigma v v a \kappa \mu a ́ \sigma a s ~ i n ~ t h e ~ D i o n y s i u s ~ p a s-~$ sage into $\sigma o \grave{\text { a }}$ avtệ (i. c. Q. Aelius Tubero, whom Dionysius was addressing), and would identify Cratippus with the friend of Pompey. This violent emendation of Dionysius has however been universally abandoned, and most recent critics either defend the date assigned to Cratippus by Dionysius or leave the question undecided ; cf. Meyer, Gesch. d. Alt. iii. p. 276 ; Busolt, Gr. Gesch. iii. pp. 631-2, where the literature of the subject is surveyed.

That Cratippus was an Athenian is a tolerably certain inference from the context of the Plutarch passage, which rclates to Athenian historians, and Meyer adduces as an objection to the identification of P with Cratippus the circumstance that the Athenians do not occupy in P the prominent position which they have in Thucydides, and that his sympathies are rather with Sparta. But since Plutarch next after Cratippus proceeds to mention Xenophon, this objection does not carry much weight, for P is certainly not more pro-Spartan than Xenophon, and his just recognition of Conon's merits stands in marked contrast to Xenophon's biased attempt to belittle that commander's achievements.

To sum up the scanty evidence with regard to Cratippus, what is known about the scope of his history and his avoidance of speeches fits in very well with Blass' view concerning the authorship of the papyrus. That he was younger than Thucydides is practically certain in any case, and if ovvaкцá $\sigma a s$ in Dionysius be regarded as a loose expression, and the publication of Cratippus', i.e. P's, work be assigned to the period between 375 and 350 , it may well have been used by Ephorus, a hypothesis which would account for the agreements between P and Diodorus more easily than the rival view that P is Theopompus; cf. pp. 133-7. The style of P hardly suggests so early a date as 375^{-350}, but since in any case he wrote his history before 346 (cf. p. 134) that difficulty is not very serious, and his independence of Xenophon can be explained by supposing that his work was published before Xenophon's Hellenica just as well as by the theory that Pintentionally disregarded it. Moreover, the identification of P with Cratippus in preference to Theopompus would provide a possible solution for the mysterious paucity of references to him by name, for if his work was used not only by Ephorus but, as is possible, by Theopompus, it is to some extent intelligible that an author with so colourless a style was soon superseded by those writers and the more elegant Xenophon, although P's great merits as a narrator of facts would still be expected to have rescued him from the almost complete neglect into which Cratippus unquestionably fell.

In the absence of any other historian whose claims to be regarded as the author of the papyrus seem to be worthy of consideration, the choice lies between

Theopompus and Cratippus, and having stated the case for and against both as impartially as we could, we leave the decision to our readers. The positive arguments in favour of identifying P with so shadowy a person as Cratippus are inevitably not very convincing; the strength of his case rests largely on the objections to regarding Theopompus as the author of the papyrus, objections which have led both Prof. Bury and Mr. Walker to endorse the opinion of Blass. For ourselves we should prefer on many grounds to identify P with Theopompus, especiąlly as that view can be supported by some direct evidence-the coincidences with regard to Kapтaбєús and катâpaı; cf. p. 13I. The first of these can of course be reconciled with the identification of P with Cratippus by the supposition that Theopompus in the 10th Book of the Hellenica also mentioned the Carpasian leader of the mutiny or that the quotation comes after all from the loth Book of the Philippica; and the second coincidence by itself would not be very remarkable. Nevertheless they appeal to us on the whole more powerfully than the other arguments for Theopompus, and seem to us to turn the scale slightly in his favour, so that in the heading of 842 we have placed Theopompus' name before that of Cratippus. On the other hand we feel more strongly than Meyer the difficulties (particularly those discussed on pp. 133-7) involved in his attractive hypothesis, which results in proving Theopompus to have been in his youth a greater historian and a worse stylist than has been generally supposed.

Call him by what name we will, our author's work entitles him to be classed among the select band of Greek historians of the first rank, below Thucydides indeed but above Xenophon, and the portions of his history which have been preserved constitute a notable addition to the extant evidence. Not only has it supplied new facts of importance regarding the events of $396-5$ and the constitution of Boeotia, and thrown a new and unexpected light upon the sources other than Xenophon available to the later historians, but the agreement between P and Diodorus is bound to have far-reaching consequences. For quite apart from

> Col. i (=A Col. i).

```
v\pio\delta\epsilon\tauov[. . . . . . . . . . . .]v\sigma\epsilon\xi\epsilon\pi\lambda\epsilon\epsilonv\sigma\epsilon\tau\rho\imath\eta\rho\eta\sigma
\alpha0\eta\nu\eta\eta0\epsilon\nu[. . . . . . . . . . .]\delta\eta\mu\nuv\gamma\nu\omega\mu\eta\eta\sigma![. . .
\delta\epsilon\delta\eta\mu\alpha\iota\nu[..]о\sigmaок . . !о\sigma\alphau\\\eta\sigmaко\iota\nu\omega\sigma\alpha\mu\mu\epsilon\nuо[. . .
\alpha\piо\rho\eta\tau\omega\tau[. .]ov\lambda\eta\omega\sigma\lambda\epsilon\epsilon\ell\epsilon\tau\alpha\iota\pi\epsilon\rhoเ\tauоv\pi\rho\alpha\gamma[...
5 \epsilon\pi\epsilon\iota\delta\eta[.]v\nu[. .]\tau\eta\sigma\alpha\nu\alphav\tau\omega\tau[. . .]\pi\mp@code{\}\epsilon\iota\tau\omega\nu\sigma\sigmavy[. .
ка\tau\alpha\beta\alpha\sigma\epsilon\iota\sigma\pi\epsilon\iotaра\iota\alphaк\alpha\iotaк\alpha0[. . . . . . .]\nu\alpha\nu\nu\epsilonк\tau[.]\
\nu\epsilon\omega\sigmao\iotaк\omega\nu\alpha\nu\alpha\gammaо\mu\epsilon\nu[. . . . . . . . . .]\sigmaко\nu[. .]a0o
```

the questions of his identity with Theopompus and the relation of Diodorus to that author and Ephorus, the discrepancies between Diodorus and Xenophon with regard to the events of $396-5$ are now known to be due to the fact that Diodorus ultimately drew his account of those years from so well informed an authority as P ; and henceforth it will be necessary to take into consideration the probability that throughout the rest of the period from 411-394 the differences between Diodorus and Xenophon, e.g. with regard to the campaign of Thibron and the return of the Ten Thousand, are largely due to the same cause.

The credit of reconstructing the much damaged text of the papyrus is in a considerable measure due to Prof. F. Blass, who at first worked upon a rough copy. In November, 1906 the Greek was put into print, and the proof-sheets of it were revised by him shortly before his death. Proofs were also sent to Profs. E. Meyer and U. von Wilamowitz-Möllendorff, and to the latter we are indebted for a number of valuable suggestions for the restorations of lacunae, \&c., which are acknowledged in the notes, while E. Meyer has most generously placed at our disposal the very elaborate historical commentary upon the papyrus which he wrote in the winter of $1906-7$, and which will be published shortly. This important contribution of the leading historian of Germany has of course been of inestimable service to us in composing our introduction and notes, though the conditions of some of the problems have been greatly altered by placing Cols. i-iv before v-viii instead of after them, as in the first proofs. Some suggestions on the text are also due to the late Prof. W. Dittenberger and to Prof. B. Niese, who were consulted by Prof. Blass. More recently the proofs of the whole edition were read by Profs. Meyer and Wilamowitz-Möllendorff, who have made some additional suggestions, and by Prof. J. B. Bury and Mr. E. M. Walker. To Prof. Bury we owe several excellent restorations in the text, while Mr. Walker's criticisms have materially assisted in the elucidation of some of the historical problems connected with the papyrus.

Col. i.

	I. 1.
	B. C. 396
	2

$\rho v \beta o v \delta \epsilon \mu \epsilon \tau \alpha \tau \alpha v \tau \alpha \gamma \epsilon[.] \kappa \alpha \iota \tau[..] \alpha \theta \eta$$\nu \alpha \iota \omega \nu \alpha \gamma \alpha \nu \alpha \kappa \tau о \nu \nu \tau \omega[.] \rho \iota \mu[. ..] \alpha \iota \chi^{\alpha}$
10 $\rho \iota \epsilon \nu \tau \epsilon \sigma \eta \sigma \alpha \nu \kappa \alpha \iota \lambda \epsilon \gamma[.] \beta \alpha[.$. . $] \sigma \iota \tau \eta^{-}$
$\pi о \lambda เ \nu \alpha \rho \chi{ }^{\circ} \nu \tau \epsilon \sigma \pi \sigma \lambda \epsilon[$. $] \in \delta \alpha \iota \mu \circ \nu[$.
оубкат $\pi \pi \lambda \alpha \gamma \epsilon \nu \tau \epsilon \sigma o \iota \beta[. ~ . ~ . ~ . ~ . ~ . ~ . ~] ~] ~ Ө. о \rho v ß o \nu \sigma v^{-}$

$\tau \epsilon \sigma \chi \eta \kappa \epsilon \nu \alpha \iota \tau \circ v \pi \rho \alpha \gamma \mu \alpha \tau \sigma \sigma \sigma v \nu \epsilon \lambda \eta \lambda \nu \theta \circ \tau \circ \sigma \delta \epsilon$
${ }^{15} \tau 0 v \pi \lambda \eta \theta$ ov $\sigma \nu \ddot{i} \sigma \tau \alpha \mu \epsilon \nu 0 \iota \tau \omega \nu \alpha \theta \eta \nu \alpha \iota \omega \nu 0 \iota \tau \epsilon$
$\pi \epsilon \rho \iota \theta \rho \alpha \sigma \nu \beta о \nu \lambda о \nu \kappa \alpha \iota \alpha \iota \sigma \iota \mu о \nu \kappa \alpha \iota \alpha \nu v \tau 0 \nu \epsilon \delta \iota \delta \alpha$
бкораvтоиботı $\mu \epsilon \alpha \nu \alpha \iota \rho о \nu \nu \tau \alpha \iota \kappa \iota \nu \delta \cup \nu 0 \nu \in \iota$
$\mu \eta \tau \eta \nu \pi \sigma$ 入ı $\nu \alpha \pi o \lambda \nu \sigma o v \sigma \iota \tau \eta \sigma \alpha \iota \iota \alpha \sigma \tau \omega \nu \delta \epsilon \alpha \theta \eta$
$\nu \alpha \iota \omega \nu 0 \iota \mu \epsilon \nu \epsilon \pi \epsilon \iota \kappa \epsilon \iota \sigma \kappa \alpha \iota \tau \alpha \sigma 0 \nu \sigma \iota \alpha \sigma \epsilon \chi 0 \nu \tau \epsilon \sigma \epsilon$
$\sigma \tau \epsilon \rho \gamma о \nu \tau \alpha \pi \alpha \rho о \nu \tau \alpha 0 \iota \delta \epsilon \pi$ о入入оוкаı $\eta \eta$ отькоь
$\tau о \tau \epsilon \mu \epsilon \nu \phi \circ \beta \eta \theta_{\epsilon \nu \tau \epsilon \sigma \epsilon \pi \epsilon \iota \sigma \theta \eta \sigma \alpha \nu \tau o \iota \sigma \sigma \nu \nu \beta o v \lambda \epsilon v}$
ov $\sigma \iota \kappa \alpha \iota \pi \epsilon \mu \psi \alpha \nu \tau \epsilon \sigma \pi \rho \circ \sigma \mu l \lambda \omega \nu \alpha \tau 0 \nu \alpha \rho \mu \circ \sigma \tau \eta \nu$
$\tau о \nu \alpha \iota \gamma \epsilon \iota \nu \eta \sigma \epsilon \iota \pi \sigma[\cdot] 0 \pi \omega \sigma \delta \nu[\cdot] \alpha \tau \alpha \iota \tau \epsilon \iota \mu \omega \rho \epsilon \iota \sigma \theta \alpha$

$\left.25 \pi \epsilon \pi о \iota \eta \kappa о \tau \alpha[..] \pi \rho \circ \sigma \theta_{[}^{[} \cdot\right] \chi \epsilon \delta о \nu \alpha \pi \alpha \nu \tau \alpha \tau о \nu$

$\lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о[$. . . $] \sigma \alpha[. .$. . $] \tau \tau \epsilon \nu \alpha \pi \epsilon \pi \epsilon \mu \pi[.] \nu$
$\mu \epsilon \nu \gamma \alpha \rho о \pi \lambda[.] \rho \epsilon \sigma \iota \alpha \sigma \epsilon \pi \iota \tau \alpha \sigma \nu \alpha \nu \sigma \tau \alpha \sigma$
$\mu \epsilon \tau \alpha \tau 0 v \kappa[.] \phi \theta \eta \sigma \alpha \nu \delta \epsilon \pi \rho \in \sigma \beta[..] \sigma$

$\pi \rho о \tau \epsilon \rho о \nu \nu \alpha v \alpha \rho \chi о \sigma \alpha \pi \epsilon \sigma \tau \epsilon \iota \lambda \epsilon \pi \rho о \sigma \tau 0 v \sigma \lambda[\cdot] \kappa \epsilon$
§аı $\mu о \nu \iota o v \sigma o \iota \alpha \pi \epsilon \kappa \tau \epsilon \iota \nu \alpha \nu \alpha \nu \tau о \nu \sigma \eta \nu \alpha \nu \tau \iota$
оข $\tau \tau 0 \delta \epsilon \tau \alpha v \tau \alpha \pi \alpha \rho \circ \xi v \nu о \nu \tau \omega \nu \tau \omega \nu \pi \epsilon \rho \iota \tau 0^{-}$

$\mu о \nu \nu \tau \epsilon \sigma \mu \alpha \lambda \iota \sigma \alpha \tau \eta \nu \pi \sigma \quad \lambda \iota \nu \kappa \alpha \iota \tau \alpha \nu \tau \eta \nu \epsilon \sigma \chi^{-}{ }^{-}$

Col. ii ($=$ A Col. ii).

$\nu \epsilon \sigma \lambda \epsilon \gamma[$.] $]<\tau \alpha \pi \alpha \rho \epsilon \kappa \epsilon \iota \nu о \nu \chi \rho \eta[$

${ }^{1} 5$ тov̂ $\pi \lambda \eta \eta^{\prime} \theta$ ous $\alpha \nu \iota \sigma \tau \alpha ́ \mu \epsilon \nu 0 \iota ~ \tau \hat{\omega} \nu$ ' $A \theta \eta \nu \alpha i ́ \omega \nu$ oĭ $\tau \epsilon$

бкоข aútoùs öт८ $\mu \epsilon \in \gamma \alpha \nu$ aipoûvtal кivסvvov ϵi

3

$20 \sigma \tau \epsilon \rho \gamma 0 \nu \tau \grave{\alpha} \pi \alpha \rho o ́ v \tau \alpha$, oi $\delta \grave{\epsilon} \pi$ то入入oi каi $\delta \eta \mu о \tau \iota \kappa о i$
 ovбı, каi $\pi \epsilon ́ \mu \psi \alpha \nu \tau \epsilon s$ т $\rho o ̀ s ~ M i ̀ \omega \nu \alpha ~ \tau o ̀ \nu ~ \dot{\alpha} \rho \mu о \sigma \tau \eta े \nu ~$

II. 1

$\alpha \nu$ каì $T \epsilon \lambda \epsilon[\sigma \eta ́ \gamma] о \rho o \nu$, oùs каi $\sigma u \lambda \lambda \alpha \beta \grave{\omega} \nu \quad \Phi \alpha ́ \rho \alpha \xi$ ó

Col. ii.

oт $\pi \omega \sigma \epsilon \kappa \pi о \lambda \epsilon \mu \omega[$. $] \tau[$. $] \sigma \epsilon \mu \epsilon \epsilon \sigma o v \nu \gamma \alpha \rho o \iota$
$\mu \epsilon \nu \alpha \rho \gamma \epsilon \iota о \iota \kappa \alpha \iota \beta$ о! $\omega \tau[$ [. $]$ ушт $\alpha \iota \tau о \nu \sigma \lambda \alpha \kappa \epsilon[$
$\delta \alpha \iota \mu \nu \nu \iota 0 v \sigma о \tau \iota \tau \circ \iota \sigma \epsilon \nu \alpha \nu[$. . $] \sigma \tau \omega \nu \pi 0 \lambda \epsilon \iota \tau \omega \nu$ $10 \alpha \nu \tau 0 \iota \sigma \epsilon$ Х $\rho \omega \nu \tau 0 \phi \iota \lambda o \iota \sigma[.] \iota \delta[] \nu \tau \alpha \iota \sigma \alpha \theta \eta \nu \alpha \iota \sigma \epsilon \pi \iota[$
$\theta v \mu о v \nu \tau \epsilon \sigma \alpha \pi \alpha \lambda \lambda \alpha \xi \alpha \iota \tau[. ~.] \sigma \alpha \theta \eta \nu \alpha[.] \sigma v \sigma \tau \eta \sigma \eta[$
$\sigma \nu \chi \iota \alpha \sigma \kappa \alpha \iota \tau \eta \sigma \epsilon \rho \eta \nu \eta \sigma \kappa \alpha \iota[.] .0 \alpha \gamma \alpha \gamma \epsilon \iota \nu \epsilon \pi \iota \tau о \pi \circ$ $\lambda \epsilon \mu \epsilon \iota \nu \kappa \alpha \iota \pi[.]. v \pi \rho \alpha[.] \mu 0 \nu \epsilon I \nu \ddot{\imath} \nu \alpha v \tau 0 \iota \sigma \epsilon \kappa \tau \omega \nu[$ $\kappa \circ \iota \nu \omega \nu \eta \chi \rho \eta \mu \alpha \tau \iota \zeta \epsilon \sigma[.] \alpha \iota \tau \omega \nu \delta \epsilon \kappa \circ \rho \iota \nu \theta \iota \omega \nu[$ ${ }^{15}$ о८ $\mu \epsilon \tau \alpha \sigma \tau \eta \sigma \alpha \iota \tau \alpha \pi \rho \alpha[$. .] $] \tau \alpha \oint \eta \tau 0 \nu \nu \tau \epsilon \sigma о \iota \mu \epsilon^{-}$
 $\nu \omega \sigma \delta \iota \alpha \kappa \epsilon \iota \mu \epsilon \nu 0 \iota \pi \rho \circ \sigma \tau 0 v \sigma \lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о \nu \iota 0 v \sigma \tau[$.
 $\kappa \lambda \eta \mu \alpha \tau \omega \nu \epsilon \nu \epsilon \kappa \alpha \pi \rho о \tau \epsilon \rho о \nu \alpha \rho \iota \sigma \tau \alpha \delta \iota \alpha \kappa \epsilon \iota \mu \epsilon \nu[$. . $20 \kappa \alpha \iota \mu \alpha \lambda \iota \sigma \tau \lambda \alpha \kappa \omega \nu \iota \zeta \omega \nu \omega \sigma \epsilon \xi \epsilon \sigma \tau \iota \kappa \alpha \tau \alpha \mu \alpha \theta \epsilon \iota \nu[$ $\epsilon \kappa \tau \omega \nu \kappa \alpha \tau \alpha \tau о \nu \pi \sigma \lambda \epsilon \mu о \nu \sigma v[\cdot] \beta \alpha \nu \tau \omega \nu \tau 0 \nu \delta \epsilon \kappa[.$. $\lambda \epsilon ו K о \nu \epsilon \kappa \epsilon \iota \nu 0 \sigma \gamma \alpha \rho о \tau \epsilon \mu \epsilon \nu \pi \epsilon \nu \tau \alpha \nu \alpha \ddot{a} \alpha \nu \epsilon \chi^{\omega} \nu$ $\epsilon \pi \circ \rho \theta \eta \sigma \epsilon \tau \omega \nu \nu \eta \sigma \omega \nu \tau \iota \nu \alpha \sigma \tau \omega \nu \epsilon \pi \alpha \theta \eta \nu \alpha \iota \circ[.] \sigma$ ои $\sigma \omega \nu 0 \tau \epsilon \delta \epsilon \mu \epsilon \tau \alpha \delta v 0 \tau[.] \iota \eta \rho \omega \nu \epsilon \iota \sigma \alpha \mu \phi \iota \pi 0 \lambda \iota^{-}$ ${ }_{25} \kappa \alpha \tau \alpha \pi \lambda \epsilon \nu \sigma \alpha \sigma \kappa \alpha \iota \pi \alpha \rho \epsilon[. ..] \nu \omega \nu \epsilon \tau \epsilon \rho \alpha \sigma \tau \epsilon \tau[..] \rho \alpha \sigma$ $\sigma v \nu \pi \lambda \eta \rho \omega \sigma \alpha \mu[.] \sigma \epsilon \sigma \iota \chi \iota \nu \nu \alpha v \mu[..] \omega^{-}$

ov $\sigma \alpha \sigma \pi \epsilon \nu \tau \epsilon \kappa[.] \epsilon \mu \psi \alpha \alpha \nu \tau \rho เ \alpha[. . ..] \alpha$
$3 \circ \mu \in \tau \alpha \delta \epsilon \tau \alpha \nu \tau \alpha[.] \epsilon \chi \omega \nu \tau \rho เ \eta \rho[. ..] \kappa \alpha \tau \alpha$
$\pi \lambda \epsilon v \sigma \alpha \sigma \epsilon \iota \sigma \theta \alpha \sigma[.] \nu \alpha \pi \epsilon \sigma \tau \eta \sigma \epsilon \tau \alpha \nu \tau \eta \nu \tau[.] \nu \alpha \theta \eta$ $\nu \alpha \iota \omega \nu 0 \iota \mu \epsilon \nu 00 \nu \nu \epsilon \tau \alpha \iota \sigma \pi 0 \lambda \epsilon \sigma \iota \tau \alpha \iota \sigma \pi \rho 0 \in \iota$
$\rho \eta \mu \in \nu \alpha \iota \sigma \delta \iota \alpha \alpha \nu \tau \alpha \pi 0 \lambda v \mu \alpha \lambda \lambda_{0} \nu \eta \delta \iota \alpha \phi \rho \nu \alpha$
$\beta \alpha \zeta о \nu \kappa \alpha \iota \tau о \chi \rho v \sigma \iota \circ \nu \epsilon \pi \eta \rho \mu \in \nu \circ \iota \mu \epsilon \iota \sigma \epsilon \iota \nu \eta[\cdot] \alpha^{-}$
35 тоv $\sigma \lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о \nu \iota \circ v \sigma 0 \delta \epsilon \mu \iota \lambda \omega \nu о \tau \eta \sigma \alpha \iota \gamma[$.
$\nu \eta \sigma \alpha \rho \mu о \sigma \tau \eta[.] \omega \sigma \eta \kappa о \nu \sigma \epsilon \tau \alpha \pi \alpha \rho \alpha \tau \omega \nu \alpha \theta \eta \nu[$.
$\omega \nu \sigma \nu \nu \pi \lambda \eta \rho \omega \sigma \alpha \mu \epsilon \nu 0 \sigma \tau \rho \iota \eta \rho \eta \delta \iota \alpha \tau \alpha \chi \in \omega[$. .

 $\theta \nu \mu 0 \hat{v} \nu \tau \epsilon s \quad \alpha \pi \alpha \lambda \lambda \alpha \dot{\xi} \alpha \iota \quad \tau[o \grave{v}] s$ ' $A \theta \eta \nu \alpha$ 'îous $\tau \hat{\eta} s \quad \hat{\eta}-$

 3
${ }_{15} 5$ oi $\mu \epsilon \tau \alpha \sigma \tau \eta \hat{\eta} \alpha \iota$ $\tau \grave{\alpha} \pi \rho \alpha ́[\gamma \mu] \alpha \tau \alpha$ گ$\eta \tau 0 \hat{v} \nu \tau \epsilon S$ oi $\mu \epsilon ̀ \nu$
 $\nu \hat{\omega} s \delta_{\iota \alpha к} i \mu \epsilon \nu 0 \iota \pi \rho o ̀ s ~ \tau o v ̀ s ~ \Lambda \alpha к \epsilon \delta \alpha \iota \mu о \nu i o u s, ~ T i \iota \mu o ́-$

 $\sigma \nu \mu \pi \lambda \eta \rho \omega \sigma \alpha ́ \mu[\epsilon \nu 0 s$ दे $\nu i ́ k \eta] \sigma \epsilon$ SíXıov $\nu \alpha \nu \mu[\alpha \chi] \bar{\omega} \nu$

 $\pi \lambda \epsilon \dot{v} \sigma \alpha s$ єis $\Theta \alpha ́ \sigma[0] \nu$ á $\pi \epsilon \sigma \tau \eta \sigma \epsilon \tau \alpha v ́ \tau \eta \nu \quad \tau[\hat{\omega}] \nu$ ' $A \theta \eta$ -

$\rho \eta \mu \epsilon ́ \nu \alpha i s$ סià тav̂ta $\pi 0 \lambda \grave{v} \mu \hat{\alpha} \lambda \lambda o \nu$ î $\delta i \alpha ̀ ~ \Phi a p \nu \alpha ́-$

 $\omega \nu, \sigma v \mu \pi \lambda \eta \rho \omega \sigma \alpha ́ \mu \epsilon \nu$ os $\tau \rho \iota \eta \prime \rho \eta$ סià $\tau \alpha \chi \epsilon ́ \omega[\nu$
$\epsilon \delta \iota \omega \kappa \epsilon \tau 0 \nu \delta \eta \mu \alpha \iota \nu \epsilon \tau 0 \nu 0 \delta \in \kappa \alpha \tau \alpha \tau 0 v \tau 0 \nu \tau[$.

$40 \tau \iota \kappa \eta \sigma \epsilon[$. . $] \delta \eta \delta \epsilon \pi \rho \circ \sigma \pi \lambda \lambda \epsilon v \sigma \alpha \sigma \epsilon \kappa \epsilon \iota \nu[.] \sigma \pi \rho o[$.

Col. iii (=A Col. iii with Frs. I and 2).
(Fr. i)

[.]є $\tau \kappa \kappa \rho \alpha \tau \eta \sigma_{[. ~ . ~ . ~ . ~ . ~ . ~ . ~ .] ~}^{[} \omega \sigma \alpha \nu \tau \omega \nu \tau \eta \nu \mu \epsilon \nu v$

5

$] \omega \nu \epsilon \iota \sigma \alpha \iota \gamma \epsilon \iota \nu \alpha \nu \mu \epsilon$
] $\epsilon \nu 0 v \nu \alpha \delta \rho о \tau \alpha \tau \alpha \tau \omega \nu$
]<тоvт@ $\sigma \nu \mu \beta \alpha \nu \tau \omega \nu$
]. $\epsilon \tau \circ v[.] \in \rho o v \sigma \tau \eta \mu \epsilon \nu$
10
${ }^{1} 5$

25
]є $\tau 0 \sigma 0 \gamma \delta 00 \nu \epsilon \nu \epsilon \iota \sigma \tau \eta \kappa \in \iota$
] $\alpha \rho о \sigma \tau \alpha \sigma \tau \rho \iota \eta \rho \epsilon \iota \sigma \alpha \pi \alpha$]кє $\delta \epsilon \kappa \alpha \tau \alpha \pi \lambda \epsilon ข \sigma \alpha \sigma \tau \alpha \sigma$
] $\epsilon \nu \in \tau v \chi \epsilon \nu \gamma \alpha \rho \alpha \iota \epsilon i \tau 0 v$
]кєvaкшбך $\nu \nu \epsilon \omega \rho \iota \alpha$
] $\sigma о \pi о \nu \sigma v \nu \epsilon \pi \epsilon \iota \pi \tau \epsilon \nu^{\prime}$
]т $\quad \nu \delta \epsilon \phi \alpha \rho \nu \alpha \beta \alpha\} \circ \nu \alpha$
] $\pi \alpha \rho \alpha \gamma \epsilon \nu \in \sigma \theta \alpha \iota \beta o v \lambda о$
] $\alpha \iota \kappa \alpha \iota \mu \iota \sigma$ Өор $\alpha \pi о \lambda \alpha$
] $\rho 0 \sigma \mu \epsilon \nu$ оvข $\alpha v \tau 0 v \delta \iota \epsilon$
]є $\delta \alpha \iota \mu 0 \nu \iota \omega \nu \kappa \alpha \iota \tau \omega^{-}$
] $\nu \alpha \nu \alpha \rho Х \varnothing \sigma \epsilon \kappa \lambda \alpha \kappa \epsilon$
] $\nu \alpha \rho \chi \in \lambda \alpha i ̈ \delta \alpha \kappa \alpha \tau \alpha$

] $\alpha \nu \eta \in \sigma \epsilon \iota \sigma \kappa \alpha \nu \nu 0 \nu \omega \nu$
]кı $\alpha \sigma \alpha \iota \delta \epsilon \lambda \epsilon \iota \pi \quad 0 \sigma \alpha \iota$
] $\alpha \sigma \alpha \kappa \tau \omega \nu о \sigma \iota \delta \omega \nu \iota \sigma \sigma$

] $\rho \iota \tau \eta[.] \nu \alpha v \alpha \rho \chi \iota \alpha \nu \alpha \rho$

Col. iii.

]ov $\lambda \tau \sigma \lambda \alpha \beta \in!\varphi[\cdot[\cdot] \alpha \tau$
] . $\left.\left.\nu \delta \epsilon \pi \rho_{C}^{\cdot} \cdot\right] \cdot[\cdot \cdots]\left[\cdot[\cdot] \mu \epsilon_{c}^{e} \cdot\right]\right] \nu \phi \iota \lambda[[\cdot] \alpha \nu$
]. ${ }^{\circ} \sigma \alpha \pi \epsilon \pi \epsilon \mu \psi \epsilon \nu \omega[.] \beta \alpha \sigma \iota \lambda \epsilon|\alpha \sigma|[[. ~ . ~.] \alpha$

Col. iv (=A Col. iv).
25 lines lost
26 . [

- [
$\alpha[$
$\phi \epsilon[$
$30 a \cdot[$
π [
β. [
т $\alpha[$. .] $]$ a[
точтa[
35 apx[.] $\operatorname{lv}[$
кoveïवг[
$\sigma \iota \nu \tau \alpha \sigma \mu[$
[. $] \omega \sigma \pi \nu \pi \rho[$
[. .] $] \in \kappa \in \lambda$ [
$40 \nu \omega y o u \delta[$
€Xоעтєб[

842. THEOPOMPUS (OR CRATIPPC'S), HELLENICA ${ }^{151}$
 30

[$\sigma \epsilon$. то̀vê ФарvaßáSov кaì тои̂ hó-

[.] т ω ข $\pi \rho a \gamma \mu a ́ \tau \omega \nu ~ o ̀ s ~$

[.]. os $\left.\dot{\alpha} \pi \epsilon \in \pi \epsilon \mu \psi \epsilon \nu \dot{\omega}[s] \beta \alpha \sigma \lambda \lambda \epsilon ́ \alpha ~ \sigma_{i} . ..\right] \alpha-$

[............. à] $] \pi \gamma \gamma \epsilon i ́ \lambda \alpha s$ $\delta \grave{\epsilon} \tau \grave{\alpha} \pi[.] \epsilon \alpha \sigma \alpha[. ~]$.
Col. iv.

Col. v (=B Col. i with Fr. 3).
Plate IV.
2nd hand
] $\sigma \tau \iota \circ \nu \cdot \eta \mu \epsilon \nu[.$.

] $\iota \sigma \quad \alpha \gamma \eta \sigma \iota \lambda \alpha[..] \delta \epsilon$
]ढт ρ атот[.] $0_{0} 0^{-}$
] $\kappa \alpha[$.$] .] \rho$
] $\tau \alpha 0 \rho \eta \tau \alpha \xi<\alpha \mu$
Jov $\tau \alpha \nu \tau \eta \pi \alpha \lambda \iota^{-}$
] $\cap \sigma \tau о \iota \alpha \cup \tau \eta \iota \phi \theta \alpha$
] $\sigma \tau 0 \sigma \tau \rho \alpha \tau о \pi \epsilon \delta о \nu$
] $\epsilon \iota \cdot \tau \iota \sigma \sigma \alpha \phi \epsilon \rho[\cdot] \eta \sigma$
] λ คov $\theta \epsilon \iota \tau 0 \iota \sigma \epsilon \lambda \lambda \eta[\cdot] \iota \nu$
]кьбхıлıоибка[.] $] \mu \nu$
] $\cup \kappa \in \lambda \alpha \tau \tau \div 0 \sigma$
] $\sigma \alpha \mu \epsilon \nu 0 \sigma \chi \alpha \lambda \epsilon$
] $v \sigma \epsilon \kappa \pi \alpha \rho \alpha \tau \alpha$
$] \pi \epsilon \rho \in \chi$ Х $\nu \tau \alpha \sigma^{*}$
] $\lambda \omega \sigma \kappa \alpha \iota к \rho \alpha$
] $\sigma \tau \rho \alpha \tau \eta \gamma \iota \alpha \sigma$
] $\sigma \alpha, \tau \alpha \mu \alpha \chi \in \sigma \theta \alpha$
] $\oplus \nu \sigma \tau \rho \alpha \tau \epsilon \nu \mu \alpha$
] $\sigma \alpha \sigma^{*}$ о८ $\delta \in \beta \alpha \rho \beta \alpha$
] $\epsilon \sigma \kappa \alpha \iota \sigma v \nu \tau \epsilon \tau \alpha$
€ХХоขтєбтобои
] $v \nu \alpha \tau о \sigma \alpha \phi о \rho \mu \alpha^{-}$
] $\tau \epsilon \delta \delta 0 \nu \tau 0 \cup \sigma \epsilon \lambda \lambda!$
]vтєт $\eta \nu \pi о \rho \epsilon \iota \alpha \nu$
]кат $\alpha \phi \rho о \nu \in \iota \nu$
ϵ
] $\nu \tau \alpha \sigma \alpha \cup \tau 0 v \sigma$
]гоvбт $\rho \alpha \tau \in$
$] \pi \rho \circ \sigma \beta \alpha \lambda о \boldsymbol{\varphi}$

Col．v．
］，єíoìv ס̀̀ кa［．．． $\tau \hat{\omega}] \nu \quad i \pi \pi \epsilon ́ \omega \nu \quad[.$. ］，ヒ้viol δ € $\pi \rho[.$.
］otiov．$\dot{\eta} \mu \mathrm{e} \nu$［ 0 ờ ν тolaútn κ［．．］$]$［．
］ıs．＇$A \gamma \eta \sigma i ́ \lambda \alpha[o s] \delta^{\prime}{ }^{\prime} \quad 2$
тò $\sigma \tau \rho a \tau o ́ \pi{ }^{\prime} \epsilon_{j}^{\prime} \delta o \nu$
$\tau \grave{o}] K a[\dot{v} \sigma] \tau \rho \iota-$
$[0 \nu \pi \in$ Sion
10 ［ $\nu 0 \mathrm{~S}$
［ $\sigma a s$
$[\delta \stackrel{\rightharpoonup}{\epsilon}$

$20[\hat{\epsilon} \tau \alpha \xi \in \nu$＇ُ $\nu \pi \lambda \iota \nu \theta i ́ \varphi$ тò $\sigma \tau \rho \alpha ́ \tau \epsilon \nu \mu \alpha$ ．．$\lambda \omega s$ каì $\kappa \rho \alpha$－
［ τ ］$\sigma \tau \rho \alpha \tau \eta$ үías
］$\sigma \alpha \nu \tau \alpha \mu \dot{\alpha} \chi \epsilon \sigma \theta \alpha \iota$
］$\omega \nu \quad \sigma \tau \rho \alpha ́ \tau \epsilon \nu \mu \alpha$ ］$\sigma \alpha$ ，oi δ §̀ $\beta \dot{\alpha} \rho \beta \alpha$ ．

25 （pol
$[\gamma \mu \epsilon \in \nu$
$[\tau$
［ $\nu \alpha s$
3°
］єs каi $\sigma v \nu \tau \epsilon \tau \alpha$－

$\kappa \alpha] \tau \in i ̂ \delta o \nu$ тoùs＂E入入 η－
o］uैтє $\tau \eta े \nu \pi о \rho \epsilon i ́ a \nu$
］$\kappa \alpha \tau \alpha \phi \rho о \nu \epsilon i \nu$
］$\nu \tau \in S$ aúzov̀s
］$\tau 0 \hat{v} \sigma \tau \rho \alpha \tau \epsilon \cup ́-$
］$\pi \rho \circ \sigma \beta \alpha \lambda o \nu-$

Plate IV．
VI． 1
B．C． 395
］$\tau \dot{\alpha}$ b́p $\tau \tau \alpha \xi \alpha \mu \epsilon-$ ］ovs，тaúт！π สá入ıv ］ךs тolaútŋ $\eta \theta \dot{\alpha}$－ ］s тò $\sigma \tau \rho \alpha \tau o ́ \pi \epsilon \delta \delta \nu$

є́ $\pi \eta \kappa 0] \lambda o v ́ \theta \epsilon \iota$ тоîs＂$E \lambda \lambda \eta[\sigma] \iota \nu$
3
2

\square －

55
(Fr. 3)
$\lambda \oplus[$
$\pi \div T[$
$\eta \boldsymbol{\gamma}[$
$\bar{\delta} \delta \dot{\delta}[$
$\epsilon!$ [
$\tau \in[$
$\lambda \alpha[$
!
[

- [
[
$k a[$
π. [
$o t$. [
ϵ. [
o. [
.

$$
\begin{aligned}
&] \omega \theta \epsilon \nu \tau 0 \cup!\pi!^{-} \\
& \text {] } 0 \nu \pi \rho \circ \sigma \epsilon \tau \alpha \tau \\
& \text {] } \tau 0 v \sigma \delta \epsilon \pi \epsilon \lambda о \pi 0^{-} \\
& \text {]! } \pi \rho \circ \sigma \eta \gamma \in \pi \text { ? } \\
& \text {]. } \omega \rho \alpha \tau 0 v \sigma \epsilon \lambda \lambda \eta \\
& \text {] } \lambda \epsilon \circ \nu \alpha[. \cdot] \omega \nu \alpha \epsilon \iota \\
& \text {] } \mu 0 \uparrow \omega \sigma \epsilon[. .] \delta \iota \epsilon \\
& \text {] } \varphi \in \gamma \gamma v \tau \epsilon \rho \omega \iota \mu \alpha \lambda \\
&] \delta \epsilon \nu \alpha \lambda \lambda \eta \tau o \nu[\text {. } \\
& \text {] } \gamma \alpha \rho \alpha \mu \phi о \tau \epsilon \rho[. \\
& \text {]єт[.]троїог[.. . }
\end{aligned}
$$

$$
\begin{aligned}
& \text {] } \tau \in \boldsymbol{\epsilon} \mu[\text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text {]. } v[. . \\
& \text {] } \alpha \tau[\cdot] \cdot \mu \alpha[. . \\
& \text {]! } \pi \text { ого[. . } \\
& \text {] } \alpha \rho \alpha \sigma \kappa \epsilon \nu \alpha[. \\
& \text {]eovбเขaт!!и• [. . - } \\
& \text {]ra[.]! } \mu \text { ovat[. . . . } \\
& \text {] } \omega \nu \eta \nu \pi о \lambda \lambda[\cdot . \\
& \text {]ßоилє } \boldsymbol{v \sigma} \circ \mu[\text {. . . }
\end{aligned}
$$

$$
\begin{aligned}
& \text {]vo七тเขє!a[. . } \\
& \text {] } ల \sigma \epsilon \gamma \nu \omega \kappa \alpha \text {. [. .] } \\
& \text {]. } \tau \omega \nu \tau \eta \sigma \nu v \kappa \tau[. .] \\
& \text {]o } \pi \lambda \epsilon \epsilon \tau \alpha \sigma[\text {. . . }]
\end{aligned}
$$

$\xi \in \nu 0 \kappa \lambda \epsilon \alpha[.] \pi \alpha \rho \tau \iota \alpha \tau \eta \nu \pi[$.
$\beta a \delta \iota \zeta о \nu \tau \epsilon[.] \kappa \alpha \tau \alpha \nu \tau 0 v \sigma[$.

Col. vi.
Plate IV.

$\beta a \delta i j o \nu \tau \epsilon[s]$ кaт' aủzov̀s

$\omega \sigma \epsilon \omega \theta \epsilon \sigma \alpha$. $\nu \alpha \cup \cup \tau \omega \nu \pi \rho \sigma \sigma \epsilon \beta \alpha \lambda \lambda$. . . $\tau 0 \sigma \sigma \epsilon \lambda \lambda \eta$

10 $\epsilon \pi \epsilon \iota \delta \eta \kappa \alpha \iota \rho[$. . . .] $\epsilon \lambda \alpha \beta \epsilon \nu \epsilon \iota \nu \alpha \iota \tau о \iota \sigma \pi 0 \lambda \epsilon \mu \iota \circ \sigma \epsilon \pi \iota$
$\chi \epsilon \epsilon \rho \epsilon \nu^{\cdot} \alpha \nu \alpha\left[\right.$. . . $\alpha \sigma \epsilon \kappa \tau \eta \sigma \epsilon \nu \epsilon \delta \rho \alpha \sigma \tau 0 \nu \sigma \pi \epsilon \lambda о \pi 0^{-}$
$\nu \eta \sigma \iota v \sigma \epsilon \omega \theta[$. . . .] $\rho \mu \omega \tau \tau \omega \nu \delta \epsilon \beta \alpha \rho \beta \alpha \rho \omega \nu \omega \sigma \epsilon i \delta \sigma \nu \epsilon$
 $\tau о \pi \epsilon \delta \iota o \nu \cdot \alpha \gamma[$. . .] $\alpha 0 \sigma \delta \epsilon \kappa \alpha \tau \iota \delta \omega \nu \pi \epsilon \phi \circ \beta \eta \mu \epsilon \nu 0 v \sigma \alpha v$
${ }^{15}$ тоvбєтє $\mu \pi \epsilon \nu \alpha \pi о т о \nu \sigma \tau \rho \alpha \tau \epsilon \nu \mu$ тобтоибтєкоифоиб
 ${ }_{0!} \ell \epsilon \mu \epsilon \tau \alpha \tau \omega \nu \epsilon \kappa \tau \eta \sigma \epsilon \nu \in \delta \rho \alpha \sigma \alpha \nu \alpha \sigma \tau \alpha \nu \tau \epsilon \sigma \epsilon \nu \epsilon \kappa \epsilon \ell \varphi \tau 0$ $\tau \omega \nu \beta \alpha \rho \beta \alpha \rho \omega \nu[\cdot] \quad \epsilon \pi \alpha \kappa о \lambda o \nu \theta \eta \sigma \alpha \nu \tau \epsilon \sigma \delta \epsilon \tau о \circ \sigma \pi о \lambda \epsilon \mu[\cdot] /] \sigma$

$20 \nu \epsilon \operatorname{L\nu \epsilon \alpha \nu \tau ov\sigma \alpha \tau \epsilon \tau [.]!\pi о\lambda \lambda \omega \nu [.~.]~.~\epsilon \omega \nu о\nu \tau \omega \nu \kappa \alpha \iota \gamma v}$ $\mu \nu \eta \tau \omega \nu \cdot \kappa \alpha \tau \alpha \beta \alpha \lambda \lambda о \nu \sigma \iota \nu \mu \epsilon \nu[$. . $] \tau \omega \nu \pi \epsilon \rho \iota \epsilon \xi \alpha \kappa \circ \sigma \iota$

$\tau \epsilon \sigma \delta \epsilon \phi \nu \lambda \alpha \kappa \eta \nu \cdot$ ov $\sigma \pi o v \delta \alpha \mu[$. . .] $\alpha \Theta \epsilon[. ~ . ~.] \sigma \alpha \nu \cdot \tau \alpha \chi \epsilon$

 $\nu о \mu \epsilon \nu \eta \sigma \delta \epsilon \tau[. ~.] \mu \alpha \chi \eta \sigma \tau о \iota \alpha \nu[\cdot] \eta \sigma о \iota \mu \epsilon[$. . $]$] β ароьк α $\tau \alpha \pi \lambda \alpha \gamma \epsilon \nu \tau \epsilon \sigma[$. . . $] \epsilon \lambda \lambda \eta \nu \alpha \sigma \alpha \pi \epsilon \chi \omega \rho \eta \sigma[. ~ . ~ . ~ . ~.] \tau \omega \tau \iota \sigma ~$
30 $\sigma \alpha \phi \epsilon \rho \nu \epsilon \iota \pi \rho \sigma \sigma \tau \alpha \sigma \sigma \alpha \rho \delta \epsilon \iota \sigma \alpha \gamma \eta \sigma \iota \lambda \alpha 0 \sigma \delta \epsilon \pi \epsilon \rho[$ [. . $] l \nu \alpha \sigma \alpha v$

 $\gamma \eta \nu \alpha \pi \alpha \sigma \alpha \nu \epsilon[$. . . $] \eta \sigma \epsilon \nu \pi \rho \circ \eta \gamma \epsilon \nu \tau \sigma \sigma \tau \rho[$. . .] $] \mu \alpha \epsilon \iota \sigma$
 ovкєтוซvעтєт $\alpha \gamma \mu \in \nu 0 v \sigma \epsilon \chi \omega \nu \epsilon \nu \tau \omega \pi \lambda[\cdot] \nu \theta \epsilon \epsilon \omega \tau 0 \nu \sigma$

 $\sigma \iota \nu$, oi δ^{\prime} ' $\pi \epsilon[$. . . .] $]$ vov aútoús, oi $\delta \grave{\epsilon} \kappa[\alpha] \tau \grave{\alpha}$ tò $\pi \epsilon$ -

 тò $\pi \epsilon \delta i ́ o \nu$. 'A $\gamma[\eta \sigma i ́ \lambda$ 'aos δ '̀ катiठ̀̀v $\pi \epsilon \phi о \beta \eta \mu \epsilon ́ \nu o u s$ aủ-

$20 \nu \epsilon \tau \nu \quad\{\epsilon\} \alpha u ̉ \tau o u ̀ s \alpha^{\alpha} \tau \epsilon \tau^{\prime} \hat{\omega} \nu \quad \pi 0 \lambda \lambda \hat{\omega} \nu[i \pi] \pi \epsilon \epsilon \omega \nu$ óv $\tau \omega \nu$ каi γv -

 тò тò $\sigma \tau \rho \alpha \tau o ́ \pi \epsilon \delta \delta \nu$ тò $\tau \hat{\nu} \nu \beta \alpha[\rho \beta \alpha ́ \rho] \omega \nu . \quad[\kappa \alpha] \tau \alpha \lambda \alpha \beta o ́ \nu$ -

 $\gamma \hat{\eta} \nu \stackrel{\alpha}{\alpha} \pi \alpha \sigma \alpha \nu$ є̈ $[\pi o ́ \rho \theta] \eta \sigma \epsilon \nu, \pi \rho \circ \hat{\eta} \gamma \epsilon \nu$ тò $\left.\sigma \tau \rho_{[}^{\prime} \alpha \tau \epsilon\right] \nu \mu \alpha$ єis

 $\nu \eta s$ ס̀̀ $\pi v \theta o ́ \mu \epsilon \nu 0 s$ тoùs "E[ג入ךvas $\beta] \alpha \delta i ́ j \epsilon \iota \nu$ єis тò $\pi \rho o ́ \sigma \theta \epsilon\langle\nu\rangle$

ор $\omega \nu \tau \omega \nu \delta \iota \alpha \mu \in \sigma о \nu \kappa \epsilon[.] \tau \eta[.] \kappa \alpha \iota \tau \eta \sigma$
$\phi \rho v \gamma \iota a \sigma \epsilon \pi \epsilon \iota \delta \eta \delta \epsilon \delta \iota \epsilon \pi \circ \rho$.] $\alpha \sigma \epsilon$

$\nu \omega \nu \eta \tau \omega \nu \epsilon \nu \phi \rho v \gamma \iota \alpha \mu \epsilon \iota \sigma \tau \eta[$.
$\epsilon \iota \sigma \theta \alpha \lambda \alpha \sigma \sigma \alpha \nu \pi \alpha \rho \alpha \pi \rho \iota \eta \nu \eta \nu \kappa[$.
$\tau о \pi \epsilon \delta \epsilon \cup \sigma \alpha \sigma \delta \epsilon \tau 0 \cup \sigma \pi \epsilon \lambda о \pi[$.

$50 \mu о \nu \eta \mu \eta \kappa \alpha \iota \beta \alpha \delta_{\iota} \xi \epsilon \iota \nu \epsilon \pi \iota \kappa \in \lambda \alpha[.] o. v \sigma \sigma$
$\sigma \tau \rho \alpha \tau \iota \omega \tau \alpha \sigma \alpha \pi \alpha \gamma \epsilon \iota \nu \omega \sigma \delta \epsilon \sigma v \nu \epsilon \beta[.] \mu \eta$
$\gamma \epsilon \iota \nu \epsilon \sigma \theta \alpha \iota \kappa \alpha \lambda \alpha \tau \alpha \ddot{\epsilon} \rho \rho \alpha \pi \epsilon \rho \iota \mu \epsilon[.] \nu \alpha[.] \in \eta \mu \epsilon$
$\rho \alpha \nu \eta \nu \pi \alpha \rho \in \gamma \in \nu \in \tau о \kappa \alpha \iota \tau \eta \nu \in \pi \iota \circ[.] \in \nu \tau 0^{-}$
Col. vii (=B Col. iii with Frs. 4-6 and Fr. 7 Col. i).
(Fr. 4)
[. .] $\lambda_{\lambda \alpha \sigma \sigma \mu є \nu о v[. ~}^{\text {. }}$
[. .]סроvка $\lambda_{0 \nu \mu є \nu o[. ~}^{\text {. }}$

к[. .] . $\delta \in \beta a \sigma \iota \lambda \epsilon v \sigma ~$
5. [. .]єрьтоито⿱㇒

ı 10 лог. .]. $\delta \iota \chi$.
$\mu \epsilon[$
c!̣!
$\sigma v[. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~] ~. a \phi ~[~[~$
or[.] $\epsilon \rho \xi!\eta[$
${ }^{1} 5$ $\delta 1 \alpha[.] \alpha \pi \alpha \rho[$ (Fr. 5)

єis $\theta \alpha ́ \lambda \alpha \tau \tau \alpha \nu \pi \alpha \rho \alpha ̀ ~ \Pi \rho ı \eta ́ \nu \eta \nu ~ к[\alpha i ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ к \alpha \tau \alpha \sigma \tau \rho \alpha-~$

Col. vii.


```
    \sigma\alpha[....]\tau\epsilon\beta\alpha\sigma\iota\lambda\epsilonv\sigmao\mu0\lambdaо\gammaovv|\tau[. .] ]\alpha\lambda\iota\sigma\tau[
```



```
20 \pi\alpha\nu\tau\omega\nu\kappa\alpha0\alpha\tau\iota0\rho\alpha [. . . . .]v\tauovк\alpha[.] . . [
    \sigma\sigma\epsilon\pi\epsilon\ell\delta\etaк\alpha\tau\alpha\alphaф[. . . . . . .]\gamma\iota\alpha\nuк\alpha\iota\lambda\nu\delta[
    \tauo[. . . .]\epsilon\nu\alpha\nu\epsilon\pi\epsilon\mu\psi [. . . . . .]0\lambda\alpha\sigma\alpha\sigma\epsilon\phi\epsilonө,[
    \rho\alpha[. . . . . .]!\pi\rhoo\sigma\alpha\rhol[[. . . . . .]\sigma\sigma\alpha\phi..]\rho\nu\eta[
    \epsilon\pi[. . . . .]o\pi\rhoо\sigma\mu\epsilon. [. .]\alpha\iotaov'\omega\sigma\alpha . [
25 \sigma\tau . [. . . . .]\ג \alpha\betaє\iota\nu\epsilonк\epsilon\varphi[.. .]\alpha\iota\delta[
    \epsilonv[. . . . . . .]v\tauov\gamma\epsilon[. . .]\tau\alpha\iota[
    \pi\epsilon[. . . . . . .]pou\tauo[. . . . .]ov[
    \lambda\omega[. . . . . . .] . \nu\epsilon[.]\epsilon\lambda\lambda\epsilon\epsilon\nu\eta\chi[
    \sigma\iota\varphi[. . . . . . . . . . .]\ell0\rho\alphav\sigma[
    (Fr. }7\mathrm{ Col. i.)
30 \tau\alpha . [. . . . . . . . . . . .]\tau[.
] \delta\epsilon
    \deltao . [. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .]\tau\eta\sigma
    \alpha\piокрє[. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .] ][. .
    \rho\iota}!\sigma0[
    отот\in\propto[
                                (Fr. 6)
35 ф\epsilon\rho\nu\eta[. .]\pi\epsilon\sigma\tau\tau\epsilon\\lambda\epsilon\nu\tau][[ . . . . . . .]o\alpha\rho|[[. . . . . . . . . .`.0
    \alpha\rho[.]\alpha[.]o\sigma\epsilon\iota\sigma\sigma\alpha\rho\delta\epsilon\iota\sigma\tauo|[. . . . . . . . .]\rho\nuov[
    va!o\sigma\tau\iota\sigma\sigma\alpha\phi\epsilon\rho\nu\eta|[. . . . . . . .]. \rho\iota\alpha . [
    \beta\epsilon\lambda\tau\iota\iota\sigma\tauо\iota\tau\omega\nu\sigma\tau\tau\rho[. . .]\gamma\omega[[. . .] . \iota\alpha\nu\epsilon\tau\epsilon . [
    \deltav\nu[..]\epsilon\rhoо\nu\epsilon\xi\epsilon\epsilon\nu\tau[. .]\alpha\tau\alpha\tau\eta|[.]\sigma\alpha[.]\rho\alpha\pi\iota\alpha[
40 оук\alpha[.]!\eta\mu\epsilon\nuоv\pi\epsilon\rho[[.]\eta\nu\mu\alpha\gamma\nu|[.]\sigma[.]\alpha\nu\epsilon\epsilon\mu![
    \tau\omega\nu[. .]}\omega[.]\kappa\alpha\iota\tau\omega\nu\iota\pi\pi\epsilon\omega|[[. . .] . }
    \epsilon[. . .]o\nu\delta[. .] }<\epsilon\iota\mu\epsilon\nu\nuv
    \lambda[.]v\sigma\alpha\lambda\lambda\eta\pi0![. .] . \alpha . [
    \betaov\lambdaо\mu\in\nuо\sigma\delta[. .]\pi[.] . [
45 \sigma\tau\rho\alpha\tau\epsilonv\mu\alpha\tau\alpha[.].
```

Col. viii (=Fr. 7 Col. ii).
[
[. . . .] $][$
[. . .] $\pi \rho o[$

```
84.2. THEOPOMPUS (OR CRATIPPUS), HELLENIC
    \sigma\alpha[. . .]\tau\epsilon \beta\alpha\sigma\iota\lambda\epsilon\grave{S \delta}\mu0\lambdaо\gammaov\nu\tau[ . .] }\mu\alphá\lambda\iota\sigma\tau[
```



```
20 \pi\alpháv\tau\omega\nu к\alpha0' à Ti0\rho\alpha[v́\sigma\tau\etas a]v̉\tauòv к\alpha[.]. .[
    \partial̀s \epsiloṅ\pi\epsiloni\delta\etaे к\alpha\tau\alpha\phi[..... \Phi\rhov]\gammai\alpha\nu к\alphai \Lambdav\delta`í\imath\nu
```



```
    \rho\alpha[. . . . .] \pi пòs 'A\rho\iota[\alphaîo\nu Tl]\sigma\sigma\alphaф'\epsiloń'}\rho\nu\eta[
    \epsiloń\pi[. . . . ]o \pi\rhoòs M\epsilon[..]a\iotao\nu ís a . [
```



```
    \epsilonv[. . . . . . .]v\tauov \gamma\epsilon[. . .]\tau\alpha\iota[
    \pi\epsilon[. . . . . . .]vov\tauo[. . . . .`ov[
```



```
    \sigma\iotav[. . . . . . . . . T]\iota0\rhoav́\sigma[\tau
30 \tau\alpha . [. . . . . . . . . . . .]\tau[. . . . . . . . . . . . . . . . . . .] \delta\epsilon
    \deltao . [. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T T\etas
    аттокрє[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .] . [.
    \rhoi}}\in\sigma0[\alpha
    отоо́тє а[. . . . . . . . . . . . . . . . . . . . . . . . . . . T\iota\sigma\sigma\alpha-
35 ф'́\rho\nu\nu[. \alpha}]\pi\boldsymbol{\epsilon}\sigma\tau\epsilon\epsilon\lambda\epsilon\nu \tau[. . . . . . .]o \alpha\rho[. . . . . . . . . . .]o
    'A\rho[l][\l]os \epsilonis \sum'áp\delta\epsilon\iotas \tauo[. . . . . . . .]ovovi. . . . . . . \deltav-
    va\tauòs T\iota\sigma\sigma\alphaф\epsilońp\nu\eta`. . . . . . . .]. p\iota\alpha . [
    \beta\epsiloń\lambda\tau\iota\sigma\tauo\iota \tau\hat{\omega}\nu \sigma\tau\rho, а\tau\eta]\gamma\hat{l}[\nu. .]. \iota\alpha\nu '̇\tau\epsilon . [. . . . ák\iota\nu-
```



```
    \tau\hat{\omega}\nu [\pi\epsilon]\zeta\hat{\omega}[\nu] к\alphaì \tau\hat{\omega}\nu i\pi\pi\epsilon\epsilon\omega}\mp@subsup{}{L}{`}\nu. . .]\omega \pi\rho\rho[
    \epsilon[...]o\nu \delta[\iota\alpha]к\in\iota\mu'́\nu\nuv[
        a้\lambda-
    \lambda[o`vs ä\lambda\lambda\eta \pioc[. .] . \alpha\nu[
    \betaov\lambdaó}\mu\in\nu0\mathrm{ 人 ס[..]T[.] . [
45 \sigma\tau\rho\alphá\tauєv\mu\alpha \tau\alpha[.]. [
```\(16!\)

Col. viii.
2 lines lost
\[
\begin{aligned}
& {[\ldots] \nu[} \\
& {[\ldots . . .] \pi \rho o[}
\end{aligned}
\]
 \(5 \pi \alpha \rho \tau \alpha \xi[\)
 \(\tau \alpha \eta \mu \epsilon \rho \alpha[\)
 avтova[
 \(\gamma \iota \alpha \sigma \epsilon \pi\llcorner\alpha[\)
 тоעт \(\iota \theta_{\rho}[\)
\(10 \phi \epsilon \rho \nu \eta \sigma[\)
 \(\pi \rho \alpha \xi \iota \nu \alpha[\)
 \(\kappa о \delta о \mu \epsilon[\)
 \(\pi о \lambda \epsilon \omega \sigma\). [
 シ̈тот \(\omega \underline{[}\)
\(15 \cdot \epsilon \beta \alpha \delta[\)
 \(\tau \omega \tau \iota \theta \rho \alpha[\)
 \(\sigma[\cdot] \alpha \iota \pi \alpha \rho \alpha[\)
 \(\epsilon \pi \iota \sigma \tau 0 \lambda \alpha[\)
 \(\pi \rho о \sigma \tau \eta \nu \alpha[\)
20 тเабката. [
 - \(\epsilon \mu \epsilon \iota \lambda \eta[\)
 廿абкаıта. [
 \(\tau \eta \rho \in \nu \in \iota \sigma[\)
 \(\alpha \rho \iota \alpha!0 \nu \in[\)
\({ }_{2} 5 \tau \alpha \delta \epsilon \tau \alpha v[\)
 Sıaтрєı \(\beta \omega{ }_{[}\)
 \(\iota \mu \alpha \tau \iota \alpha \tau[\)
 \(\nu 0 \nu \sigma \nu \nu \alpha \rho[\)
 к \(\alpha \iota \mu \epsilon \tau \alpha \pi[\)
30 [. .] \(]\) o! . \(\nu!\pi[\)

 \(\mu \in \nu\). [
 т \(\eta \sigma \delta[\)
 \(\epsilon \lambda \epsilon \underline{\gamma}[\)
\(35 \tau[]!.\beta \alpha[. ..] \epsilon \omega \sigma[\)
 \(\tau \alpha[\cdot] \sigma \in \pi \iota \sigma \tau 0 \lambda[\)
 [. .] \(] \tau o \beta v \beta \lambda[\)
 [. .] \(] \tau \epsilon \nu \beta \alpha \sigma \iota \lambda\) [

842．THEOPOMPUS（OR CRATIPPUS），HELLENICA 163
\[
\begin{aligned}
& \tau \alpha \text { 市 } \mu \text { ढ́ } \rho a[s \\
& \text { aủ̇òv a } \Phi \rho u \text { - } \\
& \text { rias }{ }^{\epsilon} \pi เ a[\\
& \text { тòv Tit } \theta \text { [aúa }{ }^{2} \eta \nu \\
& 10 \text { фéplqs [} \\
& \pi \rho a \hat{\xi} \iota \nu \quad \alpha[\text { oi- } \\
& \text { ко } о о \mu \epsilon[\text { ì } \\
& \text { то́лє } \boldsymbol{\omega} \text {. [} \\
& \text { ப่ாò } \tau \omega \bar{\omega} \text { [} \\
& { }^{1} 5 \cdot \epsilon \beta \alpha \delta\{ \\
& \tau \hat{\varphi} \text { Tit } \quad \text { a }[\tilde{\sigma} \sigma \tau \eta \\
& \sigma[.] \alpha \iota \pi \alpha \rho a[\\
& \text { '́тाбто入à[s } \\
& \pi \rho o ̀ s ~ \tau \grave{̀} \nu \quad a[\\
& 20 \text { tıas ката. [} \\
& \text {. } \epsilon \text { M } \lambda \lambda \eta[\sigma \iota \\
& \text { 廿as каì } \tau \alpha \text {. } \quad \text { ка- } \\
& \tau \eta \bar{\rho} \in \nu \text { єis [} \\
& \text { 'Aplaîov } \in[\quad \mu \epsilon- \\
& { }_{2} \tau \tau \grave{\alpha} \text { ठè } \tau \alpha \hat{u}[\tau \alpha \\
& \delta_{1 \alpha \tau \rho i ́ \beta \omega[\nu}^{\nu} \\
& \text { i } \mu \alpha ́ \tau \iota \alpha \text { т[} \\
& \text { vov ovvap[} \pi \alpha \\
& \text { каi } \mu \in \tau \alpha \pi[\\
& 30 \text { [. .] }] \text { o七 . } \nu \iota \pi[\pi \\
& \text { बvveX[} \\
& \mu \in \nu \text {. [} \\
& \tau \eta s \text { d } \\
& { }^{\prime} \lambda \lambda \epsilon \gamma[\epsilon \\
& 35 \tau .0] \hat{v} \beta \alpha[\sigma \iota \lambda]^{\epsilon} \omega s \text { [} \\
& \tau \alpha[\hat{T}] s \text { '́m } \pi \sigma \tau 0 \lambda[\alpha i \bar{s} \\
& \text { [. .] }] \text { тò } \beta v \beta \lambda \text { [ío } \\
& \text { [. .] } \tau \tau \epsilon \nu \quad \beta \alpha \sigma \iota \lambda[\epsilon
\end{aligned}
\]

\author{
[. .]avтovava[\\ 40 [. .] . . . єІขєк . [\\ [.] \(] \lambda \lambda \eta \alpha \nu \alpha \gamma[\) \\ [. .] \(\beta \beta \alpha \rho \beta \alpha \rho \omega[\)
}

Col. ix (\(=\) C Col. i with Frs. 8 and 9).
Col. x (=C Col. ii with Fr. 10).

\([..] \alpha v ̉ \tau o ̀ \nu \alpha \dot{\alpha} \nu \alpha[\)
\(40[.] \ldots \epsilon \iota \nu \epsilon K\).
\([\ddot{\alpha} \mid \lambda \lambda \eta \nu \dot{\alpha} \nu \alpha \gamma[\)
\([\tau \hat{\omega}] \nu \beta \alpha \rho \beta \alpha \dot{\alpha} \rho \omega[\nu\)

Some columns lost.
Col. ix.
Col. x .
15 lines lost

```

    \eta\lambda\omega\sigma\epsilon\varphi[
    \deltao\xi\alpha\nu[
    \kappa€\delta\alpha[
    30 }\tau\omega\nu
\pi\alpha\sigma\alpha[
\tau\omega\nu

```

Fragments probably belonging to Col. x .

Fr. 14.
\(] \omega \varphi[\)
? ! ака

Fr. 12.
]... [
]. \(\delta \in \pi \rho \circ \sigma \tau[\)
] \(\omega \nu \in!\lambda \eta[\)
]. \(\tau \in \lambda \epsilon v[\)
] \(\tau \omega \nu \pi \alpha \rho \in \kappa \epsilon!\varphi[\)
5] \(\alpha \theta \alpha \pi \epsilon \rho \iota \mu \epsilon\). [
] \(\nu \in \pi เ \tau \alpha[\)
] \(_\lambda a \theta \epsilon[\)

Fr. 13.
\(\theta \cdot[\)
] \(\operatorname{v\tau ov}[\)
]є \(\nu \alpha \nu \tau[\)
]aı \(\rho \in \iota \sigma \theta[\)
5] • [. . . . \(] \tau[\)

Fr. 15 .
\(] \mu[\)
\(\left.] \sigma \epsilon_{[\cdot]}^{[}\right]<0 \cdot[\)
```

            \eta\lambda\omega\sigma\epsilon\nu [
    \deltao\xi\alpha\nu[ \\alpha-
    k\in\delta\alpha[\iota\muo\nu
    30 \tau\omega\nu[
\pi\alpha\sigma\alpha
\tau\omega\nu[

```

Fragments probably belonging to Col. x .

Fr. II.
\(\eta \nu_{-}\)
] каi \(\delta \in i[\)
]. [.] \(] \tau \omega[\)
] . . \(\mu l[\)
] \(\alpha \tau \epsilon \delta[\)
]. [.] \(\epsilon \lambda[\)
] \(\in o \tau[\)
] \(\alpha \nu \in \kappa \epsilon[\)
\(\tau \hat{\omega} \nu] \quad \ddot{\alpha} \lambda \lambda \omega \nu \quad \beta \alpha \rho \beta \dot{\alpha} \rho \omega[\nu\)
10]. [.] \(\dot{\alpha} \lambda \lambda \grave{\alpha} \tau \grave{\eta} \nu \mu \in[\)

]s \(\pi \epsilon \rho i \pi 0 \lambda \lambda \grave{\eta} \nu \sigma \tau \ldots \sigma[\)
\(\kappa \alpha] \tau \dot{\eta} \gamma \alpha \gamma \in \nu \dot{\alpha} \nu \tau i \dot{\omega} \nu \quad \eta \gamma \alpha[\)

\(\left.{ }^{1} 5 \pi o\right] \lambda \lambda \alpha i s{ }_{s} \kappa \alpha \tau \alpha \sigma \kappa \in v \alpha[\)
] \(\pi \epsilon \rho i ̀ \delta \epsilon ̀ \tau \eta ̀ \nu \operatorname{rov}[\)

Fr. 12.
]... [
]. \(\delta_{\epsilon}^{\prime} \pi \rho o \sigma \tau[\)
] \(\omega \nu\) є \(\epsilon \lambda \eta[\)
]. \(\tau \epsilon \lambda \epsilon v[\tau\)
] \(\tau \omega \nu \pi \alpha \rho^{\prime} \quad \dot{\epsilon} \kappa \epsilon \iota \nu[\)
] \(\alpha \theta \alpha \pi \epsilon \rho \iota \mu \epsilon\). [
] \(\nu \dot{\epsilon} \pi \iota \tau \alpha[\)
] \(\lambda \lambda \alpha \theta \epsilon\) [

Fr. 13.
\(j \theta \cdot[\)
] \(u \tau 0 \nu[\)
] \(\in \nu\) áj \([\)
] \(\alpha \iota \rho \in \hat{i} \sigma \theta[\alpha \iota\)
]. [..... \(\tau\)

Fr. 14.
\(] \omega v[\)
fикка[

Fr. \({ }^{5} 5\)
\(] \mu[\)
] \(\sigma \epsilon[\cdot] \iota 0[\)

Col. xi (=D Col. i).
Plate V.

[. . . .] \(] \nu \tau \omega \lambda \iota \mu \epsilon \nu[.] \nu \ddot{\nu} \alpha \mu \eta \rho \alpha\)
[. . . .] \(] \nu \tau \epsilon \sigma \chi \epsilon \iota \rho \circ v \sigma[\).] \(\pi \pi \lambda \epsilon \mu о \nu \beta o v\)
5 [. . . .] \(\downarrow \boldsymbol{\nu} \sigma \delta \epsilon \pi \alpha \rho \alpha \sigma \kappa \epsilon[. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~] ~] o. v \sigma \rho o \delta ı o v \sigma ~\)

[. . . .] \(] \epsilon \rho \gamma \circ \iota \sigma \epsilon \pi \iota \chi \epsilon \iota \rho \epsilon[. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~.] \pi \alpha \sigma \iota \nu \epsilon \pi o \iota ~\)

\(1 \circ\) [. . .] \(] \rho \epsilon \iota \nu \alpha \iota \tau \eta \delta \iota \alpha \phi \theta \circ[.] \nu \ddot{\epsilon} \epsilon \rho \omega \nu v \mu \omega\)
[. . .]aı \(\downarrow \epsilon \iota к о \phi \eta \mu \omega \pi \rho \circ \sigma \epsilon[.] \eta \theta \eta \nu \alpha \iota \tau \omega^{-}\)
[. . . \(\gamma \mu \alpha \tau \omega \nu о v \sigma \iota \nu \alpha u \tau o v \pi \alpha[.] \in \rho \iota \mu \epsilon \iota \nu \alpha^{-}\)

[. . .] \(] \tau \eta \ddot{v} \sigma \tau \epsilon \rho \alpha \iota \alpha \tau \omega \nu \sigma \tau \rho \alpha \tau![.] \pi \epsilon \rho \epsilon \iota \omega \theta \epsilon\)
\({ }_{15}\) [. . .] \(\left.] \quad 0 v \sigma \mu \epsilon \nu \alpha v \tau \omega \nu \pi \alpha \rho \eta \gamma \alpha \underset{.}{[. ~ . ~ . ~ . ~ . ~ .] ~}\right] \sigma o \pi \lambda o \iota \sigma \epsilon \iota \sigma\)
[. .] \(] \lambda \iota \mu \epsilon \nu \alpha \tau[]. v \sigma \delta \epsilon \mu \epsilon \iota \kappa \rho \circ \nu[.] \sigma \alpha \gamma о \rho \alpha \sigma \tau \omega^{-}\)
[. .] \(\rho o \delta \iota \omega \nu o \iota \sigma v \nu \epsilon \iota \delta о \tau \epsilon \sigma \tau \eta \nu \pi[.] \sigma \ddot{v} \pi \epsilon \lambda \alpha \beta 0^{-}\)
 [. .] \(] \in \gamma \chi \in \iota \rho \iota \delta \iota \circ \iota \sigma \epsilon \iota \sigma \tau \eta \nu \alpha \gamma о \rho \alpha \nu \kappa \alpha \iota \delta \omega \rho \iota \mu \alpha \chi \circ \sigma\)
20 [. .] \(\epsilon \varphi \alpha \nu \tau \omega \nu \alpha \nu \alpha \beta \alpha \sigma \epsilon \pi \iota \tau 0 \nu \lambda \iota \theta\) ovov \(\tau \epsilon \epsilon \epsilon \iota \omega \theta \epsilon \iota \kappa \eta\) [. .] \(\tau \tau \epsilon \iota \nu о к \eta \rho v \xi \alpha \nu а к \rho \alpha \gamma \omega \nu \omega \sigma \eta \delta \nu \nu \alpha \tau о \mu \in \gamma \iota \sigma \tau 0^{-}\) [.] \(\omega \mu \epsilon \nu \omega \alpha \nu \delta \rho \epsilon \sigma \epsilon \phi \eta \pi 0 \lambda \epsilon \iota \tau \alpha \iota \pi \iota \tau 0 v \sigma \tau v \rho \alpha \nu \nu 0 v \sigma\) [. .] \(] \tau \alpha \chi \iota \sigma \tau \eta \nu 0 \iota \delta \epsilon \lambda о \iota \pi о \iota \beta о \eta \sigma \alpha \nu \tau 0 \sigma \epsilon \kappa \epsilon \iota \nu 0 \nu \tau \eta^{-}\) [. .] \(\eta \theta \epsilon \iota \alpha \nu \epsilon \iota \sigma \pi \eta \delta \eta \sigma \alpha \nu \tau \epsilon \sigma \mu \epsilon \tau \epsilon \gamma X \epsilon \iota \rho \iota \delta \omega \nu \epsilon \iota \sigma \tau \alpha \sigma v \nu\)
\({ }_{2} 5\) [.]. \(\rho \rho!\alpha \tau \omega \nu \alpha \rho \chi \circ \nu \tau \omega \nu \alpha \pi о к \tau \epsilon \iota \nu 0 v \sigma \iota \tau 0 v \sigma \tau \epsilon \delta \iota \alpha \gamma \circ\) [. .]! \(0 v \sigma \kappa \alpha \iota \tau \omega \nu \alpha \lambda \lambda \omega \nu \pi о \lambda \iota \tau \omega \nu \epsilon \nu \delta \epsilon \kappa \alpha \delta \iota \alpha \pi \rho \alpha \xi \alpha\) [.] \(] \nu 01 \delta \epsilon \tau \alpha v \tau \alpha \sigma v \nu \eta \gamma 0 \nu \tau 0 \pi \lambda \eta \theta_{0} \sigma \tau о \tau \omega \nu \rho \circ \delta \omega \nu\) [. .] \(\sigma \epsilon \kappa \kappa \lambda \eta \sigma \iota \alpha \nu \alpha \rho \tau \iota \delta \epsilon \sigma v \nu \epsilon \iota \lambda \epsilon \gamma \mu \epsilon \nu \omega \nu \alpha \nu \tau \omega \nu \kappa \circ \nu \omega^{-}\) \(\eta \kappa \epsilon \pi \alpha \lambda \iota \nu \epsilon \kappa \kappa \alpha \nu \nu 0 v \mu \epsilon \tau \alpha \tau \omega \nu \tau \rho เ \eta \rho \omega \nu 0 \iota \delta \epsilon \tau \eta^{-}\)
\begin{tabular}{cc}
\(] \tau \iota \tau[\) & \(] \alpha s \operatorname{\pi o\lambda [}\) \\
\(] \tau \iota \delta \alpha[\) & \(] \cdot[\)
\end{tabular}

Some columns lost.

\section*{Col. xi.}

Plate V.
X. 1
B. C. 395

5 [\(\lambda o ́ \mu \epsilon] \nu 0 s\) ס̀̀ \(\pi \alpha \rho \alpha \sigma \kappa \epsilon[v \alpha ́ \sigma \alpha s ~ \grave{\eta} \sigma \dot{v} X c \nu s]\) Toùs 'Podíous

\([\sigma \mu \grave{o}] \nu \quad \tau \hat{\eta}\) vं \(\sigma \tau \epsilon \rho \alpha i ́ \alpha ~ \tau \hat{\omega} \nu \quad \sigma \tau \rho \alpha \tau i[\omega \tau \hat{\omega} \nu \quad \kappa \alpha \theta \alpha ́] \pi \epsilon \rho \in i \omega \theta \epsilon-\)

 [\(\rho \epsilon\)]íovs каi \(\tau \hat{\omega} \nu\) ă \(\lambda \lambda \omega \nu \pi о \lambda \iota \tau \hat{\omega} \nu \quad{ }^{\prime \prime} \nu \delta \epsilon \epsilon \kappa \alpha\), \(\delta \iota \alpha \pi \rho \alpha \xi \alpha \dot{\alpha}-\)

30 \(\quad\). \(\phi \alpha \gamma \eta \nu \epsilon \xi \epsilon \rho \gamma \alpha \sigma \alpha \mu \epsilon \nu о ו \kappa \alpha \tau \alpha \lambda \nu \sigma \alpha \nu \tau \epsilon \sigma \tau \eta \nu \pi \alpha \rho о v \sigma \alpha^{-}\) \(\pi о \lambda \epsilon \iota \tau \epsilon \iota \alpha \nu \kappa \alpha \tau \epsilon \sigma \tau \eta \sigma \alpha \nu \delta \eta \mu \circ \kappa \rho \alpha \tau \iota \alpha \nu \kappa \alpha \iota \tau \omega \nu \pi о\)
 \(\epsilon \pi \alpha \nu \alpha \sigma \tau \alpha \sigma \iota \sigma \eta \pi \epsilon \rho \iota \tau \eta \nu \rho \circ \delta o \nu \tau 0 v \tau 0 \tau 0 \tau \epsilon \lambda \sigma \sigma \epsilon \lambda \alpha\) \(\beta \epsilon \nu \quad \beta o \iota \omega \tau 0 \iota \delta \epsilon \kappa \alpha \iota \phi \omega \kappa \epsilon \iota \sigma \tau\) оут outov \(\theta \in\) роибє \(\epsilon \sigma\)
3丂 \(\pi о \lambda є \mu о \nu \kappa \alpha \tau \epsilon \sigma \tau \eta \sigma \alpha \nu \epsilon \gamma \epsilon \nu 0 \nu \tau 0 \delta \epsilon \tau \eta \sigma \epsilon \kappa\) Ө \(\rho \alpha \sigma \alpha \nu \tau 0 \iota \sigma\) [.] \(] \tau \iota \circ \iota \mu \alpha \lambda \iota \sigma \tau \alpha \tau \omega \nu \in \nu \tau \alpha \iota \sigma \theta \eta \beta \alpha \iota \sigma \tau \iota \nu \in \sigma о \cup \gamma \alpha \rho \pi о \lambda \lambda \circ \iota \sigma\)
 \(\pi \rho \circ \in \lambda \theta о \nu \tau \epsilon \sigma \epsilon \ell \chi \in \nu \delta \epsilon \tau \alpha \pi \rho \alpha \gamma \mu \alpha \tau \alpha \tau о \tau \epsilon \kappa \alpha[\). . \(] \tau \eta^{-}\) \(\beta\) Кь \(\omega \tau \iota \alpha \nu 0 \cup \tau \omega \sigma \eta \sigma \alpha \nu \kappa \alpha \tau \epsilon \sigma \tau \eta \kappa v i ̈ \alpha \iota \beta o v \lambda \alpha \iota \tau[] 0\)

> Col. xii (=D Col. ii).

Plate V.

\(\tau о \iota \sigma \pi о \lambda \epsilon[\).] \(\nu \mu \epsilon \tau \epsilon \backslash \epsilon \iota \nu \alpha[.\). .] \(] о \iota \sigma \kappa \epsilon \kappa\)

\(\mu \epsilon \rho о \sigma \epsilon \kappa \alpha \sigma[.] \alpha \theta \eta \mu \epsilon \nu \eta\) ! ка! \(\pi \rho \circ \beta\) ov \(\lambda \epsilon v[. . .\).
\(\pi \epsilon \rho \iota \tau \omega \nu \pi\).] \(\tau \omega \nu \epsilon \iota \sigma \epsilon \phi \epsilon \rho \epsilon \nu \epsilon \iota \sigma \tau \alpha \sigma \tau \rho \epsilon[.\). . .

\(\omega \tau \omega \nu \tau о \nu \tau о \nu \eta \nu \tau о \nu \tau\) ротог \(\sigma v \nu \tau \epsilon \tau \alpha \gamma \mu \epsilon \nu 0 \nu[. .\).
\(\delta \epsilon \kappa \alpha \mu \epsilon \rho \eta \delta \iota \eta \rho \eta \nu \tau о \pi \alpha \nu \tau \epsilon \sigma о \iota \tau \nu \chi\) Х \(\omega \rho \alpha \nu 0<\kappa 0 \nu \nu[\cdot\).
10 к \(\alpha \iota \tau 0 \nu \tau \omega \nu \epsilon \kappa \alpha \sigma \tau 0 \nu \epsilon \nu \alpha \pi \alpha \rho \epsilon \iota \chi \in \tau \circ \beta\) оו \(\omega \tau \alpha \rho \chi \circ \nu[. .\).
\(\theta \eta \beta \alpha \iota o \iota \mu \epsilon \nu \tau \epsilon \tau \tau \alpha \rho \alpha \sigma v \nu \epsilon \beta \alpha \lambda \lambda\) о \(\tau \tau 0 \delta v 0 \mu \epsilon \nu \ddot{u} \pi \epsilon[\). . .
\(\pi о \lambda \epsilon \omega \sigma \delta v 0 \delta \epsilon \ddot{u} \pi \epsilon \rho \pi \lambda \alpha \tau \alpha \iota \epsilon \omega \nu \kappa \alpha \iota \sigma \kappa \omega \lambda\) ov \(\left.\alpha \alpha \iota \epsilon \rho_{\rho} \cdot\right] \theta \rho \omega[\).
\(\kappa \alpha \iota \sigma \kappa \alpha \phi \omega \nu \kappa \alpha \iota \tau \omega \nu \alpha \lambda \lambda \omega \nu \chi{ }^{\omega}{ }^{\omega} \rho \omega \nu \tau \omega \nu \pi \rho о \tau \epsilon \rho о \nu\)
\(\mu \epsilon \nu \epsilon \kappa \epsilon \iota \nu 0 \iota \sigma \sigma v \nu \pi 0 \lambda \epsilon \iota \tau \epsilon v \circ \mu \epsilon \nu \omega \nu \tau 0 \tau \epsilon \delta \epsilon \sigma v \nu \tau \epsilon\)
 орХо \(\mu \in \nu \iota o \iota \kappa \alpha \iota \ddot{\sigma} \sigma \iota \alpha \iota \circ \delta v \circ \delta \in \theta \epsilon \sigma \pi \iota \epsilon \iota \sigma \sigma v \nu \epsilon \cup \tau \rho \eta \sigma \iota\) \(\kappa \alpha \iota \theta \iota \sigma \beta \alpha \iota \sigma \epsilon \nu \alpha \delta \epsilon \tau \alpha \nu \alpha \gamma \rho \alpha \iota \circ \iota \kappa \alpha \iota \pi \alpha \lambda \iota \nu \epsilon \tau \epsilon p \circ \nu \alpha \lambda \iota \alpha \rho\) \(\tau \iota \circ \iota \alpha \iota \lambda \epsilon \beta \alpha \delta \epsilon \iota \sigma \kappa \alpha \iota \kappa о р \omega \nu \epsilon \iota \sigma \circ \nu \in \pi \epsilon \mu \pi \epsilon \epsilon \kappa \alpha \tau \alpha \mu \epsilon\) \(\rho о \sigma \epsilon \kappa \alpha \sigma \tau \eta \tau \omega \nu \pi о \lambda \epsilon \omega \nu \tau о \nu \alpha \nu \tau 0 \nu \delta \epsilon \tau \rho о \pi о \nu \epsilon\)
\(20 \beta \alpha \delta \iota\} \epsilon \nu \epsilon \xi \alpha \kappa \rho \alpha \iota \phi \nu \iota о \cup \kappa \alpha \iota \kappa \omega \pi \omega \nu \kappa \alpha \iota \chi \alpha \iota \rho \omega \nu \epsilon \iota \alpha \sigma\)

 '̇ \(\pi \alpha \nu \alpha ́ \sigma \tau \alpha \sigma \iota \varsigma ~ \eta ̀ ~ \pi \epsilon \rho i ~ \tau \eta ̀ \nu ~ ' P o ́ \delta o \nu ~ \tau о и ̂ \tau o ~ \tau o ̀ ~ \tau \epsilon ́ \lambda o s ~ \epsilon ै \lambda \alpha-~\)

Col. xii.
\(\tau \epsilon \tau \epsilon \in \tau \tau \alpha\left[\rho \epsilon s \pi \alpha \rho^{\prime} \epsilon \in \kappa \alpha \dot{\alpha} \sigma \tau \eta \tau \hat{\omega} \nu \pi o ́ \lambda \epsilon \omega \nu, \hat{\omega} \nu\right.\) ov́ \(\left[\mathrm{X}{ }^{\prime \prime} \pi \alpha \sigma \iota\right.\)

 \(\kappa \alpha i \Sigma^{\Sigma} \kappa \alpha \phi \hat{\omega} \nu\) каi \(\tau \hat{\omega} \nu\) ă \(\lambda \lambda \omega \nu \chi^{\omega} \rho i ́ \omega \nu\) т \(\hat{\omega} \nu \pi \rho o ́ \tau \epsilon \rho о \nu\)

ка८тоขтоъб \(\alpha \nu \tau о \iota \alpha \kappa \alpha \theta \eta \mu \epsilon \rho \alpha \nu \alpha \nu \eta \lambda \iota \sigma \kappa о \nu \epsilon \pi \epsilon \tau \epsilon \tau \alpha\) \(\kappa \tau о \delta \epsilon \kappa \alpha \iota \sigma \tau \rho \alpha \tau \iota \alpha \epsilon \kappa \alpha \sigma \tau \omega \mu \epsilon \rho \epsilon \iota \pi \epsilon \rho \iota \chi \iota \lambda \iota\) ८v \(\sigma \mu \epsilon \nu\) \(\lambda\)
\({ }_{2} 5\) опл \(\epsilon \iota \tau \alpha \sigma \ddot{\pi} \pi \pi \epsilon \sigma \delta \epsilon \epsilon \kappa \alpha \tau о \nu \alpha \pi \omega \sigma \delta \epsilon \delta \eta \lambda \omega \sigma \alpha \iota \kappa \alpha \tau \alpha\) \(\tau о \nu \alpha \rho Х о \nu \tau \alpha \kappa \alpha \iota \tau \omega \nu \kappa о \iota \nu \omega \nu \alpha \pi \epsilon \lambda \alpha \nu о \nu \kappa \alpha \iota \tau \alpha \sigma \epsilon[\cdot] \sigma \phi о\) \(\rho \alpha \sigma \epsilon \pi о \iota 0 v \nu \tau о \kappa \alpha \iota \delta \iota \kappa \alpha \sigma \epsilon \pi \epsilon \mu \pi о \nu \kappa \alpha \iota \mu \epsilon \tau \epsilon \iota \chi\) оע \(\alpha \pi \alpha \nu\) \(\tau \omega \nu о \mu о \iota \omega \sigma \kappa \alpha \iota \tau \omega \nu \kappa \alpha \kappa \omega \nu \kappa \alpha \iota \tau \omega \nu \alpha \gamma \alpha \theta \omega \nu \tau о \mu \epsilon \nu\) ov \(\nu \epsilon \theta_{\nu} \sigma \sigma 0 \lambda 0 \nu 0 v \tau \omega \sigma \epsilon \pi о \lambda \epsilon \iota \tau \epsilon v \epsilon \tau о к \alpha \iota \tau \alpha \sigma v \nu \epsilon \delta \rho \iota \alpha\)
\(30 \kappa \alpha \iota \tau \alpha \kappa о \iota \nu \alpha \tau \omega \nu \beta о \iota \omega \tau \omega \nu \in \nu \tau \eta \kappa \alpha \delta \mu \epsilon \iota \alpha \sigma \nu \nu \in \kappa \alpha\) \(\theta_{\iota \zeta \epsilon \nu \epsilon \nu \delta \epsilon \tau \alpha \iota \sigma \theta \eta \beta \alpha \iota \sigma \epsilon \tau v \chi \text { о } 0 \iota \beta \epsilon \lambda \tau \iota \sigma \tau о \iota к \alpha \iota \gamma \nu \omega}\) \(\rho \iota \mu \omega \tau \alpha \tau о \iota \tau \omega \nu \pi 0 \lambda \epsilon \iota \tau \omega \nu \omega \sigma \pi \epsilon \rho \kappa \alpha \iota \pi \rho о \tau \epsilon \rho о \nu \epsilon \iota \rho \eta\) \(\kappa \alpha \sigma \tau \alpha \sigma \iota \alpha\) § \(\nu \tau \epsilon \sigma \pi \rho \circ \sigma \alpha \lambda \lambda \eta \lambda\) ov \(\eta \eta \gamma 0 \nu \nu \tau 0 \delta \epsilon \tau o v \mu \epsilon\) роvбтov \(\mu \epsilon \nu \ddot{i} \sigma \mu \eta \nu \iota \alpha \sigma \kappa \alpha[.] \alpha \nu \tau \iota \theta \epsilon о \sigma \kappa \alpha \iota \alpha \nu \delta \rho о \kappa \lambda \eta \sigma\)
35 тоvסє \(\lambda \epsilon о \nu \tau \iota \alpha \delta \eta \sigma \kappa \alpha \iota \alpha \sigma \iota \alpha \sigma \kappa \alpha \iota к о \rho \rho \alpha \nu \tau \alpha \delta \alpha \sigma \epsilon \phi \rho о\) \(\nu 0 v \nu \delta \epsilon \tau \omega \nu \pi \sigma \lambda \epsilon \iota \tau \epsilon \nu \circ \mu \epsilon \nu \omega \nu \circ \iota \mu \epsilon \nu \pi \epsilon \rho \iota \tau \circ \nu \lambda \epsilon о \nu \tau \iota\) \(\alpha \delta \eta \nu \tau \alpha \lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о \nu \iota \omega \nu[\cdot] \iota \delta \epsilon \pi \epsilon \rho \iota \tau о \nu \ddot{\iota} \sigma \mu \eta \nu \iota \alpha \nu\) \(\alpha \iota \tau \iota \alpha \nu \mu \in \nu \epsilon \backslash X 0 \nu \alpha \tau \tau \iota \kappa \iota \S \epsilon \iota \nu \epsilon \xi \omega \nu \pi \rho 0 \theta \nu \mu 0 \iota \pi \rho \circ \sigma\) \(\tau о \nu \delta \eta \mu 0 \nu \epsilon \gamma \epsilon \nu 0 \nu \tau 0 \omega \sigma \epsilon \phi \nu \gamma 0 \nu 0 v \mu \eta \nu \epsilon \phi \rho \circ \nu\)

> Col. xiii (=D Col. iii).
 [.] . \(\pi[.] \epsilon \sigma \chi \chi \nu \epsilon \pi \epsilon \iota \tau o v[\) [.] . . \(\pi \rho[..] \rho o v \nu \tau о \mu \alpha \lambda \lambda[. ~\). [.] \(] \sigma \kappa \alpha \kappa \kappa \omega \sigma \pi о \iota \epsilon \iota \nu \epsilon \tau о \iota \mu о v \sigma \alpha[\).
5 [. .] \(] \leqslant \epsilon \nu \delta \iota \alpha \kappa \epsilon[.] \mu \epsilon \nu \omega \nu \delta \epsilon \tau \omega \nu \epsilon \nu[\).

 [. . .] \(\omega \nu \epsilon \kappa \epsilon \iota \nu o \iota \sigma \epsilon \delta \nu \nu \alpha \nu \tau o \delta \epsilon \tau[.\).
ı \(\circ\) [. . .] \(] \omega \pi \rho о \tau \epsilon \rho о \nu о \iota \pi \epsilon[.] \iota \tau о \nu і ̈ \sigma \mu \eta[.] \nu\)
 [. . .] \(\tau \eta \beta o[. ~.] \eta \tau \omega \nu \beta o \iota \omega \tau \omega \nu \epsilon \mu \pi \rho[.] \pi \rho o\) [. . .] \(] \nu \iota \pi[.] \rho \iota \tau о \nu \alpha \sigma \tau \iota \alpha \nu \kappa \alpha \iota \lambda \epsilon о \nu \tau[.\).

\({ }^{1} 5\) [. .] \(] \gamma \alpha \rho \pi о \lambda \epsilon \mu о \nu \nu \tau \epsilon \sigma о \iota \lambda \alpha \kappa \epsilon \delta \alpha \iota \mu[.] \alpha\)
 \(\kappa т о\) ठ̀̀ каi \(\sigma \tau \rho \alpha т \iota a ̀ ~ \epsilon ́ \kappa \alpha ́ \sigma \tau \omega ~ \mu \epsilon ́ \rho \epsilon \iota ~ \pi \epsilon \rho i ~ X \iota \lambda i ́ o u s ~ \mu \grave{\epsilon} \nu\)

 \(\rho \iota \mu \omega ́ \tau \alpha \tau о \iota \tau \hat{\omega} \nu \pi о \lambda \iota \tau \hat{\omega} \nu\), ढ̈ \(\sigma \pi \epsilon \rho\) каі \(\pi \rho o ́ \tau \epsilon \rho о \nu \epsilon \check{\rho} \rho \eta\) \(\kappa \alpha, \sigma \tau \alpha \sigma \iota \alpha ́ \zeta 0 \nu \tau \epsilon s\) т pous rô̂ \(\mu \epsilon ̀ \nu\) 'I \(\sigma \mu \eta \nu i ́ \alpha s ~ к \alpha[i] ~ ' A \nu \tau i \theta \epsilon о s ~ к \alpha i ̀ ~ ' A \nu \delta \rho о к \lambda\langle\epsilon i ́ \delta \alpha\rangle s ~\)

 á \(\eta \eta \nu \tau \grave{\alpha} \Lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о \nu i ́ \omega \nu\), [0]i \(\delta \grave{\epsilon} \pi \epsilon \rho i\) тò \(\nu\) 'I \(\sigma \mu \eta \nu i ́ \alpha \nu\) aitíav \(\mu \grave{\epsilon} \nu\) єíXov 'A

Col. xiii.

[.....]. . . \(\pi \rho[o \eta] \rho o \hat{\nu} \nu \tau 0 \quad \mu \hat{\alpha} \lambda \lambda[o \nu\)

 ['A \(\nu \delta] \rho о к \lambda \in i ́ \delta \alpha \nu\) каi \(\pi \alpha \rho\) ' \(\alpha u ̛ t o i ̂ s ~ \tau о i ̂[s ~ \Theta \eta \beta \alpha i o ı s ~ к] \alpha i ~\) [\(\pi \alpha \rho \grave{a}] \tau \hat{\eta} \beta o[v \lambda] \hat{\eta} \tau \hat{\omega} \nu\) Boเ \(\omega \tau \omega \nu,{ }_{\epsilon}^{\epsilon} \mu \pi \rho\left[0 \sigma \theta \epsilon \nu \delta^{\prime} \epsilon\right] \pi \rho o-\) [\(\epsilon i ̂ \chi o] \nu\) oi \(\pi[\epsilon] \rho i\) тòv ' \(A \sigma\{\tau\}\) íav каi \(\Lambda \epsilon о \nu \tau[\iota \alpha ́ \delta \eta \nu\) Хрóvov] [\(\tau \iota] \nu \alpha ̀ ~ \sigma v \chi \nu o ̀ \nu ~ к \alpha i ~ \tau \eta ̀ \nu ~ \pi o ́ \lambda \iota \nu ~ \delta i \grave{\alpha} \pi[.]. X \chi o v\).

\(\lambda о \nu \epsilon \delta \nu \nu \alpha \sigma \tau \epsilon \nu \circ \nu \tau \omega \nu \epsilon \tau \epsilon \rho \omega \nu \alpha \mu \alpha \mu \epsilon \nu \tau \omega \pi \lambda[\cdot] \cdot] \iota\)

\(\theta \epsilon \omega \sigma \omega \sigma о \pi о \lambda \epsilon \mu о \sigma \tau о \iota \sigma \alpha \theta \eta \nu \alpha \iota \iota \sigma[\).]

 \(\tau \alpha \sigma o \iota \tau \epsilon \xi \in \rho \nu \theta \rho \omega \nu \kappa \alpha \iota \sigma \kappa \alpha \phi \omega \nu \kappa \alpha \iota \sigma \kappa \omega \lambda\) оик \([\) [. .].ג८

 \(\eta \sigma \epsilon \nu \tau \alpha \sigma \theta \eta \beta \alpha \sigma \circ \nu \mu \eta \nu \alpha \lambda \lambda \alpha \pi 0 \lambda \nu \gamma \epsilon \beta \epsilon \lambda \tau \epsilon \epsilon \nu \nu \epsilon \tau \tau \tau \eta^{-}\) \(\pi 0 \lambda \iota \nu \pi \rho \alpha \xi \alpha \iota \sigma v \nu \epsilon \pi \epsilon \sigma \epsilon \nu \omega \sigma \tau \eta \nu \delta \epsilon \kappa \in \lambda \epsilon \epsilon \alpha \nu \in \pi \epsilon \tau \epsilon \iota\)
 \(\tau \alpha \tau \epsilon \gamma \alpha \rho \alpha \nu \delta \rho \alpha \pi о \delta \alpha \kappa \alpha \iota \tau \lambda о \iota \pi \alpha \pi \alpha \nu \tau[.\). . \(] \nu\)
 \(\epsilon \lambda \alpha \mu \beta \alpha \nu 0 \nu \kappa \alpha \iota \tau \eta \nu \epsilon \kappa \tau \eta \sigma \alpha \tau \tau \iota \kappa \eta[\) [.] \(] \tau \alpha[.] \kappa \epsilon \cup \eta^{-}\)

\(\tau \omega \nu \circ \kappa \kappa \omega \nu \alpha \rho \xi \alpha \mu \epsilon \nu 0 \iota \tau \sigma \tau \in \delta \epsilon \tau \omega \nu \alpha \theta \eta \nu \alpha \iota \omega \nu \eta\)
\(\chi \omega \rho a \pi о \lambda v \tau \epsilon \lambda \epsilon \sigma \tau \alpha \tau \alpha \tau \eta \sigma \epsilon \lambda \lambda \alpha \delta_{\sigma \sigma \kappa \alpha \tau \epsilon \sigma \kappa \epsilon v a \sigma \tau о}\) \(\epsilon \pi \epsilon \pi о \nu \theta \epsilon \epsilon \gamma \alpha \rho \mu \epsilon \iota \kappa \rho а к \alpha \kappa \omega \sigma \epsilon \nu \tau \alpha \iota \sigma \epsilon \mu \beta\) одаıб \(\tau \alpha \iota \sigma \epsilon \mu \pi \rho \circ \sigma \theta \epsilon \nu \ddot{\nu} \pi о \tau \omega \nu \lambda \alpha \kappa \in \delta \alpha \iota \mu \circ \nu \iota \omega \nu \ddot{u} \pi о \delta \epsilon \tau \omega^{-}\) \(\alpha \theta \eta \nu \alpha \iota \omega \nu\) оит \(\omega \sigma \epsilon \xi_{\eta} \boldsymbol{\sigma} \kappa \eta \tau о \kappa \alpha \iota \delta \iota \epsilon \pi \epsilon \pi о \nu \eta \tau о к \alpha\)

> Col. xiv (= D Col. iv).

[.] \(] \kappa \eta \sigma \epsilon[\) [. \(] к о \delta о \mu \eta \mu \epsilon \nu \alpha \sigma \eta \pi \alpha\)

\(\epsilon \lambda \alpha ́ \mu \beta \alpha \nu \circ \nu\), каі тウ̀ \(\nu \quad\) '́к т \(\bar{\eta} S\) ' \(A \tau \tau \iota \kappa \hat{\eta}[s \quad \kappa] \alpha \tau \alpha[\sigma] \kappa \in v \grave{\eta} \nu\)

\(\chi^{\omega} \rho \alpha \pi о \lambda \nu \tau \epsilon \lambda \epsilon \epsilon \sigma \tau \alpha \tau \alpha \tau \hat{\eta} s\) ' \(E \lambda \lambda \alpha ́ \delta o s ~ к а \tau \epsilon \sigma \kappa \epsilon v ́ \alpha \sigma \tau o . ~\)

Col. xiv.

[. . . .] \(\nu\) ' \(E \lambda \lambda \eta \nu[.] . ~ є \lambda \alpha ́ \mu \beta \alpha \nu o \nu\) єis тov̀ \(s\)]


```

    \mu\omega\sigma\alpha\iota\tauоє0\nuо\sigma[.. . . . . . . . . .] \muо\nu\iotaov\sigma\betaоv\lambdaо }\epsilon\in\nuо
    \mu\epsilon\nuк\alpha\tau\alpha\lambdav\sigma\alpha\iota\tau[. . . . . . . . . .]\nu\ddot{\nu \alpha\mu\eta\delta\iota\alphaф0\alpha\rho\omega\sigma\iota-}
    1о \ddot{v\pi\epsilonк\epsilon\iota\nu\omega\nu\delta\iota\alpha[. . . . . . . . . . .]\iota}о\nu\tau\alpha\sigmao\iotao\mu\epsilon\nuо\iota\delta\epsilon}
\rho\alpha\delta\iota\omega\sigma\tauоv\tauо\pi\rho[. . . . . . . . ] }\mu\beta\alpha\nuо\nu\tau\epsilon\sigma\beta\alpha\sigma\iota\lambda[.]\alpha,
\chi\rho\eta\mu\alpha\tau\alpha\pi[.]\rho\epsilon\xi\epsilon\epsilon[. . . . . . . .]\pi\alpha\rho\alpha\tauоv\beta\alpha\rho\beta\alpha\rhoоv\pi[.] ]\mu.
\phi0\epsilon\iota\sigma\epsilon\pi\eta\gamma\gamma\epsilon\lambda\lambda\epsilon\tauo[. . . . . . .]\sigma\kappa\alpha\iota\tauov\sigma\alpha\rho\gamma\epsilon\iotaov[.]\kappa'
\tauоv\sigma\alpha[. .]\nu\alpha\iotaov\sigma\mu\epsilon0\epsilon[. . . . . . .]\piо\lambda\epsilon\muоv\tauоv\tauоv\sigma\gamma\alpha\rho.
I5 \epsilonк0\rhoоv\sigma\tauо\iota\sigma\lambda\alphaк\epsilon\delta\alpha\iota\iota\mu[. .....]\nu\tau\alpha\sigma\alphav\tauo\iota\sigma\sigmav\nu\pi\alpha\rho\epsilon
[. .]\epsilonv\alpha\sigma\epsilon\tauоv\sigma\piо\lambda\epsilon\iota\tau\alpha\sigma[. .] ]\nuо\eta}0\epsilon\nu\tau\epsilon\sigma\delta\in\tau\alphav\tau
\pi\epsilon\rho\iota\tau\omega\nu\pi\rho\alpha\gamma\mu\alpha\tau\omega\nu\epsilon\nuо\mu\iota\xiо\nu\alpha\piо\mu\epsilon\nu\tauоvф\alpha
\nu\epsilon\rhoоv\chi\alpha\lambda\epsilon\pi\omega\sigma\epsilonХ\epsilon\iota\nu\epsilon\pi\iota\tau\iota0\epsilon\sigma0\alpha\iota\tauоv\tauо\iota\sigmaov\deltaє\piо\tau\epsilon
\gamma\alpha\rhoоv\tau\epsilonӨ\eta\beta\alpha\iotaov\sigmaоvт\epsilon\tauоv\sigma\alpha\lambda\lambdaоv\sigma\betaо\iota\omega\tauоv\sigma\pi\epsilon\iota\sigma0\eta
20 \sigma\epsilon\sigma0\alpha\iota\piо\lambda\epsilon\mu\epsilon\iota\nu\lambda\alphaк\epsilon\delta\alpha\iota\muо\nu\iotaо\iota\sigma\alpha\rho\chiоv\sigma\iota\tau\eta\sigma\epsilon\lambda\lambda\alpha
\deltaо\sigma\epsilon\pi\iota<br>\rhoоv\nu\tau\epsilon\sigma[.]]\delta\iota\alpha\tau \alphav\tau\eta\sigma\tau\eta\sigma\alpha\pi\alpha\tau\eta\sigma\pi\rhoо\alpha\gamma\epsilon\mp@subsup{l}{}{-}
\epsilon\iota\sigma\tauо\nu\piо\lambda\epsilon\muо\nu\alphav\tauоv\sigma\alpha\nu\epsilon\pi\epsilon\iota\sigma\alpha\nu\alpha\nu\delta\rho\alpha\sigma\tau\iota\nu\alpha\sigma\phi\omega
\kappa\epsilon\omega\nu\epsilon\mu\beta\alpha\lambda\epsilon\iota\nu\epsilon\iota\sigma\tau\eta\nu\lambdaок\rho\omega\nu\tau\omega\nu\epsilon\sigma\pi\epsilon\rho\iota\omega\nuк\alpha
\lambdaоv\mu\epsilon\nu\omega\nuо\iota\sigma\epsilon\gamma\epsilon\nu\epsilon\tauо\tau\eta\sigma\epsilon\kappa0\rho\alpha\sigma\alpha\iota\tau\iota\alpha\tauо\iota\alphav\tau\eta
\epsilon\sigma\tau\iota\tauо\iota\sigma\epsilon0\nu\epsilon\sigma\iota\nu\tauоv\tauо\iota\sigma\alpha\muф\iota\sigma\beta\eta\tau\eta\sigma\iota\muо\sigma\chi\omega\rho\alpha\pi\epsilon
\rho\iota\tauо\nu\pi\alpha\rho\nu\alpha\sigma\sigmaо\nu\pi\epsilon\rho[.]\eta\sigmaк\alpha\iota\pi\rhoот\epsilon\rhoо\nu\piо\tau\epsilon\pi\epsilon\piо\lambda\epsilon.
\mu\eta\kappa\alpha\sigma\iota\nu\eta\nu\piо\lambda\lambda\alpha\kappa\iota\sigma\epsilon\pi\iota\nu\epsilon\muоv\sigma\iota\nu\epsilonк\alpha\tau\epsilon\rhoо\iota\tau\omega\nu\tau\epsilon
\phi\kappaк\epsilon\omega\nuк\alpha\iota\tau\omega\nu\lambdaокр\omega\nuо\piот\epsilon\rhoо\iota\delta\alpha\nu\tauv\chi\omega\sigma\iota\nu\alpha\iota\sigma0о
\mu\epsilon\nuо\iota\piо\tau\epsilon\epsilon\tau\epsilon\rhoоv\sigma\sigmav\nu\lambda\epsilon\gamma\epsilon\nu\tau\epsilon\sigma\piо\lambda\lambdaо\iota\delta\iota\alpha\rho\pi\alpha\xiоv\sigma\iota
3०\tau\alpha\pi\rhoо\beta\alpha\tau\alpha\pi\rhoот\epsilon\rhoо\nu\mu\epsilon\nuоv\nu\piо\lambda\lambda\omega\nu\tauо\iotaоv\tau\omega\nu\alphaф\epsilon
к\alpha\tau\epsilon\rho\omega\nu\gamma\epsilon\iota\nuо\mu\epsilon\nu\omega\nu\alpha\epsilon\iota\mu\epsilon\tau\alpha\delta\iotaк\eta\sigma\tau\alpha\piо\lambda\lambda\alphaк\alpha\iota\lambdaо
\gamma\omega\delta\delta\iota\epsilon\lambdavo\nu\tauо\pi\rhoо\sigma\alpha\lambda\lambda\eta\lambdaоv\sigma\tauо\tau\epsilon\delta\epsilon\tau\omega\nu\lambdaокр\omega}\mp@subsup{\omega}{}{-
\alpha\nu0\alpha\rho\pi\alpha\sigma\alpha\nu\tau\omega\nu\alpha\nu}0\omega\nu\alpha\pi\epsilon\beta\alpha\lambdaо\nu\pi\rhoо\beta\alpha\tau\omega\nu\epsilon
0v\sigmao\iota\phi\omegaк\epsilon[.]\sigma\pi\alpha\rhoо\xi}v\nuо\nu\tau\omega\nu\alphau\tauov\sigma\epsilonк\epsilon\iota\nu\omega\nu\tau\omega\nu
35\alpha\nu\delta\rho\omega\nuо[.....]\pi\epsilon\rho\iota\tauо\nu\alpha\nu\delta\rhoок\lambda\epsilon\iota\delta\alpha\nuк\alpha\iota\tauо\nu\ddot{\sigma}\sigma\mu
\nu\iota\alpha\nu\pi\alpha\rho\epsilon\sigma\kappa\epsilonv\alpha\sigma\alpha\nu\epsilon\iota\sigma\tau\eta\nu\lambdaокр\iota\delta\alpha\mu\epsilon\tau\alpha\tau\omega\nuо
\pi\lambda\omega\nu\epsilon\nu\epsilon\beta\alpha\lambdaо\nuо\iota\deltaє\lambdaокроь\delta\etaоv\mu\epsilon\nu\eta\sigma\tau\eta\sigma\chi\omega\rho\alpha\sigma
\pi\epsilon\mu\psi\alpha\nu\tau\epsilon\sigma\pi\rho\epsilon\sigma\beta<\epsilon\iota\sigma\epsilon\iota\sigma\betaо\iota\omega\tauоv\sigmaк\alpha\tau\eta\gammaо\rho\iota\alpha\nu\epsilon
\pi\rho[.]<br>nu\tauо\tau\omega\nu\phi[.]\kappaє\omega\nu\kappa\alpha\iota\betao\eta0\epsilon\iota\nu\epsilonк\epsilon\iota\nuоv\sigma\alphav\tauо\iota\sigma
4 0 ~ [ . . . . . ] \nu \nu \delta \iota \alpha к \epsilon \iota \nu [ . ] \alpha \iota \delta \epsilon \pi \rho о \sigma \alpha v \tau о v \sigma \alpha \epsilon \iota \pi о \tau \epsilon ф \iota \lambda \iota \omega \sigma

```


 \(\chi \rho \eta ́ \mu \alpha \tau \alpha \pi[\alpha] \rho \epsilon ́ \xi \epsilon \in\left(\nu, \kappa \alpha \theta^{\prime}\right.\) à ó] \(\pi \alpha \rho \alpha ̀ ~ \tau о \hat{v} \beta \alpha \rho \beta \alpha ́ \rho o v \pi[\epsilon] \mu\) -

 \(\gamma \grave{\alpha} \rho\) oưтє \(\Theta_{\eta} \beta\) aíous oưт \(\tau\) oùs ă \(\lambda \lambda\) dous Bolwтoùs \(\pi \epsilon \iota \sigma \theta\) ŋ́-

 \(\dot{\alpha} \nu \theta \alpha \rho \pi \alpha \sigma \alpha ́ \nu \tau \omega \nu \dot{\alpha} \nu \theta^{\prime} \hat{\dot{\omega} \nu} \dot{\alpha}^{\alpha} \pi \epsilon \beta \alpha \lambda o \nu \pi \rho o \beta \alpha ́ \tau \omega \nu \epsilon \dot{u}-\)
 \(35 \alpha \dot{\alpha} \nu \delta \rho \bar{\omega} \nu\) o[v̀s oi] \(\pi \epsilon \rho i\) тòv 'A \(\nu \delta \rho о к \lambda \epsilon i ́ \delta \alpha \nu\) каi тòv 'I \(\sigma \mu \eta\) víav \(\pi \alpha \rho \epsilon \sigma \kappa \epsilon \cup ́ v \sigma \alpha \nu\), \(\epsilon i s ~ \tau \grave{\eta} \nu\) Мокрí \(\delta \alpha \mu \epsilon \tau \alpha ̀ \tau \hat{\omega} \nu\) ö-

\section*{Col. xv (=D Col. v).}
[. . .]a \(\alpha \alpha \nu \tau \epsilon \sigma \delta \epsilon \tau о \nu \kappa \alpha \iota \rho о \nu \alpha \sigma \mu[\) [.
[.] \(\mu \eta \nu \iota \alpha \kappa \alpha \iota \tau о \nu \alpha \nu \delta р о к \lambda є\) [.
[. .] \(\omega \boldsymbol{\sigma}\) оиб \(\beta\) оп \(\theta \epsilon \iota \nu \tau о \iota \sigma \lambda о к р о \iota \sigma \phi \omega[\).
[.] \(\omega \nu \alpha \nu \tau о \iota \sigma \tau \omega \nu \epsilon \kappa \tau \omega \nu \theta \eta \beta \omega \nu \tau[\).
5 [.] \(] \lambda \lambda \nu \alpha \nu \in \chi \omega \rho \eta \sigma \alpha \nu \pi \rho \in \sigma \beta \epsilon \mid \sigma \delta[\).\(] . . [.\)

 \(\lambda \epsilon \gamma \epsilon \nu \alpha \nu \tau о \nu \sigma \nu \circ \mu \iota \sigma \alpha \nu \tau \epsilon \sigma \alpha \pi!\sigma \tau \alpha[\).

10 \(\phi \omega \kappa \in \alpha \sigma \alpha \lambda \lambda \epsilon \iota \tau \iota \alpha \delta \iota \kappa \epsilon \iota \sigma \alpha \iota \nu 0 \mu \iota \zeta 0 v \sigma[\).
\(\beta \alpha \nu \epsilon \iota \pi \alpha \alpha \alpha \nu \tau \omega \nu \epsilon \nu \tau о \iota \sigma \sigma v \mu \mu \alpha \chi^{\circ} \sigma[\).

\(\gamma \mu \alpha \tau \alpha \tau \alpha \nu \tau \alpha \sigma v \sigma \tau \eta \sigma \alpha \nu \tau \omega \nu \tau o v \sigma \mu \in \nu[\).
\(\tau \omega \nu \lambda \alpha \kappa \epsilon \delta \alpha \iota \mu \nu \iota \omega \nu \alpha \pi \rho \alpha \kappa \tau о v \sigma \alpha \pi \epsilon \sigma \tau \epsilon[\).
\(\left.{ }_{15} \tau \alpha 0 \pi \lambda \alpha \lambda \alpha \beta о \nu \tau \epsilon \sigma \epsilon \beta \alpha \delta \epsilon[].\right\} 0 \nu \epsilon \pi เ \tau 0 v \sigma \phi \omega \kappa \epsilon[.\).
\(\lambda_{0 \nu \tau \epsilon \sigma \delta \in \delta \iota \alpha \tau \alpha \chi \epsilon \omega \nu \epsilon \iota \sigma \tau \eta \nu \phi \omega \kappa \iota \delta \alpha \kappa \alpha[\text { [. . . .] } \eta}\) \(\sigma \alpha \nu \tau \epsilon \sigma \tau \eta \nu \tau \epsilon \tau \omega \nu \pi \alpha \rho \alpha \pi о \tau \alpha \mu \omega \omega \nu\) Х \(\rho \alpha \nu \kappa \alpha \iota \delta \alpha \nu\) \(\lambda_{\iota \omega \nu \kappa \alpha \iota \phi \alpha \nu 0 \tau \epsilon \omega \nu \epsilon \pi \epsilon \chi \epsilon \iota \rho \eta \sigma \alpha \nu \tau \alpha \iota \sigma \pi 0 \lambda \epsilon \sigma \iota \pi \rho \rho \sigma \beta \alpha \lambda}\) \(\lambda \epsilon \iota \nu \alpha \alpha \delta \alpha \nu \lambda \iota \alpha \mu \epsilon \nu \pi \rho \sigma \sigma \epsilon \lambda \theta o \nu \tau \epsilon \sigma \alpha \pi \epsilon \chi \omega \rho \eta \sigma \alpha \nu \alpha v \theta \iota \sigma\) 20 ov \(\delta \nu \nu \pi o \iota \eta \sigma \alpha \nu \tau \epsilon \sigma \alpha \lambda \lambda \alpha \kappa \alpha \iota \pi \lambda \eta \gamma \alpha \sigma \circ \lambda \iota \gamma \alpha \sigma \lambda \alpha \beta o \nu \tau \epsilon \sigma\)
 \(\pi \rho \alpha \xi \alpha \mu \epsilon \nu \circ \delta \epsilon \epsilon \tau \nu \tau \alpha \pi \rho \circ \eta \lambda \theta \circ \nu \epsilon \epsilon \sigma \tau \eta \nu \phi \omega \kappa \iota \delta \alpha \kappa \alpha\) \(\tau \alpha \delta \rho \alpha \mu о \nu \tau \epsilon \sigma \delta \epsilon \mu \epsilon \rho \circ \sigma \tau \iota \tau о v \pi \epsilon \delta \stackrel{\circ}{ } \quad \pi \epsilon \rho \iota \tau \eta \nu \epsilon \lambda \alpha\) \(\tau \epsilon \iota \alpha \nu \kappa \alpha \iota \tau 0 \nu \sigma \pi \epsilon \delta \iota \epsilon \alpha \sigma \kappa \alpha \iota \tau 0 v \sigma \tau \alpha \nu \tau \eta \kappa \alpha \tau о \iota к о \nu \nu\)
\({ }_{25} \tau \alpha \sigma \alpha \pi \eta \epsilon \sigma \alpha \nu \pi о \iota \nu \mu \epsilon \nu \omega \nu \delta \epsilon \tau \eta \nu \alpha \pi о \chi \omega \rho \eta \sigma \iota \nu\) \(\alpha \nu \tau \omega \nu \pi \rho \circ \sigma \pi \alpha \rho \nu \eta \nu \pi о \lambda \iota \nu \epsilon \delta \delta \xi \epsilon \nu \alpha \nu \tau \circ \iota \sigma \alpha \pi о \pi \epsilon!\rho \alpha\) \(\sigma \theta \alpha \iota \tau \eta \sigma \pi 0 \lambda \epsilon \omega \sigma \epsilon \sigma \tau \iota \delta \epsilon \tau 0 \chi \omega \rho \iota \nu \nu \in \pi \epsilon \iota \kappa \omega \sigma \ddot{\sigma} \boldsymbol{\chi} v \rho \circ \nu \pi \rho \rho \sigma\)
 \(\pi о \nu \tau \epsilon \sigma \alpha \lambda \lambda о \mu \epsilon \nu 0 \nu \delta \epsilon \nu \epsilon \pi \rho \alpha \xi \alpha \nu \alpha \pi \circ \beta \alpha \lambda o \nu \tau \epsilon \sigma \delta \epsilon\)
\(30 \tau \omega \nu \sigma \tau \rho \alpha \tau \tau \omega \tau \omega \nu \omega \sigma \circ \gamma \delta о \eta \kappa о \nu \tau \alpha \pi \alpha \lambda \iota \nu \alpha \nu \in \chi \omega \rho \eta\)

\section*{Col. xv.}
\([\dot{\alpha} \rho \pi]\) 人́ \(\sigma \alpha \nu \tau \epsilon S\) S̀̀ \(\tau \grave{\nu} \nu\) каı \(\rho o ̀ \nu ~ \alpha \dot{\alpha} \sigma \mu[\epsilon \nu \epsilon ́ \sigma \tau \alpha \tau \alpha\) oi \(\pi \epsilon \rho \grave{\imath}\)

\(5[\pi] \alpha ́ \lambda \iota \nu \quad \dot{\alpha} \nu \epsilon \chi \chi^{\omega} \rho \eta \sigma \alpha \nu, \pi \rho \epsilon ́ \sigma \beta \epsilon \iota \varsigma \quad \delta[\epsilon \grave{\epsilon}] \ldots[\ldots \pi \epsilon ́ \mu \psi \alpha \nu-\)

 \(\gamma \mu \alpha \tau \alpha\) т \(\alpha \hat{\tau} \tau \alpha\) \(\sigma v \sigma \tau \eta \sigma \alpha ́ \nu \tau \omega \nu\), тoùs \(\mu \hat{\epsilon} \nu\) [\(\pi \rho \in \in \sigma \beta \epsilon i s\) тoùs

 \(\sigma \alpha \nu \tau \epsilon s \tau \eta{ }^{\prime} \nu \tau \epsilon \tau \hat{\omega} \nu\) Паратот \(\alpha \mu i \omega \nu \quad \chi \omega ́ \rho \alpha \nu\) каi \(\Delta \alpha v\) -

 \(\pi \rho \alpha \xi \dot{\beta} \mu \epsilon \nu 0 \iota\) ठ' \(\tau \alpha \hat{v} \tau \alpha\) т \(\rho \circ \hat{\eta} \lambda \theta 0 \nu\) єis \(\tau \grave{\eta} \nu \Phi \omega \kappa i \delta \alpha, \kappa \alpha-\)

\(\phi \omega \kappa \epsilon[.] \sigma \alpha \pi \eta \lambda \theta o \nu \epsilon \iota \sigma \tau \eta \nu \epsilon \alpha \nu \tau \omega \nu \quad \kappa 0 \nu \omega \nu \delta \epsilon \pi \alpha \rho \epsilon \iota \lambda \eta\)
\({ }^{\top} \phi \circ \tau о \sigma \eta \delta \eta \chi \epsilon \iota \rho \iota \kappa \rho \alpha \tau о v \sigma \tau \alpha \sigma \nu \alpha v \sigma \tau \alpha \sigma \tau \omega \nu \lambda \alpha \kappa \epsilon \delta \alpha \iota\) \(\mu о \nu \iota \omega \nu \kappa \alpha \iota \tau \omega \nu \sigma v \mu \mu \alpha \chi \omega \nu о \sigma \alpha \phi \iota \kappa \epsilon \tau о \nu \alpha v \alpha \rho \chi \sigma \sigma \delta \iota \alpha\)
35 ठоХобт \(\omega \pi 0 \lambda \lambda \iota \delta \iota \sigma \nu \nu \pi \lambda \eta \rho \omega \sigma \alpha \sigma \epsilon \iota \kappa о \sigma \iota \tau \omega \nu \tau \rho \iota \eta \rho \omega \nu\) \(\alpha \nu \alpha \gamma \circ \mu \epsilon \nu 0 \sigma \epsilon \kappa \tau \eta \sigma \rho \circ \delta o v \kappa \alpha \tau \epsilon \pi \lambda \epsilon \nu \sigma \epsilon \nu \epsilon \epsilon \sigma \kappa \alpha v \nu 0 \nu\) \(\beta o v \lambda o \mu \epsilon \nu 0 \sigma \delta \epsilon \sigma v \mu \mu \epsilon \iota \xi \alpha \iota \tau \omega \phi \alpha \rho \nu \alpha \beta \alpha \varsigma \omega \alpha[.] \tau \omega\) \(\tau \iota \theta \rho \alpha v \sigma \tau \eta \kappa \alpha \iota \chi \rho \eta \mu \alpha \tau \alpha \lambda \alpha \beta \epsilon \iota \nu \nu \epsilon \beta \alpha \iota \nu \epsilon \nu \epsilon \kappa \tau \eta \sigma\) \(\kappa \alpha v \nu 0 u \pi \rho \circ \sigma \alpha v \tau 0 v \sigma \epsilon \tau v \gamma \chi \alpha \nu \epsilon \delta \epsilon \tau 0 \iota \sigma \sigma \tau \rho \alpha \tau \iota \omega\) Col. xvi (=D Col. vi).
\(\tau \alpha \iota \sigma \kappa \alpha \tau \alpha \tau о \cup \tau 0 \nu \tau 0 \nu\) Хророขт \(\rho о \sigma о ф \epsilon \iota \lambda о \mu \epsilon\)
\(\nu o \sigma \mu \iota \sigma \theta о \sigma \pi о \lambda \lambda \omega \nu \mu \eta \nu \omega \nu \mu \nu \sigma\) Өoठoт[. .] \(] \tau \tau \gamma \alpha \rho \nu\) \(\pi о \tau \omega \nu \sigma \tau \rho \alpha \tau \eta \gamma \omega \nu \kappa \alpha \kappa \omega \sigma о \pi о \iota \epsilon \iota \nu \in \theta[[..] \epsilon \sigma \tau \iota \nu \alpha\) \(\epsilon \iota \tau \circ \iota \sigma \pi \circ \lambda \epsilon \mu о v \sigma \iota \ddot{\partial} \pi \epsilon \rho \beta \alpha \sigma \iota \lambda \epsilon \omega \sigma \epsilon \pi \epsilon[\). . .] \(\tau \alpha \tau \circ \nu\)
\(5 \delta \epsilon \kappa \epsilon \lambda \epsilon \iota к о \nu \pi о \lambda \epsilon \mu о \nu о \pi о \tau \epsilon \sigma v \mu \mu[. . ..] \lambda \alpha \kappa \epsilon \delta \alpha \iota\) \(\mu о \nu \iota o \iota \eta \sigma \alpha \nu \kappa о \mu \iota \delta \eta \phi \alpha v \lambda \omega \sigma \kappa \alpha \iota \gamma \lambda \iota \sigma \chi[\cdot.] \sigma \pi \alpha \rho \epsilon \iota\) Хоขтох \(\rho \eta \mu \alpha \tau \alpha \kappa \alpha \iota \pi о \lambda \lambda \alpha \kappa \iota \sigma \alpha \nu \kappa \alpha \tau[\cdot] \lambda \nu \theta \eta \sigma \alpha \nu\) \(\alpha \iota \tau \omega \nu \sigma v \mu \mu \alpha \chi \omega \nu \tau \rho[\).] \(\eta \rho \epsilon \iota \sigma \epsilon \iota \mu \eta \delta \iota \alpha \tau \eta \nu \kappa \nu \rho \circ \nu\) \(\pi \rho \circ \theta v \mu \iota \alpha \nu \tau 0 v \tau \omega \nu \delta \epsilon \beta \alpha \sigma \iota \lambda \epsilon v \sigma \alpha \iota \tau \iota \circ \sigma \epsilon \sigma \tau \iota \circ \sigma\)
10 \(\epsilon \pi \epsilon \iota \delta \alpha \nu \epsilon \nu \sigma \tau \eta \sigma \eta \tau \alpha \iota \pi о \lambda \epsilon \mu о \nu \kappa \alpha \tau \alpha \pi \epsilon \mu \psi \alpha \sigma\) \(\kappa \alpha \tau \alpha \rho \chi^{\alpha \sigma}{ }^{\circ} \lambda \iota \gamma \alpha \chi \rho \eta \mu \alpha \tau \alpha \tau о \iota \sigma \alpha \rho \chi \circ v \sigma \iota \nu 0 \lambda \iota \gamma \omega \rho \epsilon \iota\) \(\tau 0 \nu \epsilon \pi \iota \lambda o \iota \pi 0 \nu\) Х \(\rho \circ \nu 0 \nu 0 \iota \delta \epsilon \tau 0 \iota \sigma \pi \rho a \gamma \mu \alpha \sigma \iota \nu \epsilon\) \(\phi \epsilon \sigma \tau \omega \tau \epsilon \sigma о \cup \kappa \epsilon \chi\) Х \({ }^{\circ} \tau \epsilon \sigma \alpha \nu \alpha \lambda \iota \sigma \kappa \epsilon \iota \nu \epsilon \kappa \tau \omega \nu i \delta_{\iota}\) \(\omega \nu \pi \epsilon[. . ..] \sigma \iota \nu \epsilon \nu \iota о \tau \epsilon \kappa \alpha \tau \alpha \lambda v o \mu \epsilon \nu[.] \sigma \tau \alpha \sigma \alpha v \tau \omega^{-}\) 15 [. . . .] \(\epsilon \iota \sigma \tau \alpha \nu \tau \alpha \mu \epsilon \nu 0 v \nu 0 v \tau \omega \sigma \sigma \nu \mu \beta \alpha \iota \nu \epsilon \iota \nu\) \(\epsilon \iota \omega \theta \tau \tau \theta \rho \alpha v \sigma \tau \eta \sigma \delta \epsilon \pi \alpha \rho \alpha \gamma \epsilon \nu\) о \(\mu \epsilon \nu\) оитоико \(\nu \omega \nu 0 \sigma \omega \sigma \alpha \nu \tau о \nu \kappa \alpha \iota \lambda \epsilon \gamma о \nu \tau о \sigma о \tau \iota \kappa \iota \nu \delta \nu \nu \epsilon \cup \sigma \epsilon \iota \sigma v \nu\) \(\tau \rho \iota \beta \eta \nu \alpha \iota \tau \alpha \pi \rho \alpha \gamma \mu \alpha \tau \alpha \delta \iota \alpha \chi \rho \eta \mu \alpha \tau \omega \nu \epsilon \nu \delta \epsilon \iota \alpha^{-}\) o८ \(\sigma \tau o v \sigma \ddot{\pi} \pi \epsilon \rho \beta \alpha \sigma \iota \lambda \epsilon \omega \sigma \pi 0 \lambda \epsilon \mu о v \nu \tau \alpha \sigma o v \kappa \epsilon v \lambda \circ\) \(20 \gamma \omega \sigma \epsilon \chi \epsilon \iota \nu \alpha \pi \alpha \gamma \circ \rho \epsilon v[\).] \(\iota \nu \alpha \pi 0 \sigma \tau \epsilon \lambda \lambda \epsilon \iota \tau \iota \nu \alpha \sigma \tau \omega \nu \mu \epsilon\)
 \(\tau \alpha \iota \sigma \epsilon \chi\) оעт \(\alpha \sigma \alpha \rho \gamma \cup \rho \iota \circ v \tau \alpha \lambda \alpha \nu \tau \alpha \delta \iota \alpha \kappa о \sigma \iota \alpha \kappa \alpha \iota \epsilon \iota\) \(\kappa о \sigma \iota \epsilon \lambda \eta \phi \theta \eta \delta \epsilon \tau 0 \cup \tau о \alpha \rho \gamma v \rho \iota 0 \nu \epsilon \kappa \tau \eta \sigma о v \sigma \iota \alpha \sigma \tau \eta \sigma\) \(\tau \iota \sigma \sigma \alpha \phi \epsilon \rho \nu 0 v \sigma \tau \iota \theta \rho \alpha \nu \sigma \tau \eta \sigma \mu \epsilon \nu 0 v \nu \epsilon \tau \iota \pi \epsilon \rho \iota \mu \epsilon \iota\)

 \(\mu о \nu i ́ \omega \nu\) каi \(\tau \hat{\omega} \nu \quad \sigma v \mu \mu \alpha ́ \chi \omega \nu\), òs àфíкєто vav́apXos סıá-

 Kav́vou \(\pi \rho o ̀ s ~ a v ̉ \tau o u ́ s . ~ \epsilon ̇ \tau v ́ \gamma \chi \alpha \nu \epsilon ~ \delta ̀ є ~ \tau o i ̂ s ~ \sigma \tau \rho a \tau \iota \omega-~\)

\section*{Col. xvi.}

vos \(\mu \iota \sigma\) Oòs \(\pi 0 \lambda \lambda \hat{\omega} \nu \quad \mu \eta \nu \hat{\omega} \nu\). \(\dot{\epsilon} \mu \tau \sigma \theta o \delta o \tau[0 \hat{v}] \nu \tau 0 \quad \gamma \grave{\alpha} \rho \dot{v}-\)

\(\epsilon i\) тoîs \(\pi 0 \lambda \epsilon \mu 0 \hat{v} \sigma \iota \nu\) ن́ \(\pi \epsilon ̀ p \quad \beta \alpha \sigma \iota \lambda \epsilon ́ \omega s\), \(̇ \pi \epsilon[i\langle\kappa \alpha i\rangle \kappa \alpha] \tau \alpha ̀ ~ \tau o ̀ \nu\)

 Хоעто Хрŋ́ \(\mu \alpha \tau \alpha\), каi \(\pi о \lambda \lambda \alpha ́ \kappa \iota \varsigma ~ a ̈ \nu ~ к \alpha \tau[\epsilon] \lambda u ́ \theta \eta \sigma \alpha \nu\)

\({ }_{25} \nu \alpha \sigma 0 \lambda \iota{ }^{2}{ }^{2} \chi \chi \rho 0 \nu 0 \nu \epsilon \nu \tau \alpha \iota \sigma \sigma \alpha \rho \delta \epsilon \sigma \iota \nu \alpha \nu \epsilon \beta \alpha \iota \nu \epsilon \nu\) \(\omega \sigma \beta \alpha \sigma \iota \lambda \epsilon \alpha \kappa \alpha \tau \alpha \sigma \tau \eta \sigma \alpha \sigma \sigma \tau \rho \alpha \tau \eta \gamma 0 \cup \sigma \epsilon \pi \iota \tau \omega \nu \pi \rho \alpha\) \(\gamma \mu \alpha \tau \omega \nu \alpha \rho \iota \alpha \iota \nu \kappa \alpha \iota \pi \alpha \sigma \iota \phi \epsilon \rho \nu \eta \kappa \alpha \iota \pi \alpha \rho \alpha \delta o v \sigma \alpha v \tau \circ \iota \sigma\) \(\epsilon \iota \sigma \tau о \nu \pi о \lambda \epsilon \mu о \nu \tau о к \alpha \tau \alpha \lambda \epsilon \iota \phi \theta \in \nu \alpha \rho \gamma v \rho \iota о \nu \kappa \alpha \iota \chi \rho v\) \(\sigma \iota \circ \nu \phi \alpha \sigma \iota \phi \alpha \nu \eta \nu \alpha \iota \pi \epsilon \rho \iota \epsilon \pi \tau \alpha \kappa о \sigma \iota \alpha \tau \alpha \lambda \alpha \nu \tau \alpha \tau \omega \nu\)
30 ठєкขтрเшроь \(\epsilon \tau \alpha \tau о \cup к о \nu \omega \nu о \sigma к \alpha \tau \alpha \pi \lambda \epsilon \cup \sigma \alpha \nu\) \(\tau \epsilon \sigma \epsilon \iota \sigma \tau \eta \nu \kappa \alpha v \nu 0 \nu \alpha \nu \alpha \pi \epsilon \iota \sigma \theta \epsilon \nu \tau \epsilon \sigma 0 \cup \tau \omega \tau \iota \nu \omega^{-}\) \(\delta \iota \alpha \beta \alpha \lambda\) до \(\tau \omega \nu \omega \sigma \alpha \nu \tau о \iota \sigma \mu \in \nu 0 \nu \mu \epsilon \lambda \lambda\) оv \(\sigma \iota \nu \alpha \pi\) о
 \(\alpha \zeta о \nu \tau \alpha \iota \delta \epsilon \delta \iota \alpha \lambda \nu \sigma[. \cdot] \sigma \mu о \nu 0 \nu \tau \alpha[.] \sigma v \pi \eta \rho \in \sigma \iota \alpha \iota \sigma\) \(35 \kappa \alpha \iota \tau 0 \iota \sigma \epsilon \pi \iota \beta \alpha \tau \alpha \iota \sigma \chi \alpha \lambda \epsilon \pi \omega \sigma \epsilon \phi \epsilon \rho о \nu \kappa \alpha \iota \sigma \nu \nu \in \lambda \theta_{0}{ }^{-}\) \(\tau \epsilon \sigma \epsilon \iota \sigma \epsilon \kappa \kappa \lambda \eta \sigma \iota \alpha \nu \epsilon \iota \lambda о \nu \tau 0 \sigma \tau \rho \alpha[\cdot] \eta \gamma 0 \nu \alpha \nu \tau \omega \nu\) \(\alpha \nu \delta \rho \alpha \kappa \alpha \rho \pi \alpha \sigma \epsilon \alpha \tau 0 \gamma \epsilon \nu 0 \sigma \kappa \alpha \iota \tau 0[..] \omega \phi \nu \lambda \alpha \kappa \eta \nu\) \(\epsilon \delta о \sigma \alpha \nu \tau o v \sigma \omega \mu \alpha \tau о \sigma \delta v 0 \sigma[.] \omega \tau \alpha \sigma \alpha \phi \epsilon \kappa \alpha \sigma \tau \eta \sigma\)

Col. xvii (=D Col. vii).

[.] \(\gamma \epsilon \tau о \pi \epsilon \rho \iota \tau \omega[. ~ . ~]. ~ . ~ \omega \nu к о \nu \omega \nu \delta є \sigma ~ . ~[. ~] ~]\).
[.] \(] \tau \tau \omega \nu \tau[. ~ . ~ . ~ . ~ . ~]. v \sigma о и к є \iota \alpha \pi \iota \sigma \tau \epsilon v \epsilon \iota ~-~\)
[.] \(] \kappa \kappa \lambda[.] \sigma[. ~ . ~ . ~ . ~ . ~]. є \lambda \lambda ~ \eta \nu \omega \nu \alpha \lambda[.] \alpha \pi \alpha \nu ~\)
[. .] \(\sigma к о \mu \iota є \iota \sigma \theta \alpha \iota \tau \alpha \nu \tau \eta \nu ~\)
10] \(\epsilon \phi \alpha \sigma \kappa \epsilon \nu \beta o v \lambda \epsilon \sigma \theta \alpha \iota\) [.]]ca[.]ǫ赗 \(\epsilon \sigma \tau \rho \alpha \tau \eta \gamma о \sigma о \tau \omega^{-}\)
[.] \(] \pi \rho[\). \(] \sigma \epsilon[\).] \(] \pi \rho о \sigma \tau о \pi \lambda \eta \theta о \sigma \tau о \tau \omega \nu\) \(\sigma \tau \rho \alpha \tau!\omega[\ldots] \kappa 0 \lambda \rho[.] \epsilon \iota \nu[]. v \delta \epsilon \sigma v \nu \epsilon \xi \circ \rho \mu \eta \sigma \alpha \nu\)

\({ }_{15} \kappa \circ \nu \omega \nu[.] \epsilon \tau \nu \chi \epsilon \nu \eta \gamma[..] \mu \epsilon \nu 0 \sigma \epsilon \xi \epsilon \lambda \eta \lambda \nu \theta \epsilon \iota \pi \rho \circ \tau \epsilon\)
 \(\eta \nu \epsilon \xi \iota[\).] \(] \kappa \alpha \tau \alpha \tau \alpha \sigma \pi \nu \lambda \alpha \sigma \epsilon \pi \iota \lambda \alpha \mu \beta \alpha \nu 0 \nu \tau \alpha \iota \tau \omega \nu \mu \epsilon \sigma\) \(\sigma \eta \nu \iota \omega[\cdot] \tau \iota \nu \epsilon \sigma \tau \omega \nu \kappa о \nu \omega \nu \iota \pi \alpha \rho \alpha \kappa о \lambda \sigma \nu \theta \epsilon \iota \nu \epsilon \omega\)

 \(\gamma \mu \alpha ́ \tau \omega \nu\) 'Apıaîov каi Пабıф'́ \(\rho \nu \eta\), каi тараסоѝs аúтоîs

 \(\delta_{\iota} \alpha \beta \alpha \lambda \lambda o ́ \nu \tau \omega \nu\) ìs av̉roîs \(\mu \grave{\epsilon} \nu\) ov̉ \(\mu \epsilon ́ \lambda \lambda o v \sigma \iota \nu \dot{\alpha} \pi 0-\)

Col. xvii.

[.] тòv Kóv \(\omega v a\) [.]

5
[.]єрацєє катє
[. \(] \gamma \in \tau о ~ \pi \epsilon \rho i ~ \tau \hat{\omega}[\nu ..] . \omega \nu . K\)

\([.] \epsilon \kappa \lambda[.] \sigma[. . . \tau \hat{\omega} \nu]\) ' \(E \lambda \lambda \eta{ }_{\eta} \nu \omega \nu, \dot{\alpha} \lambda[\lambda] \alpha \dot{\alpha} \pi \alpha ́ \nu-\)
[таs]s коцtєî \(\theta\) өat, \(\tau \alpha u ́ \tau \eta \nu ~\)

\([\delta] \iota \alpha[\delta \eta \lambda \hat{\omega} \sigma \alpha \iota\) каi \(\tau о i ̂ s ~ a ̈ \lambda \lambda] o \iota s\), ò \(\delta \grave{\epsilon} \sigma \tau \rho \alpha \tau \eta \gamma o ̀ s\) ò \(\tau \hat{\omega} \nu\)
\([K] v \pi \rho[i \epsilon \omega \nu\) ó Kap \(\pi \alpha] \sigma \epsilon[\dot{\nu} s a \dot{s} \tau \hat{\omega}] \pi \rho o ̀ s ~ \tau o ̀ ~ \pi \lambda \hat{\eta} \theta o s ~ \tau o ̀ ~ \tau \hat{\omega} \nu\) \(\sigma \tau \rho \alpha \tau \iota \omega[\tau \hat{\omega} \nu \dot{\eta}] \kappa 0 \lambda o[v \dot{\theta} \theta \epsilon \iota\). \(\epsilon \kappa] \epsilon i v[0] v\) ס̀ \(\sigma v \nu \epsilon \xi \circ \rho \mu \eta{ }_{\eta} \sigma \alpha \nu-\)


```

    0о\tau\omega\nu[. .] ]\epsilon\tau\alpha\tau\eta\sigma\epsilonк\epsilon\iota\nu0v\gamma\nu[.].]\mu\eta\sigma\epsilon\pi\iota0v\muоv\nu\tau\epsilon\sigma\epsilon-
    20 \tau\eta\pi0\lambda\epsilon[.]<\alpha\alpha\tau\alpha\sigma\chi\epsilon\iota\nu\alpha\nu\tau0\nu0\pi[. .] }\nu\nu\omega\nu\epsilon\xi\eta\mu\alpha\rho\tau\epsilon
\delta\omega\delta\iota\kappa[.].]o\iota\delta\epsilon\sigmav\nu\alphaко\lambdaov0o[. . .]\epsilon\sigma\tau\omega\nuкv\pi\rhot\omega\nu\alpha\nu
\tau\epsilon\lambda\alpha\mu[.]\alpha\nu[.]\nu\tauо\tau[. . . . . . . .]\omega\sigmaк\alpha\iota\delta\iota\epsilonк\omega\lambda\nuvo\nu\tauоv\sigma
\mu\epsilon\sigma\sigma\eta[. . . . .]\alpha\gamma\epsilon\ell[. . . . . . .]\iota\sigma0\alpha\nuо\mu\epsilon\nuо\nu\deltaंєк\alpha\iota\tauо
\tau\omega\nu\epsilon\xi[. . . . .] ] }\omega\nu[. . . . . . . .]\epsilon\betao\eta0\epsilon\iota\tau\omega\sigma\tau\rho\rho\alpha\tau\eta\gamma\omegao[.]\epsilon
{ } _ { 2 5 } ^ { 5 } \kappa < \nu \omega \nu [ . ~ . ~ . ~ . ~ . ] \pi \epsilon [ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ] \tau o v [ . ] \alpha \nu \theta \rho \omega \pi о v \sigma \epsilon \iota \sigma \pi \eta ~
\delta\eta\sigma\alpha\sigma[. . . . . . . . . . . . . . .]v\sigma\epsilon\nu[.]!\sigma\tau\eta\eta\nu\piо\lambda\iota\nu0\iota\delta\epsilonкц
\piр\iotao\iota\tau[. . . . . . . . . . . . . .]\sigma\alpha\psi\psi[.] ]\epsilonvov\sigma\tauо⿱кк\alpha[. .
\pi\alpha\sigma\epsilon\omega[. . .]<br>lambda[. . . . . . . . . . . .]v\sigma\alpha\nu\alphavv\tauoו\delta\epsilon\pi\epsilon\pi\epsilon\epsilon\iota\sigma\mu[.
\nuо\iota\pi\alpha\nu\tau\alpha\pi[. . . . . . . . . . . . . .]о\nuко\nu\omega\nu\alpha\pi\alpha\rho\rho\epsilon
3० \sigmaкєv\alpha\sigma0\alpha\iota\pi\epsilon\epsilon[[. . . . . . . . . . . . . .]\delta\iota\alpha\deltao\sigma\iota\nu\epsilon[. . .]@̣[.
\nuo\nu\epsilon[.]\sigma\tau\alpha\sigma\tau\rho[. . .]\epsilon\tau\sigma\epsilon\pi[[. . . . . . . .]\alpha\iota\sigma\pi\rho\alpha\xi\epsilon\sigma\iota\nu\omega\omega\sigma\gamma\epsilon
\tau\iota\nu\epsilon\sigma\epsilon\lambda\epsilon\gammaov[. .]\epsilon\lambda\lambdaov[. . . . . . . . .]\tau\eta\sigma\rhoo\deltaov\pi\alpha\rho\alpha\lambda\alpha
\betao\nu[. . .]\sigma\epsilon\iota\sigmaкv\pi\rhoо\nu\pi\lambda\epsilon[. . . . . . . .]\epsilonv\sigma\alpha\nu\tau\epsilon\sigma\delta\epsilon\tau\eta\sigma\alpha
\lambda\alpha\nu[. .]\nu!⿺!оvк\alpha\iotaт\alpha\rho\alphaк[. . . . . . .]\tau\epsilon\sigma\tauо⿱\sigma\beta\betaоv\lambdaо\mu\epsilon
35 [. . . . . . .]v\pi\rho\iota\omega\nu \betaa\deltai[. . . . . . .]\piро\sigma\tau\eta\nuакрото
[. . . . . . . . .]\nu\alpha\rho\chi\eta\nu\tau[. . . . . . . . . .]к\alpha\tau\alpha\lambda\nuv\sigma\omega\sigma\iota\omega\sigma
[. . . . . . . . .\nuou\pi\alphaц [. . . . . . . . . . .]\nuккк\omegayо\muо\iota
[. . . . . . . . . . . .]o\iota\eta\sigma[. . . . . . . . . . . . .]\nu\alphav\tauо\iota\sigmaє\iota\sigma
[. . . . . . . . . . . . .]\epsilon\sigmat\alpha[. . . . . . . . . . . . . .]\tau\omega\nu\lambda!ọ者
40 [
.]![.]?\eta\nu

```
 Col. xviii (=D Col. viii).

 \(\tau \epsilon \sigma \alpha \pi о \tau \eta \sigma\). [.] \(][\). . . \(] \mu \in \nu=\iota\)
 Хр \(\eta \sigma \alpha \sigma \theta \alpha \iota \tau \circ เ \sigma \alpha v \tau[.] \tau \rho \iota \eta \rho \omega \nu к о\)
 \(\nu \omega \nu \delta \epsilon \kappa \alpha \tau \eta \gamma \mu \epsilon[. ~.] \epsilon \lambda \theta \omega \nu \pi \rho o \sigma\)
5 \(\lambda \epsilon \omega \nu v \mu о \nu \tau о \nu \tau[. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~.] \pi[.] \nu \alpha v \tau \omega o ~\)
 \(\tau \iota \mu о \nu о \sigma \delta v \nu \alpha \tau \alpha \iota \tau[.] \tau[. ~ . ~.] \sigma \iota \lambda \epsilon \omega \sigma \epsilon \iota\)

 入ך \(\eta \alpha \sigma o \iota \tau \eta \nu \kappa \alpha \nu \nu \circ[. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~] ~]. ~ \omega \nu \kappa \alpha \rho \omega \nu ~\)
 \(\omega \sigma \pi \lambda \epsilon \iota \sigma \tau 0 v \sigma \pi \alpha v \sigma \epsilon \iota[\). \(] \rho \alpha \tau о \pi \epsilon \delta \omega \tau \alpha\)
Io \(\rho \alpha \chi \eta \nu \kappa \epsilon \lambda \epsilon v \sigma \alpha \nu \tau 0 \sigma \delta\left[\right.\).]ov \(\lambda \mu \beta \alpha \nu \epsilon l^{-}\)

Өót \(\omega \nu\) [ov̉] \(\mu \epsilon \tau \grave{\alpha} \tau \hat{\eta} S\) '̇кєivov \(\gamma v[\hat{\omega}] \mu \eta S\), '่ \(\pi t \theta \nu \mu o \hat{\nu} \nu \tau \epsilon S\) '̇v
 \(\delta \widehat{\varphi} \delta i \kappa[\eta] \nu . \quad\) oi \(\delta \grave{\epsilon} \sigma v \nu \alpha \kappa o \lambda o v \theta o[\hat{v} \nu \tau] \epsilon s \quad \tau \omega ิ \nu K v \pi \rho i ́ \omega \nu \quad \alpha \nu-\)

 \(\pi \rho เ o \iota ~ \tau[o v ̀ s ~ M \epsilon \sigma \sigma \eta \nu i ́ o u s ~ \tau o u ̀] s ~ \dot{\alpha} \psi \alpha \mu \epsilon ́ \nu o u s ~ \tau o v ̂ ~ K a[\rho-~\)
 \(\nu 0 \iota \pi \alpha \nu \tau \alpha \pi[. \tau]\) òv Kóv\(\omega \nu \alpha \pi \alpha \rho \epsilon-\)

 \(\lambda \alpha \nu[..] \nu \iota o \iota o v ~ к \alpha i ̀ \pi \alpha \rho \alpha \kappa[о \mu i ́ \sigma \alpha \nu] \tau \epsilon s\) тò̀s \(\beta\) ои入о \(\mu \epsilon ́-\) 35 [vous т \(\hat{\omega} \nu K] v \pi \rho i ́ \omega \nu, \beta \alpha \delta \uparrow \uparrow \delta o v \sigma \iota \nu]\) т \(\rho o ̀ s ~ \tau \eta ̀ \nu ~ \alpha ́ к р o ́ \pi о-~\)

 [\(\omega\) s \(\delta\) è \(\pi\)]oın \(\eta[.] \nu\) aủtoîs єís [. vín \(\eta \rho] \in \sigma i ́ a[. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~]. ~ \tau ~ ิ ิ \nu ~ \lambda o ́ \gamma \omega \nu ~\) 40
.] \(\nu[.] \tau \grave{\eta} \nu\)

\section*{Col. xviii.}

\(\nu \omega \nu \delta \grave{\epsilon} \kappa \alpha \tau \eta \gamma \mu \epsilon \in[\nu \omega \nu \quad \tau \hat{\omega} \nu K \nu \pi \rho i ́ \omega \nu]\) द̀ \(\lambda \theta \grave{\omega} \nu \pi \rho o ̀ s\)
 \(\tau \iota \mu o ́ \nu o s\) ठúvatal \(\left.\tau\left[\begin{array}{l}\alpha \\ \pi \rho \alpha ́ \gamma \mu \alpha \tau \alpha \\ \sigma \hat{\omega} \sigma \alpha l] \\ \tau\end{array}\right] \quad \beta \alpha\right] \sigma \iota \lambda \epsilon \epsilon \omega s, \epsilon i\)
 \(\lambda \eta \nu \alpha s\) oî \(\tau \grave{\nu} \nu K \alpha \hat{v} \nu o \nu\) [фu入áттovol каì] \(\tau \hat{\omega} \nu K \alpha \rho \bar{\nu} \nu\)

 \(\eta \mu \epsilon \rho \alpha \nu \pi \alpha \rho \eta \kappa \epsilon \nu \kappa \alpha \iota \gamma \alpha \rho \eta[.] \delta \eta \pi \epsilon \rho \iota \delta v \sigma \mu \alpha \sigma\) \(\epsilon \iota \sigma \delta \epsilon \tau \eta \nu \epsilon \pi t \circ \cup \sigma \alpha \nu \pi \rho \iota \nu \eta \mu[\). . . . \(] \epsilon \nu \epsilon \sigma \theta \alpha \iota \lambda \alpha \beta \omega \nu\) \(\pi \alpha \rho \alpha \tau о v \lambda \epsilon \omega \nu v \mu о \nu \tau \omega \nu \tau \epsilon[\). . . . \(] \sigma v \chi \nu 0 v \sigma \kappa \alpha \iota \tau о v \sigma\)
\({ }_{15} \epsilon \lambda \lambda \eta \nu \alpha \sigma \alpha \pi \alpha \nu \tau \alpha \sigma \epsilon \xi \eta \gamma \alpha \gamma \epsilon \nu[. .\). . \(] \nu \sigma \epsilon \kappa \tau \eta \sigma \pi 0 \lambda \epsilon \omega \sigma\) \(\epsilon \pi \epsilon \iota \tau \alpha \tau 0 v \sigma \mu \epsilon \varphi[\). . \(] \omega \theta \epsilon \nu \alpha v \tau 0 v \tau о v \sigma \tau \rho \alpha \tau о \pi \epsilon \delta о v \pi \epsilon[\). \(\rho \iota \epsilon \sigma \tau \eta \sigma \epsilon \nu \tau 0 v \sigma[.] \cdot[.] \nu \pi \rho o \sigma \tau \epsilon \tau \alpha \sigma \nu \alpha \nu \sigma \kappa \alpha[\).
 \(\sigma \alpha \sigma \kappa \eta \rho \nu \xi \alpha \iota \tau[.] \nu \epsilon \iota \nu \epsilon \kappa \alpha \sigma \tau о \nu \tau \omega \nu \sigma \tau \rho \alpha\)
\(20 \tau \iota \omega \tau \omega \nu \epsilon \pi \iota \tau \eta[.] \nu \epsilon \lambda \alpha \beta \epsilon \tau \omega \nu \kappa \nu \pi \rho \iota \omega \nu\) \(\tau о \nu \tau \epsilon \kappa \alpha \rho \pi \alpha \sigma \epsilon[.] \lambda \omega \nu \epsilon \xi \eta \kappa о \nu \tau \alpha \kappa \alpha เ \tau о \nu \sigma\) \(\mu \epsilon \nu \alpha \pi \epsilon \kappa \tau \epsilon \iota \nu[\). \(] \tau \eta \gamma 0 \nu \alpha \nu \epsilon \sigma \tau \alpha \nu \rho \omega \tau \epsilon^{-}\) \(\alpha \kappa о \nu \sigma \alpha \nu \tau \epsilon \sigma \delta[.] \iota \kappa \alpha \tau \alpha \lambda \epsilon \iota \phi \theta \epsilon \nu \tau \epsilon \sigma \epsilon \nu \tau \eta\)

\({ }_{25} \alpha \rho \chi о \nu \tau \alpha \sigma \tau 0 v \sigma[.] \nu о \sigma \kappa \alpha \tau \alpha \sigma \tau \alpha \nu \tau \alpha \sigma \beta \alpha \lambda\) \(\lambda о \nu \tau \epsilon \sigma \epsilon \xi \eta \lambda \alpha \sigma[.] \sigma \tau \rho a \tau о \pi \epsilon \delta о \nu \tau о \nu \delta \epsilon \lambda \iota \mu \epsilon\) \(\nu \alpha к \alpha \tau \alpha \lambda \iota \pi о \nu[.] \theta о \rho \nu \beta о \nu к \alpha \iota \tau \alpha \rho \alpha \chi \eta \nu \pi \alpha \rho\)
 [.] \(\alpha \nu \nu 0 v \tau o v \sigma \tau[.] \alpha \sigma \alpha v \tau \omega \nu \sigma \nu \lambda \lambda \alpha \beta \omega \nu \alpha \pi \epsilon \epsilon \tau \epsilon \epsilon\) \(30 \nu \epsilon \kappa \alpha \iota \tau о \iota \sigma \alpha \lambda \lambda[.] \nu \delta \iota \epsilon \delta \omega \kappa \epsilon \tau о \mu \epsilon \nu 0 v \nu \beta \alpha \sigma \iota\)入ıкоข \(\tau \tau \rho а \tau о[.] \omega \sigma \epsilon \iota \sigma \mu \epsilon \gamma а \nu \kappa \iota \nu \delta \nu \nu о \nu\) \(\pi \rho о \epsilon \lambda \theta о \nu \delta \iota \alpha \kappa 0 \nu \omega \nu[. ..] \tau \eta \nu \epsilon \kappa \epsilon \iota \nu 0 v \pi \rho \circ \theta v \mu \iota \alpha \nu\) \(\epsilon \pi \alpha v \sigma \alpha \tau о \tau \eta \sigma \tau \alpha \rho \alpha \chi \eta[. \quad.] \gamma \eta \sigma \iota \lambda \alpha 0 \sigma \delta \epsilon \pi \alpha \rho \alpha[\cdot] 0 \rho \in v\) \(>-\) \(\circ \mu[..] \sigma \sigma \epsilon \iota \sigma \tau o \nu \epsilon \lambda \lambda \eta \sigma \pi[\cdot]\rangle \tau \sigma \nu \alpha \mu \alpha \tau \omega \sigma \tau \rho \alpha \tau[.] \nu \mu \alpha\)
35 ! [. . . .] \(\alpha \kappa \epsilon \delta \alpha \iota \mu о \nu \iota \omega \nu \kappa[.] \iota \tau \omega \nu \sigma \nu \mu \mu \alpha \chi \omega \nu о \sigma о \nu \mu^{\prime}\)

 [.]] \(\iota[\) [. .] \(\alpha \iota \sigma \pi \rho о \sigma \tau \iota \theta \rho \alpha v[. ~.] \eta \nu \gamma \epsilon \nu 0 \mu[. . ..] \epsilon \pi \epsilon \iota \delta \eta \delta \epsilon \kappa \alpha\)

Col. xix (=D Col. ix).
\(\sigma \tau \rho \alpha \tau[.] \nu \mu \alpha \lambda \in \eta \lambda \alpha \tau \omega \nu \kappa \alpha \iota \pi \circ \rho \theta \omega \nu \tau \eta[\).
\(\delta \epsilon \pi \alpha \rho \alpha \lambda \lambda \alpha \xi \alpha[. ~]. о \tau \epsilon \theta \eta \beta \eta \sigma \pi \epsilon \delta \iota \nu \nu \kappa \alpha \iota \tau[. . . .\).
\(\kappa \alpha \lambda o v \mu \epsilon \nu 0 \nu \epsilon[..] \in \beta, \beta_{\alpha} \lambda \epsilon \nu \epsilon \iota \sigma \tau \eta \nu \mu \nu \sigma \iota \alpha[\).
óто́бous \(\beta\) oú \(\epsilon \epsilon \tau \alpha \iota ~ \sigma \tau \rho \alpha \tau[\iota \omega \tau \alpha \varsigma, \tau \alpha v ́ \tau] \eta \nu \mu \grave{\epsilon} \nu \tau \grave{\eta} \nu\)
 \(\epsilon i s ~ \delta \grave{\epsilon} \tau \grave{\eta} \nu\) '́ \(\pi \iota o v ิ \sigma \alpha \nu \pi \rho i \nu \quad \grave{\eta} \mu[\epsilon \in \rho \alpha \nu \gamma] \epsilon \nu \epsilon ́ \sigma \theta \alpha \iota \quad \lambda \alpha \beta \grave{\omega} \nu\)

\(20 \tau \iota \omega \tau \hat{\omega} \nu \dot{\epsilon} \pi i \grave{\imath} \tau \grave{\eta}[\nu, \sigma v] \nu \epsilon ́ \lambda \alpha \beta \beta \tau \tau \hat{\omega} \nu K v \pi \rho i \omega \nu\)
 \(\mu \grave{\nu} \nu \dot{\alpha} \pi \epsilon \epsilon ́ \kappa \tau \epsilon \iota \nu\left[\epsilon, \tau o ̀ \imath^{\prime} \delta \grave{\epsilon} \sigma \tau \rho \alpha\right] \tau \eta \gamma o ̀ \nu \quad \dot{\alpha} \nu \epsilon \sigma \tau \alpha u ́ \rho \omega \sigma \epsilon \nu\).

XVI. 1

\(35 \tau[\iota \tau \hat{\omega} \nu \quad \Lambda] \alpha \kappa \epsilon \delta \alpha \iota \mu о \nu i ́ \omega \nu \kappa[\alpha] \grave{\imath} \tau \hat{\omega} \nu \quad \sigma \nu \mu \mu \alpha ́ X \omega \nu\), ö \(\sigma o \nu \quad \mu \grave{\epsilon} \nu\)

Col. xix.
\(\sigma \tau \rho \alpha ́ \tau[\epsilon] v \mu \alpha\) \(\lambda \epsilon \eta \lambda \alpha \tau \hat{\omega} \nu\) каì \(\pi \rho \rho \theta \hat{\omega} \nu \quad \tau \grave{\eta}[\nu \quad \gamma \hat{\eta} \nu\). єî \(\tau \alpha\)

\(\tau о т о \iota \sigma \mu \nu \sigma \sigma[.] \sigma \kappa \epsilon \lambda \epsilon \varphi[\cdot] \nu \alpha \nu \tau \sigma v \sigma \sigma v \sigma \tau \rho[\) [.
5 таvт \(\omega \nu \epsilon \iota \sigma \iota \gamma \rho \circ \iota \pi \frac{0}{2}[]. o \iota[\cdot] \omega \nu \mu \nu \sigma \omega \nu \alpha v[.\).
\(\beta \alpha \sigma \iota \lambda \epsilon \omega \sigma o v \chi \nu \pi \alpha \kappa о v o \nu[.] \epsilon \sigma о \sigma o \iota \mu \epsilon \nu 0 v \nu[. . . .\).
\(\sigma \omega \nu \mu \epsilon \tau \epsilon \chi \epsilon \iota \nu \eta \rho o v \nu \tau о \tau \eta \sigma \sigma \tau \rho \alpha \tau \epsilon \iota \alpha \sigma[\).
\(\pi о \iota \epsilon!к \alpha к о \nu \alpha v \tau 0 v \sigma \tau \omega \nu \delta \in \lambda о \iota \pi \omega \nu \epsilon \delta \eta[\).
\(\rho \alpha \nu \epsilon \pi \epsilon \iota \delta \eta \delta \epsilon \pi \rho \circ \ddot{̈} \omega \nu \epsilon \gamma \epsilon \nu \epsilon \tau о к \alpha \tau \alpha \mu \epsilon \sigma \sigma[\).
10 \(\sigma \tau \alpha \tau[\cdot] \nu 0 \lambda \nu \mu \pi о \nu \tau о \nu \mu v \sigma \iota \circ \nu \kappa \alpha \lambda о \nu \mu \epsilon \nu[\).
\(\chi \alpha \lambda[\cdot] \pi \eta \nu \kappa \alpha \iota \sigma \tau \in \nu \eta \nu \circ v \sigma \alpha \nu \tau \eta \nu \delta \iota o \delta o \nu[\).
\(\lambda о \mu[. . ..] \alpha \sigma \phi \alpha[..] \sigma \pi о \rho \epsilon \nu \theta \eta \nu \alpha \iota \delta \iota \alpha \tau \tau \sigma \pi \epsilon \mu[. .\).
\(\tau \iota \nu \alpha[. ..] \sigma \tau[. . .]. v \sigma o v \sigma \kappa \alpha \iota \sigma \pi \epsilon \iota \sigma \alpha \mu \epsilon \nu о \sigma \pi \rho \circ \sigma \alpha[\).
\(\tau о v \sigma \eta[.] \sigma[. . ..] \epsilon \nu \mu \alpha \delta \iota a \tau \eta \sigma \chi \omega \rho \alpha \sigma \pi \alpha \rho \epsilon \nu \tau[.] \sigma\)
\({ }_{15} \delta \in \pi \rho[.] \epsilon[\cdot] о \pi о \nu \nu \eta \sigma t \omega \nu \kappa \alpha \iota \tau \omega \nu \sigma \nu \mu[\cdot] \alpha\)
X[.]ot \(\sigma \tau \epsilon \lambda \epsilon v \tau \alpha \iota о \iota \sigma \alpha v \tau \omega \nu к а \tau \alpha \beta \alpha \lambda\)
\(\lambda[\ldots] \omega \nu \sigma \tau \rho a \tau \iota \omega \tau \omega \nu \alpha \tau \alpha \kappa \tau \omega \nu \delta!\alpha \tau \operatorname{} \alpha \sigma\)
\(\sigma \tau[.] \omega \nu \alpha \gamma \eta \sigma \iota \lambda \alpha \sigma \sigma \delta \epsilon \kappa \alpha \tau \alpha \xi \epsilon \nu \xi \alpha \sigma\)
\(\tau[.]. v \tau \eta \nu \tau \eta \nu \eta \mu \epsilon \rho \alpha \nu \eta \sigma v \chi \iota \alpha\)
\(20 \eta[\). \(] \mu[\). . \(] 0 \mu \epsilon \nu \alpha \tau о \iota \sigma \alpha \pi \circ \theta \alpha \nu o v \sigma \iota \delta \iota \epsilon\)
\(\phi \theta \alpha \rho \eta[. ..] \delta \in \pi \epsilon \rho \iota \pi \epsilon \nu \tau \eta \kappa о \nu \tau \alpha \tau \omega \nu \sigma \tau \rho \alpha \tau \iota \omega \tau \omega \nu\) \(\epsilon \iota \sigma \delta \epsilon \tau[. \cdot] \epsilon \pi \iota o v \sigma \alpha \nu \kappa \alpha \theta \iota \sigma \alpha \sigma \epsilon \iota \sigma \epsilon \nu \epsilon \delta \rho \alpha \nu \pi 0 \lambda \lambda o v \sigma\) \(\tau \omega \nu \mu[\ldots . ..] \rho \rho \omega \nu \tau \omega \nu \delta \epsilon \rho \kappa \nu \lambda \iota \delta \epsilon \iota \omega \nu \kappa \alpha \lambda о \nu \mu \epsilon \nu \omega^{-}\) \(\alpha \nu \alpha \sigma \tau[. . . \cdot] \rho \eta \gamma \epsilon \tau о \sigma \tau \rho \alpha \tau \epsilon \nu \mu \alpha \pi \alpha \lambda \iota \nu \tau \omega \nu \delta \epsilon \mu \nu \sigma \omega^{-}\)
\({ }^{2} 5\) о८ \(\eta\) [.]к \(\alpha \sigma \tau о \iota \delta \iota \alpha \tau \eta \nu \pi \lambda \eta \gamma \eta \nu \tau \eta \nu \tau \eta \pi \rho \circ\) \(\tau \epsilon \rho \alpha[.] \mu \epsilon \nu \eta \nu \alpha \pi \iota \epsilon \nu \alpha \iota \tau \circ \nu \alpha \gamma \eta \sigma \iota \lambda \alpha 0 \nu \epsilon \xi \in \lambda\)
\(\theta o \nu \tau[.] \omega \nu \kappa \omega \mu \omega \nu \epsilon \delta \iota \omega \kappa \nu \nu \omega \sigma \epsilon \pi \iota \theta \eta \sigma o \mu \epsilon \nu 0 \iota\)
 \(\imath^{\prime} \omega \nu \epsilon \varphi[. . . .]. o \nu \tau \epsilon \sigma \omega \sigma \eta \sigma \alpha \nu \kappa \alpha \tau \alpha \nu \tau о \nu \sigma \epsilon \kappa \pi \eta \delta \eta\) \(30 \sigma \alpha \nu \tau \epsilon \sigma \epsilon[.] \eta \sigma \epsilon \nu \epsilon \delta \rho \alpha \sigma \epsilon \iota \sigma \chi \epsilon \iota \rho \alpha \sigma \eta \epsilon \sigma \alpha \nu \tau 0 \iota \sigma \pi 0 \lambda \epsilon\) \(\mu \iota o \iota \sigma \tau \omega \nu \delta \epsilon \mu \nu \sigma \omega \nu 0 \iota \mu \epsilon \nu \eta \gamma \circ \nu \mu \in \nu 0 \iota \kappa \alpha \iota \pi \rho \omega\) \(\tau 0 \iota \delta \iota \omega \kappa 0[.] \tau \epsilon \sigma \epsilon \xi \alpha \iota \phi \nu \eta \sigma \tau 0 \iota \sigma \epsilon \lambda \lambda \eta \sigma \iota \sigma v \mu \mu \epsilon \iota \xi \alpha \nu\) \(\tau \epsilon \sigma \alpha \pi \circ \theta[\cdot]!\eta \sigma \kappa o v \sigma \iota o \iota \epsilon \epsilon \pi о \lambda \lambda o \iota \kappa \alpha \tau \iota \delta 0 \nu \tau \epsilon \sigma \tau 0 v \sigma \pi \rho \omega\) \(\tau 0 v \sigma \alpha[\). . . \(\nu \nu \epsilon \nu \pi \lambda \eta \gamma \alpha \iota \sigma o \nu \tau \alpha \sigma \epsilon \phi \epsilon v \gamma 0 \nu \pi \rho \circ \sigma \tau \alpha \sigma \kappa \omega\)
\(35 \mu \alpha \sigma \alpha \gamma[. . ..] \alpha o \sigma \delta \epsilon \pi \rho \circ \sigma \alpha \gamma \gamma \epsilon \lambda \theta \epsilon \nu \tau \omega \nu \alpha \nu \tau \omega \tau 0 \nu \tau \omega^{-}\) \(\mu \epsilon \tau \alpha[.] \nu \nu \sigma \alpha \pi \eta \gamma \epsilon \tau \sigma \sigma \tau \rho \alpha \tau \epsilon \nu \mu \alpha \pi \alpha \lambda \iota \nu \tau \eta \nu\)
\(\alpha \nu \tau \eta \nu[.] \omega \sigma \sigma v \nu \epsilon \mu \epsilon \iota \xi \in \tau o l \sigma \epsilon \nu \tau \alpha[.] \sigma \epsilon \nu \epsilon \delta \rho \alpha \iota \sigma\)

то тoîs \(M v \sigma o[\hat{\imath}] s\) к \(\epsilon \lambda \epsilon \hat{v}[\omega] \nu\) aútoùs \(\sigma v \sigma \tau \rho[\alpha \tau \epsilon \dot{\varepsilon} \epsilon \ell \nu \quad \mu \epsilon-\)

 \(\tau \iota \nu \grave{\alpha}\) [\(\pi \rho \grave{]}] s\) र[oùs \(M] v \sigma o u ̀ s ~ к \alpha i ~ \sigma \pi \epsilon \iota \sigma \alpha ́ \mu \epsilon \nu o s ~ \pi \rho o ̀ s ~ a[u ̉-~\) Toùs \(\hat{\eta}[\gamma \epsilon \tau \grave{o}] \sigma[\tau \rho \alpha ́ \tau] \epsilon \nu \mu \alpha\) סıà \(\tau \hat{\eta} S \chi^{\omega} \rho \alpha \Omega\). \(\pi \alpha \rho^{\prime} \nu \tau[\epsilon] S\)
\({ }_{15}\) ठ̀̀ \(\pi o[\lambda \lambda o v ̀ s ~ \tau \hat{\omega} \nu \quad \Pi] \epsilon[\lambda] o \pi o \nu \nu \eta \sigma i \omega \nu \quad \kappa \alpha i \tau \hat{\omega} \nu \quad \sigma \nu \mu[\mu] \alpha\) \(\chi\left[\omega \nu, \quad \dot{\epsilon} \pi \iota \theta^{\epsilon} \mu \epsilon \nu 0 \iota \tau\right] 0 i ̂ s ~ \tau \epsilon \lambda \epsilon v \tau \alpha i ́ o \iota s ~ a u ̉ \tau \omega ิ \nu ~ к \alpha \tau \alpha \beta \alpha ́ \lambda-~\) \(\lambda[o v \sigma i ́ \tau \iota \nu \alpha s ~ \tau] \omega \hat{\omega}\) \(\sigma \tau \rho \alpha \tau \iota \omega \tau \hat{\omega} \nu \dot{\alpha} \tau \alpha ́ \kappa \tau \omega \nu\) סıà \(\tau \grave{\alpha} s\)

 \(\phi \theta \alpha ́ \rho \eta[\sigma \alpha \nu]\) ठ̀̀ \(\pi \epsilon \rho i ̀ \pi \epsilon \nu \tau \eta ́ \kappa o \nu \tau \alpha\) \(\tau \hat{\omega} \nu \quad \sigma \tau \rho \alpha \tau \iota \omega \tau \hat{\omega} \nu\).
 \(\tau \hat{\omega} \nu \mu[\iota \sigma \theta \circ \phi] o ́ \rho \omega \nu \quad \tau \hat{\omega} \nu \quad \Delta \epsilon \rho \kappa v \lambda \iota \delta \epsilon i ́ \omega \nu\) к \(\alpha \lambda о \nu \mu \epsilon ́ \nu \omega \nu\)

 тoîs \(\tau[\epsilon \lambda \epsilon \nu] \tau \alpha i ́ o l s ~ \tau o ̀ \nu ~ a u ̉ \tau o ̀ \nu ~ \tau \rho o ́ t o \nu . ~ o i ~ \delta \grave{~} \tau \hat{\omega} \nu\) ' \(E \lambda \lambda \eta\) '

 \(\mu \epsilon \tau \alpha[\beta \alpha \lambda o ́ \mu \epsilon] \nu 0\) 白 \(\pi \eta \hat{\eta} \gamma \epsilon \tau\) ò \(\sigma \tau \rho \alpha ́ \tau \epsilon \nu \mu \alpha \pi \alpha ́ \lambda \iota \nu \tau \eta ̀ \nu\)

\(\kappa \alpha \iota \kappa \alpha[. ~ . ~ . ~ . ~.] \nu \omega \sigma \epsilon \nu \epsilon \iota \sigma \tau о \sigma \tau \rho \alpha \tau о \pi \epsilon \delta о \nu \eta \kappa \alpha \iota \tau \eta\) \(\pi \rho о \tau \epsilon \rho \alpha[.] \alpha \tau \epsilon \sigma \tau \rho \alpha \tau о \pi \epsilon \delta \epsilon \nu \sigma \alpha \nu \mu \epsilon \tau \alpha \delta \epsilon \tau \alpha \nu \tau \alpha \tau \omega^{-}\)

Col. \(\mathrm{xx}(=\mathrm{D}\) Col. x\()\).
\(\mu \in \nu \mu \nu \sigma \omega \nu \eta \sigma \alpha \nu[\).
\(\rho \cup \kappa \alpha \sigma \pi \epsilon \mu \psi \alpha \nu \tau \epsilon \sigma \alpha[\).
тотоvбขєкроибӥ[.
\(\eta \tau \rho \iota \alpha к о \nu \tau \alpha \kappa \alpha \iota \epsilon[\).
5 кшر\(\omega \nu \tau \iota \nu \alpha \sigma \kappa \alpha \theta[\).
\(\eta \mu \epsilon \rho \alpha \sigma \tau о v \sigma \sigma \tau \rho[.] \tau о \pi \rho о \sigma \theta \in \nu \tau[\).
\(\sigma \tau \rho \alpha \tau \epsilon \nu \mu \alpha \kappa \alpha \iota \kappa \alpha[..] \beta \iota \beta \alpha \sigma \alpha \sigma[.] \nu \chi \omega \rho \alpha \nu \tau \omega \nu \phi[\cdot]\) ب

[. .] \(!\sigma \epsilon[\cdot \cdot\).] \(\rho \alpha \varphi[\cdot] \pi о \rho[.] \eta \tau о \nu \kappa \alpha[. \cdot] \sigma \alpha \nu \tau \eta \nu \epsilon \pi о \iota \epsilon \iota \sigma \pi \iota\)
ıо [. .] \(\alpha \delta \alpha \tau \eta[. ..] \omega \nu \eta \gamma \in \mu \circ \nu \alpha[. . .]. o \nu \ddot{v} o \nu 0 \delta \epsilon \sigma \pi \iota \theta \rho \alpha\)
\(\delta \alpha[.] \eta \sigma \tau о \mu \epsilon \nu \gamma \epsilon \nu \sigma \sigma \eta \nu \pi \epsilon \rho[. . ..] \alpha \tau \rho \epsilon \iota \beta \omega[.] \delta \in \pi \alpha \rho \alpha\)
 Өраעкат \(\alpha \sigma \tau \alpha \sigma \pi \rho о \sigma \alpha \nu \tau о \nu \phi \circ \beta \eta \theta \epsilon \iota \sigma \mu \eta[. ..] \alpha \lambda \eta \phi \theta \eta\)
\(\kappa \alpha \iota \kappa \alpha \kappa о \nu \tau \iota \pi \alpha \theta \eta \pi \alpha \rho \alpha \nu \tau!\kappa \alpha \mu \epsilon \in[\cdot] \alpha \pi \epsilon \epsilon[\).

[. .] \(] \underset{\alpha}{\beta} \alpha \tau \eta \nu ข ̈ о \nu \nu \epsilon о \nu о \nu \tau \alpha \kappa \alpha \iota \kappa \alpha \lambda о \nu \alpha \gamma \eta \sigma \iota \lambda \alpha 0 \sigma \delta \epsilon\) \(\tau о v \tau \omega \nu \gamma \epsilon \nu 0 \mu \epsilon \nu \omega \nu \alpha \nu \epsilon \lambda \alpha \beta \epsilon \nu \alpha \nu \tau о \nu \sigma \mu \alpha \lambda \iota \sigma \tau \alpha\) \(\mu \epsilon \nu \epsilon \nu \epsilon \kappa \alpha \tau о \nu \mu \epsilon \iota \rho \alpha \kappa \iota \circ v \lambda \epsilon \gamma \epsilon \tau \alpha \iota \gamma \alpha \rho \epsilon \pi \iota \theta \nu \mu \eta \tau \iota\) \(\kappa \omega \sigma \alpha \nu \tau 0 \nu \sigma \phi \circ \delta \rho \alpha \epsilon \chi \epsilon \iota \nu \epsilon \pi \epsilon \iota \tau \alpha \delta \epsilon \kappa \alpha \iota \delta \iota \alpha \sigma \pi \iota \theta \rho \iota \delta \alpha\)
20 .[. .] \(] \eta \epsilon \epsilon \mu о \nu \alpha \tau \epsilon \tau \eta \sigma \sigma \tau \rho \alpha \tau \iota \alpha \sigma \alpha v \tau 0 \iota \sigma \epsilon \sigma \epsilon \sigma \theta \alpha \iota{ }^{\prime}\)

\(\tau[\cdot.] \epsilon \nu \epsilon \kappa \alpha \ddot{u} \pi \epsilon \delta \epsilon \xi \alpha \tau[.] \pi \rho \rho \theta \nu \mu \omega \sigma \alpha \nu \tau \sigma \sigma \delta \epsilon \pi \rho o\) \(\alpha \gamma \omega \nu \epsilon \iota \sigma \tau \circ \pi \rho \circ \sigma \theta \epsilon \nu \alpha \epsilon \iota \tau \circ \sigma \tau \rho \alpha \tau \epsilon v \mu \alpha \kappa \alpha \iota \lambda \epsilon \eta \lambda \alpha\) \(\tau \omega \nu \tau \eta \nu \tau o v \phi \alpha \rho \nu \alpha \beta \alpha \zeta \circ \nu \chi \omega \rho \alpha \nu \alpha \phi \iota \kappa \nu \epsilon \iota \tau \alpha \iota\)
 \(\pi \circ \imath \eta \sigma \alpha \mu \in \nu \circ \sigma \pi \rho \circ \sigma \alpha \nu \tau \circ \pi \rho \circ \sigma \beta 0 \lambda \alpha \sigma \omega \sigma \sigma \nu \delta \epsilon \nu\) \(\epsilon \pi \epsilon \rho \alpha \iota \nu \epsilon \nu \alpha \nu \alpha \sigma \tau \eta \sigma \alpha \sigma \tau \sigma \sigma \tau \rho \alpha \tau \epsilon \nu \mu[\cdot] \pi \rho \circ \eta \gamma \epsilon \nu\) \(\epsilon \iota \sigma \tau \circ \pi \rho \circ \sigma \theta \epsilon \pi \circ \rho \theta \omega \nu \kappa \alpha \iota \lambda \epsilon \eta \lambda \alpha \tau \omega \nu \tau \eta[\cdot] X \omega \rho \alpha \sigma \tau \eta \nu\) \(\alpha \kappa \epsilon \rho \alpha \iota \circ \nu \alpha \phi \iota \kappa о \mu \epsilon \nu 0 \sigma \delta \in \pi \alpha \lambda \iota \nu \pi \rho \circ \sigma\) ソо \(\rho \delta \epsilon \iota \circ \nu \chi^{\omega}\)
\(\kappa \alpha i\) к \(\alpha[\tau \epsilon \sigma \kappa \grave{\eta}] \nu \omega \sigma \epsilon \nu\) єis \(\tau o ̀ ~ \sigma \tau \rho \alpha \tau o ́ \pi \epsilon \delta о \nu \grave{\eta} \kappa \alpha \grave{\imath} \tau \hat{\eta}\)
\(\pi \rho о \tau \epsilon ́ \rho \alpha[k] \alpha \tau \epsilon \sigma \tau \rho \alpha \tau о \pi \epsilon ́ \delta \epsilon v \sigma \alpha \nu . \quad \mu \epsilon \tau \grave{\alpha}\) ठ̀̀ \(\tau \alpha v ิ \tau \alpha \tau \hat{\omega} \nu\)

Col. xx.
 рикаs \(\pi \epsilon ́ \mu \psi \alpha \nu \tau \epsilon s\) ą. ảvєí入ov-

\(5 \kappa \omega \mu \hat{\nu} \nu \tau \iota \nu \alpha s\) ка \(\theta[\eta \gamma є \mu o ́ v a s\) каi \(\alpha \nu \alpha \pi \alpha v ́ \sigma \alpha s . .\).
 \(\sigma \tau \rho \alpha ́ \tau \epsilon v \mu \alpha\), каi ка[\(\tau \alpha] \beta \iota \beta \alpha ́ \sigma \alpha s\) [\(\epsilon\) is \(\tau \grave{\eta}] \nu \chi^{\omega} \rho \rho \alpha \nu \tau \hat{\omega} \nu \quad \Phi[\rho] u-\)

 \(\theta \rho \alpha \nu\) катабтàs \(\pi \rho o ̀ s ~ \alpha u ̉ \tau o ́ v, ~ \phi o ß \eta \theta \epsilon i s ~ \mu \eta े ~[\kappa \alpha \tau] \alpha \lambda \eta \phi \theta \hat{\eta}\)

 \(\tau 0 u ́ \tau \omega \nu \quad \gamma \in \nu \circ \mu \epsilon ́ \nu \omega \nu\) ब̉ \(\nu \in ́ \lambda \alpha \beta \epsilon \nu\) aủ \(\quad\) oùs \(\mu \alpha ́ \lambda \iota \sigma \tau \alpha\) \(\mu \grave{\epsilon} \nu{ }^{\prime \prime} \nu \epsilon \kappa \alpha\) тov̂ \(\mu \epsilon \iota \rho \alpha \kappa i ́ o v, \lambda \epsilon ́ \gamma \epsilon \tau \alpha l\) र̀̀ \(\rho\) ' \(\pi \iota \theta \nu \mu \eta \tau \iota-\)

 [\(\pi \rho o ̀ s] ~ a ̈ \lambda \lambda \alpha ~ \chi \rho \eta ́ \sigma \iota \mu o \nu . ~ \epsilon ́ к \epsilon i ́ v o u s ~ \mu e ̀ v ~ o v ̃ \nu ~ \tau[0] u ́-~\)
 á \(\gamma \omega \nu\) єis тò \(\pi \rho o ́ \sigma \theta \epsilon \nu\) áєi \(\tau \grave{o} \sigma \tau \rho a ́ \tau \epsilon \nu \mu \alpha\) каi \(\lambda \in \eta \lambda \alpha-\) \(\tau \hat{\omega} \nu \tau \grave{\eta} \nu\) то̂̂ \(\Phi a \rho \nu \alpha \beta \alpha ́ \zeta o v \chi^{\omega} \rho \alpha \nu \dot{\alpha} \phi \iota \kappa \nu \epsilon i \tau \alpha \iota\)

 \(\epsilon\) 'is тò \(\pi \rho o ́ \sigma \theta \epsilon\langle\nu\rangle \pi о \rho \theta \hat{\omega} \nu\) каi \(\lambda \epsilon \eta \lambda a \tau \hat{\omega} \nu \tau \hat{\eta}[s] \chi^{\omega} \rho \alpha s\) тोे \(\nu\)

\(\sigma к \epsilon v \alpha \sigma \mu \epsilon \nu о \nu \kappa \alpha \kappa \omega \sigma \kappa \alpha \iota \kappa \alpha \tau \alpha \zeta \epsilon v \xi \alpha \sigma \tau о \sigma \tau[.] \alpha \tau \epsilon v \mu \alpha\) \(\pi \in \rho \iota \in \mu \in \nu \in \nu \in \xi \eta \mu \in \rho \alpha \sigma \pi \rho[\cdot] \sigma \mu \in \nu \tau 0 v \sigma \pi 0[\cdot] \in \mu \iota O v \sigma\) \(\pi \rho о \sigma \beta\) о \(\alpha \sigma \pi о \iota о v \mu \in \nu о \sigma \tau о v \sigma \delta \in \sigma \tau \rho \alpha \tau \iota \omega \tau \alpha \sigma \epsilon[. .] .0 \lambda\)
\(\lambda о \iota \sigma \alpha \gamma \alpha \theta о \iota \sigma \sigma v \nu \epsilon \chi \omega \nu \epsilon \pi \epsilon \iota \eta \delta \epsilon \beta \iota \alpha \sigma \alpha \sigma \theta \alpha \iota \tau 0 \chi \omega \rho \iota\) 35 оขоvк \(\eta \delta \nu \nu \alpha т о \delta \iota \alpha \tau \eta \nu \rho \alpha \theta \alpha \nu о v \pi \rho о \theta v \mu \iota \alpha \nu о \sigma \epsilon\) \(\pi \eta \rho \chi \epsilon \nu \alpha \nu \tau о \cup \pi \eta \dot{\gamma} \eta \sigma \omega \nu \tau о \gamma \in \nu \circ \sigma \alpha \nu \alpha \sigma \tau \eta \sigma \alpha \sigma \eta \gamma \epsilon^{-}\) \(\alpha \nu \omega \tau 0 v \sigma \sigma \tau \rho \alpha \tau \iota \omega \tau \alpha \sigma \kappa є \lambda \epsilon v o \nu \tau о \sigma \tau 0 v \sigma \pi \iota \theta \rho \iota\) \(\delta \alpha \tau 0 v \in \iota \sigma \pi \alpha \phi \lambda \alpha \gamma 0 \nu \iota \alpha \nu \pi о \rho \in v \in \sigma \theta \alpha \iota \mu \in \tau \alpha \delta \in \tau \alpha v\) \(\tau \alpha \pi \rho о \alpha \gamma \omega \nu \tau 0 v \sigma \pi \epsilon \lambda о \pi о \nu \nu \eta \sigma \iota \circ v \sigma \kappa \alpha \iota \tau 0 v \sigma \sigma v \mu \mu \alpha\)

Col. \(\mathrm{xxi}(=\mathrm{D}\) Col. xi\()\).
\(\chi 0 v \sigma \pi[\ldots \mid \gamma \iota \alpha \sigma \kappa \alpha \iota \eta \sigma \pi \alpha \phi \lambda \alpha \gamma 0 \nu[\).
\(\alpha \sigma \epsilon \kappa \epsilon[.] \tau \rho \alpha \tau 0 \pi \epsilon \delta \epsilon v \sigma \epsilon \tau 0 \nu \delta \epsilon \sigma \pi[\).
\(\theta \rho \iota \delta \alpha \tau \eta[.] \nu o \delta \in \pi о \rho \in v \theta \in \iota \sigma \kappa \alpha \iota \pi \epsilon \iota[\).
\(\sigma \alpha \sigma \epsilon \kappa \in \iota[.] \alpha \gamma \omega \nu \alpha \gamma \eta \sigma \iota \lambda \alpha o \sigma \delta \in \pi \circ \iota \eta[\).

\(\chi \in \iota \mu \omega \nu[.] \omega \sigma \iota \epsilon \pi о \iota \epsilon \iota \tau 0 \delta \in \tau \eta \nu \pi о \rho \epsilon[\).

\(\mu \epsilon \nu о \sigma \delta \iota \alpha[.] \delta \iota \epsilon \xi \iota \rho[. . ..] \pi \omega \tau \epsilon \rho \omega \sigma \epsilon[\).
ıо \(\sigma \epsilon \sigma \theta \alpha \iota \tau 0 \iota \sigma \sigma[.] \tau \epsilon \iota \lambda \epsilon[.\).\(] . \iota \tau[. \cdot] \rho[\cdot] v[\ldots\).
\(\alpha \nu \tau \omega \gamma v \eta \sigma \tau о[\ldots] \nu \tau . . \quad \tau \omega \nu[\).

\(\omega \nu \kappa \alpha \tau \alpha \gamma[.] \alpha \tau \epsilon v \mu \alpha \kappa \alpha \tau \alpha \kappa \iota о \nu \tau \eta \sigma \mu \nu \sigma \iota \alpha \sigma[\).
[...] \(\tau о \nu \mu[.] \alpha \sigma \eta \mu \epsilon \rho \alpha \sigma \alpha v \tau о v \delta \epsilon \kappa \alpha \kappa \alpha \kappa \omega \sigma \epsilon[\).
\({ }_{1} 5\) то८є[.] \(\tau 0 v \sigma \mu v \sigma o[. .]!.\nu \alpha \nu \theta \omega \nu \in \pi \epsilon \beta o v \lambda \epsilon v \sigma \alpha \nu \alpha \nu \tau \omega \pi \epsilon[\). \(\rho \iota \tau о \nu о \lambda v \mu \pi о \nu[..] \tau \epsilon \rho \circ \nu \delta \in \pi \rho \circ \eta \gamma \in \tau 0 v \sigma \epsilon \lambda \lambda \eta \nu \alpha \sigma \delta \iota \alpha \tau \eta[\). \(\phi \rho v \gamma \iota \alpha \sigma \tau \eta \sigma \pi \alpha \rho[. ..] \lambda \alpha \tau \tau \iota \delta \iota о v \kappa \alpha \iota \pi \rho \circ \sigma \beta \alpha \lambda \omega \nu \pi \rho \circ \sigma \chi[\). \(\omega \sigma\) рьоขтока入оч \(\mu[.] .0 \nu \mu \in \iota \lambda \eta \tau о v \tau \in \iota \times о \sigma о v к \eta \delta v \nu \alpha \tau о[\). \(\lambda \alpha \beta \in \iota \nu \alpha \pi \gamma \epsilon[. \cdot] v \sigma \sigma \tau \rho \alpha \tau \iota \omega \tau \alpha \sigma \pi о \iota о v \mu \in \nu 0 \sigma \delta \in \tau \eta \nu[\).
\(20 \pi о \rho \epsilon \iota \alpha \nu \pi \alpha \rho \alpha \tau о \nu \rho v \nu \delta \alpha к о \nu \pi о т \alpha \mu о \nu \alpha \phi[.] \kappa \nu \in \iota \tau \alpha \iota[\). \(\pi[\cdot] 0 \sigma \tau \eta \nu \delta \alpha \sigma \kappa v \lambda \in \iota \tau \iota \nu \lambda \iota \mu \nu \eta \nu \ddot{v} \phi \eta \kappa \in \iota \tau \alpha \iota \tau[\cdot] \delta \alpha \kappa v \lambda \in \iota \frac{[.}{}\)
 \(\beta \alpha \sigma \iota \lambda є \omega \sigma о \cup к \alpha \iota \tau о \nu \phi \alpha \rho \nu \alpha \beta \alpha \zeta о \nu \in \lambda \in \gamma о \nu \alpha[.] \gamma v \rho \iota \circ \nu о[\).

та \(\pi\), ооá \(\gamma \omega \nu\) тоѝs \(\Pi \epsilon \lambda о \pi о \nu \nu \eta \sigma i o u s ~ к \alpha i ̀ ~ \tau o v ̀ s ~ \sigma v \mu \mu a ́-~\)

Col. xxi.

5 \(\sigma \alpha ́ \mu \epsilon \nu[0] s\left[\sigma \dot{\mu} \mu \mu \alpha \chi^{\alpha} \tau \grave{\alpha} \tau \hat{\omega}\right] \nu\) Пафлаүóvळข \(\dot{\alpha} \pi \dot{\eta} \gamma \alpha[\gamma \epsilon\) סıà \(\tau \alpha \chi[\hat{\epsilon} \omega \nu\) тò \(\sigma \tau \rho \alpha ́ \tau \epsilon \nu \mu \alpha\) ध́ \(\pi i ̀ ~ \theta] a ́ \lambda \alpha \tau \tau \alpha \nu, ~ ф о \beta o u ́ \mu \epsilon \nu о s ~ \mu[\grave{\eta}\)

 av่тิ̣ Гúns то[.] \(\downarrow \tau\). . \(\tau \omega \nu[\).

\(\eta \nu \alpha \nu \tau \omega \kappa \alpha \downarrow \chi \rho v \sigma \iota \nu \alpha \pi о \tau!\theta \epsilon \sigma \theta \alpha \iota \kappa \alpha \tau \epsilon \sigma \tau \rho \alpha \tau о \pi[.\).
\({ }_{25} \delta_{\epsilon} \omega \kappa \omega \sigma \delta \epsilon \tau 0 v \sigma \sigma \tau \rho \alpha \tau \iota \omega \tau \alpha \sigma \epsilon \kappa \epsilon \iota \theta \iota \mu \epsilon \tau \epsilon \pi \epsilon \mu \pi \epsilon \tau 0 \pi \alpha[\). \(\kappa \alpha \lambda о \nu 0 \sigma \epsilon \pi \iota \beta \alpha \tau \eta \sigma \tau \omega \nu \alpha \nu \alpha \rho \chi^{\omega} \chi \in \iota \rho \iota \kappa \rho \alpha \tau \epsilon \iota \pi \epsilon \pi \lambda \epsilon \nu \kappa \omega[\). \(\epsilon \pi \epsilon \mu \epsilon \lambda \epsilon \iota \tau \circ \tau 0 v \epsilon \lambda \lambda \eta \sigma \pi 0 \nu \tau 0 v \pi \epsilon \nu \tau \epsilon \tau \rho \iota \eta \rho \epsilon \iota \sigma \epsilon \chi \omega \nu[\) [. . . .] \(\epsilon \nu о \mu \epsilon \nu 0 \nu \delta \epsilon \tau о v \pi \alpha y \kappa \alpha \lambda\) ои \(\delta \iota \alpha \tau \alpha \chi є \omega \nu \kappa \alpha \iota\) [.]l[.].] \(\rho \in \sigma \iota \nu \epsilon \iota \sigma \pi \lambda \epsilon \nu \sigma \alpha \nu \tau о \sigma \epsilon \iota \sigma \tau \eta \nu \lambda \iota \mu \nu \eta \nu \in \kappa \in \iota\)
[. \(] \in \nu \omega \nu \eta \pi \lambda \epsilon \iota \circ \nu \sigma \sigma \alpha \xi \iota \alpha \delta \iota \alpha \gamma \gamma \epsilon \iota \nu \epsilon \iota \sigma \tau[.] \rho \varphi[\).

 Tov \(\sigma\)
 [. \(] \gamma \in \nu 0 \iota \tau о \tau о v \sigma \delta \epsilon \sigma \tau \rho \alpha \tau \iota \omega \tau \alpha \sigma \alpha \pi о \tau \eta \sigma \mu[\cdot]] \sigma \iota \alpha[\). .
 [.] \(] 0 \sigma \tau \alpha \xi \alpha \sigma \alpha \nu \tau 0 \iota \sigma \eta \kappa \epsilon \iota \nu \epsilon \iota \sigma \tau 0 \epsilon \alpha \rho \pi \alpha \rho \alpha[..] \epsilon v \alpha[\)
35 [.] \(] \rho \ell \pi \iota \circ \nu \tau \alpha \chi \iota \mu \omega \nu \alpha \beta \alpha \delta_{\iota} \xi \epsilon \iota \nu \epsilon \iota \sigma \kappa \alpha \pi \pi \alpha\)
 [.] \(] \omega \nu \tau \alpha \nu \tau \eta \nu \tau \eta \nu \chi \omega \rho \alpha \nu \delta \iota \alpha \tau \epsilon \iota \nu \epsilon \omega \omega \sigma\)
 [.] \(] \sigma \tau \epsilon \nu \eta \nu \alpha \rho \xi \alpha \mu \epsilon \nu \eta \nu \alpha \pi о т \eta \sigma \pi о \nu \tau \iota \kappa \eta \sigma\)

 [.]aıтобоито[. . . .]тєтоvбєк

Unplaced Fragments.
Fr. 16 (to Cols. i or ii ?).
\[
\begin{array}{cc}
\text { Fr. } 17 \text { (to Col. iv ?). } & \text { Fr. } 18 \text { (to Col. iv ?). } \\
] \sigma \sigma \alpha \phi[&] \mu \iota \omega \sigma[\\
] \alpha \mu \rho[&] \gamma \alpha \rho \pi \rho[\\
] \phi \in \rho[&] \delta o v \kappa[\\
\cdot &][\alpha S 0[[\\
& 5 \\
&] \leq \in T[
\end{array}
\]

Fr. 19 (to Col. iv ?).
Fr. 20 (to Col. iv ?).
Fr. 21 (to Col. vii ?).
\begin{tabular}{|c|c|}
\hline]oтvoa[&] Tov \(\delta\) [\\
\hline] \(\alpha \pi \alpha \sigma\) [[&]. \(\omega \nu \in \tau\) \\
\hline] \(\alpha \nu \tau \alpha \tau[\) &] \(¢ 0 \tau \alpha \sigma \pi\) [\\
\hline]. \(\mu \omega \nu\) [&] \(\omega \nu \alpha \lambda \lambda\) [\\
\hline \(] \omega \mu \epsilon \nu \omega[\) & \\
\hline \(] \mu \epsilon \tau \epsilon v[\) &] \(\lambda \boldsymbol{\sim} \nu \sigma \alpha \nu[\) \\
\hline
\end{tabular}
]a! • [] \(\rho \boldsymbol{\square}!\sigma \mu \epsilon[\)] v . . [
\(5 \quad] \omega \mu \epsilon \nu \omega[\) \(] \mu \in \tau \in v[\)

Unplaced Fragments.

Fr. 17 (to Col. iv ?).
\(\left.T_{t}\right] \sigma \sigma \alpha \phi_{[} \epsilon \rho \nu\)
] \(\alpha \mu\) [
\(T \iota \sigma \sigma a] \phi \in \rho \cdot \nu\)

Fr. 19 (to Col. iv ?).
\(] s \tau v \rho \alpha \cdot \nu \nu\)
\(] \alpha \pi \alpha \sigma \iota[\)
\(] \alpha \cdot \tau \alpha \tau[\)
\(] \cdot \mu \omega \nu[\)

5
\[
\begin{aligned}
& \text { Fr. } 18 \text { (to Col. iv ?). } \\
&] \mu \iota \omega \sigma[\\
&] \gamma \dot{\alpha} \rho \pi \rho[\\
& \text { §ov к } \\
& \beta] \iota \alpha \zeta o \iota[\\
& 5 \quad\} \in \tau[
\end{aligned}
\]

Fr. 21 (to Col. vii?).
Fr. 20 (to Col. iv ?).
\[
\begin{aligned}
& \text {]Tov ס[} \\
& \text {]. } \omega \nu \in \tau \cdot[\\
& \text {]тo тàs } \pi[\\
& \omega \nu \dot{\alpha} \lambda \lambda[\\
& \therefore \quad] \nu 0 \rho \omega \nu[\\
& \text { | } \lambda \nu \sigma \alpha v^{1} \text { [}
\end{aligned}
\]
\[
\begin{gathered}
\alpha \iota[\\
\dot{\omega}] \rho \gamma \iota \sigma \mu_{\epsilon}^{\prime} \nu \\
v \cdots[
\end{gathered}
\]

```

842. THEOPOMPUS (OR CRATIPPUS), HELLENIC.A
]. vov סغ̀ кai ]. ovvтa
```
] . . . 'A \(\rho \chi \in[\lambda \alpha i ̂ \delta\) ?
\(\pi o \sigma o v\)
10]rov \(\mu\) [
\(] \sigma \theta \epsilon \nu[\)
]. \(\omega \nu \alpha[\)
] \(\alpha \phi v[\)

Fr. 23 (to Col. x ?).
```

] \grave{\epsilon\sigma\tau\iota\nu [}
]. o\mu. [

```
\begin{tabular}{|c|c|c|}
\hline Fr. 29. & Fr. 30. & Fr. 31. \\
\hline & &]. [\\
\hline \(] \nu \tau \eta \cdot[\) &]. \(\alpha\) [&]. \(\tau \eta S \sigma \iota \nu[\) \\
\hline] \(\boldsymbol{\tau} \boldsymbol{\tau} \kappa \kappa\) [&]avro[& \\
\hline \(\dot{\alpha}] \phi \iota \kappa \nu[\) &]o \(\frac{\text { ćv }}{}\) & \(] \epsilon \omega s\) a \(\alpha\) \\
\hline] \(\mu\) [& & 5] roùs \(\sigma \tau[\) \\
\hline
\end{tabular}

Fr. 33.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
] \alpha \sigma[\\
] \kappa \alpha\left[{ }^{\cdot}{ }^{\cdot} \omega v[\right.
\end{array}
\]} \\
\hline \\
\hline
\end{tabular}

Fr. \(3^{6 .}\)
]a \(\mu \grave{\epsilon} \nu \quad \pi[\) \(\lambda] \alpha \beta \epsilon i \nu \quad \eta[\)

```

    } \alpha\rho \epsilonіко' \delta!\epsilon]\xitóvт\omega[\nu
    lov \beta\alpha\sigma\iota\lambda[\epsilon
]\nu\eta\nu\dot{v}\sigma\tau[\epsilon\rho
5 ]\sigma\alpha.\phio[
\sigma]\tau\rhoато[
l. \chi\rho\omega\mu
].. [.] к\alpha,

```


Cols. i. 1 -iii. \(7=\) chs. I-III.
Expedition of Demacnetus. Anti-Spartan feeling in Grecce.
'About the same time a trireme sailed out from Athens without the consent of the people. Demaenetus, the . . of it, had privately imparted his plan in secret to the boule, as it is said, and some of the citizens having conspired with him, he went down with them to the Piraeus, and having launched a ship at the docks set sail to join Conon. Thereupon an uproar was raised, and the notables and cultivated class among the Athenians were indignant, declaring that it would give the city a bad name if they began a war with the Lacedaemonians. The bouleutai, frightened by the clamour, held a meeting of the people, pretending to have had no share in the enterprise. The populace having assembled,

> Fir. 7 i.
>].[....
> a \(\sigma v_{i}^{\circ}\).
the party at Athens of Thrasybulus, Aesimus, and Anytus came forward and pointed out that the Athenians were incurring great risks unless they relieved the state from the responsibility. The moderate and wealthy class at Athens was content with the present policy, while the populace and democratic party on that occasion, through fear, yielded to their advisers, and sent to Milon, the harmost of Aegina, to inform him that he could punish Demaenetus since the latter had acted without the leave of the state. But previously for nearly the whole time their policy was aggressive, and in frequent opposition to the Lacedaemonians. Not only were they in the habit of dispatching both arms and sailors for Conon's fleet, but on a former occasion ... crates, Hagnias, and Telesegorus with their companions were dispatched on an embassy to the king, the ambassadors being captured
by Pharax, the former admiral, and sent as prisoners to the Lacedaemonians, who put them to death. This opposition was stimulated by the party of Epicrates and Cephalus; for it was they who were most anxious to involve Athens in war, holding that view not merely since they had dealings with Timocrates and received the gold, but long before. It is nevertheless asserted by some that 'Timocrates' bribes were responsible for the formation of the war party at Athens and among the Boeotians and in the other states which I have mentioned, owing to ignorance of the circumstance that all of them had long adopted a hostile attitude towards the Lacedaemonians, and been on the watch for an opportunity to irvolve the states in war. For the Lacedaemonians were hated by the Argive and Boeotian factions for being on friendly terms with the opposing party of the citizens, and by the faction at Athens because it desired to put an end to the existing tranquillity and peace, and to lead the Athenians on to a policy of war and interference, in order that it might be enabled to make a profit from the state funds. At Corinth, of the partisans of a change of policy the majority were hostile to the Lacedaemonians for reasons similar to those of the Argives and Bocotians, while Timolaus alone had become opposed to them on account of private grounds of complaint, although he was formerly on the best of terms with them and a strong philo-Laconian, as can be ascertained from the events of the Decelean war. On one occasion, with a squadron of five ships, he plundered several of the islands tributary to the Athenians, and on another, having sailed to Amphipolis with two triremes, and manned four more supplied from there, he defeated Sichius (?), the Athenian general, in a sea-fight, as I have previously related, and captured the enemy's triremes, which were five in number, together with a convoy of 30 (?) boats; subsequently with [.] thiremes he sailed to Thasos and caused the island to revolt from the Athenians. Parties, therefore, in the aforesaid states had been induced to hate the Lacedaemonians far more by these reasons than by Pharnabazus and the gold. When Milon, the harmost of Aegina, heard the news brought by the Athenians, he quickly manned a trireme and pursued Demaenetus. The latter at this time happened to be waiting off Thoricus in Attica, but when Milon arrived at Thoricus and tried to attack him he hastened to sail far in advance. Having gained possession of a ship belonging to them he left his own ship behind because the hull was inferior, and transferring his sailors to the other ship continued his voyage to Conon's fleet, while Milon . . . with the trireme returned to Aegina.'
i. I. A new book apparently begins here (cf. p. 115); and it is quite uncertain with what events our author synchronizes the expedition of Demaenetus, which took place in the first half of 396 if Cols. i-iv are correctly placed (cf. iii. 9 , note), or in the early summer of 395 if Cols. i -iv follow Cols. v -viii, as is much less probable.
 by Wilamowitz. The construction in 11. 2-7 is not clear; cf. note on 1. 5 .
3. \(\Delta \eta \mu a i![\epsilon \tau]\) as: he is identical, as was perceived by Wilamowitz, with \(\Delta \eta \mu a i v e \tau o s ~ o\)

 obviously identical with the harmost of Aegina called mi \(\lambda \omega \nu\) in i. 22 and ii. 35. Aeschines has exaggerated the importance of the naval engagement, which as \(P\) shows was a trivial affair. The Demaenetus who is mentioned as strategus in \(388-7\) in Aegina (Xen. Hell. v. 1. 10) and in the autumn of 387 on the Hellespont (Hell. v. 1. 26) is no doubt the same person as Demaenetus \(\delta\) Bovsíyns; cf. Kirchner, Att. Prosopogr. i. p. 216 : but that on the present occasion he held the office of strategus is neither stated by P nor in itself likely. Meyer well compares the private expedition of Macartatus to Crete in (probably) 386-379 with a trireme which he had bought (Isaeus xi. 48). The word following \(\Delta \eta \mu a i v[\epsilon \tau\) js
seems to be a title, if nirŷs is right. kitpos could be read, but this would imply that the trireme was Demaenetus' own property; whereas it was clearly a warship belonging to the State. The doubtful \(\kappa\) might be a; the following letter can equally well be \(\gamma, \iota, \mu, \nu, \pi, \tau\), or \(v\); for . ((\(p\) ?) a single letter (\(v\) ?) may be substituted, and in place of \(v \tau \eta\) (or \(a \tau \eta\)) \(\gamma \eta\) should perhaps be read. A single word as a family name or a title would be more suitable than \(\kappa\). . os airjs, but bor Sirys is inadmissible, though it is possible that the word in the papyrus is a corruption of this.
4. \(\beta\)]ova \(\hat{j}\) © s: for other instances of hiatus cf. vi. 39 , vii. 7, xi. 22 , xii. 24, xii. 6 , \(x\) iii. 5 and 24 .
\(\pi \rho \frac{i \gamma}{}[\mu a r o s:\) the end of this line must have projected some distance beyond that of 1.1 and 11.5 sqq.
5. \(\dot{e} \pi \mathrm{t} \boldsymbol{\delta} \dot{\eta} \dot{\eta}\) : the vestiges of the letter following \(\delta\) suit \(\eta\) somewhat better than \(\epsilon\). aiv [ois instead of \(\sigma v \nu \mid\) would have the advantage of preventing this line from being exceptionally short, but the construction of \(11.2-7\) is then somewhat awkward. Between avto and \(\pi n \lambda \epsilon \tau \omega \nu\) the scribe seems to have omitled either \(\tau \boldsymbol{\omega} \boldsymbol{\nu}\) es or \(\tau \omega \nu\), more probably the former; cf. the omissions of words in i. 36 , ii. 16 , xi. 20 , xiv. 13,29 , xvi. 23 , and \(x x .20\). Or possibly \(\sigma v v^{\prime}\) ot, i. e. \(\sigma v\langle\chi\rangle v\) oi should be read, as Wilamowitz suggests.
6. vaîv: rìv vaîv would be expected, especially if à̇rìs in 1.3 is right.
9. \(\left.\gamma^{\nu \dot{\omega}}\right] \rho \iota[a r]\) : cf. xii. 31 .
16. Thrasybulus and Anytus are well known as leaders of the moderate democratic party at this period. On Aïrıpos, who is less frequently mentioned, of. Kirchner, Att. Prosopogr. i. p. 22. Our author ignores Archinus, who was also prominent at this time (cf. p. i 40). It is interesting to note the cautious policy pursued by this section of the Athenian democrats, who side with the aristocrats in objecting to an open breach with Sparta, and for the moment succeed in curbing the warlike spirit of the majority of the democratic party headed by Epicrates and Cephalus (1. 35). The course of events was, however, too strong for the adrocates of peace, and Thrasybulus himself in the late summer of 395 proposed the alliance with Boeotia, which was agreed to without opposition (Xen. Hell. iii. 5. 16). If the events recorded in i. 1-iii. 7 belonged to the spring or early summer of 395 , the change of policy must have taken place within a very few months, and seems very sudden. It is therefore much more satisfactory to refer chapters I-III to 396 , and to suppose more than a year's interval between the expedition of Demaenetus and the alliance of Athens with Boeotia ; cf. iii. 9, note.
22. Mì \(\lambda \omega v a\) : he is called \(X e i \lambda \omega \nu\) by Aeschines ii. 78 ; cf. note on 1. 3. Which is the correct form is uncertain.
27. o[\(\nu \tau \epsilon \pi \rho a]\) rtev (I. àvrítpatrov): it is possible that the scribe has himself corrected the \(\epsilon\) to o.
\({ }^{27}\)-8. For the secret assistance rendered to Conon by the Athenians cf. Isocr. Pancg.
 \(\delta{ }^{\prime}\) ait \(\frac{̣}{}\) Kóvopos.
30. The letter after \(\beta a \sigma \iota \lambda \in a\), if not \(\pi\), can only be \(\gamma\). \(\pi[\rho o ́ \tau \epsilon \rho o v\) is somewhat too long and is not very appropriate, since it occurs immediately afterwards in 1. 32. Bury
 is possible, but in that case we should expect our author to have distinguished this Epicrates from the democratic leader of that name mentioned in 1. 35. to can be read in place

occurs in an inscription of the middle of the fourth century в. c. (Kirchner, op. cit. ii. p. 304). The date of the embassy, which was previously uncertain, is now fixed within
 iii. 2. 12, 14 to have co-operated with Dercylidas in the spring and summer of 397. Apart from the uncertainty as to the period of the year in which the Spartan vaiapXo entered on their command, it has been disputed whether Pharax' term of office belongs to \(39^{8-7}\) or \(397^{-6}\). Since his vavapxia is here spoken of as past, the present passage, if i. 1 -iii. 7 are rightly assigned to the first half of 396 , is strongly in favour of the date \(39^{8-7}\); cf. iii. 9 and 23-6, notes.
i. 33 sqq. P here diverges into a highly interesting account of the causes of the formation of the anti-Spartan league, and in connexion with the mission of Timocrates the Rhodian supplies some new information of importance. Xenophon (Hell. iii. 5. 1-2) attributes to Tithraustes the mission of the Persian envoy with 50 talents, and specifies as the recipients at Thebes Androclidas, Ismenias, and Galaxidorus, at Corinth Timolaus and Polyanthes, at Argos Cylon and of \(\mu \epsilon \tau^{\top}\) aùrov̂, but says of the Athenians kaì où \(\mu \epsilon \tau a \lambda a \beta o ́ v \tau \epsilon s\)
 proceeds to describe the outbreak of the Boeotian war, which he regards as the direct outcome of Timocrates' bribes. Pausanias (iii. 9. 8) also connects Timocrates with Tithraustes, and gives a list of the recipients of the money (Cylon and Sodamas at Argos, Androclides, Ismenias, and Amphithemis at Thebes, Cephalus and Epicrates at Athens, Polyanthes and Timolaus at Argos), and like Xenophon treats the Boeotian war, in describing which he mentions \(\sigma i\) itov àкцájovra, as an effect of the mission. Plutarch too (Artax. 20 ; cf. Lysand. \({ }^{27}\), Ages. 15) agrees with Xenophon's date for Timocrates. Only Polyaenus (i. 48) connects the episode not with Tithraustes but with Pharnabazus, Kóvov Фapvaßạ̧́
 though it is possible that his statement is due to mere carelessness. Diodorus, Nepos, and Justin are silent on the subject. Our author, as appears both from i. 37 and ii. 4 and 32 \(\pi \dot{o} \lambda \epsilon \sigma \iota\) тaîs \(\pi\) роєє \(\rho \eta \mu\) 白vats, had already described the sending of Timocrates, no doubt in its chronological position, in his main narrative, but ii. 33 shows that, like Polyaenus, he connected it with Pharnabazus, and i. 37 -ii. r indicates that, like Pausanias, he in opposition to Xenophon believed in the guilt of the Athenians Epicrates and Cephalus. In ii. I sqq., however, he controverts the view that the anti-Spartan league was brought about by Timocrates, attributing the hostility of the states to Sparta to other and older reasons. It has been generally recognized that Xenophon's account of the origin of the confederacy is chronologically untenable, for if Timocrates was sent by Tithraustes, who cannot have reached Sardis before June 395, he must have arrived in Greece after the beginning of the Boeotian war (of which Pausanias' date is now confirmed by xi. 34 тойтоv тov̀ \(\theta\) épous), and therefore cannot have been the cause of it ; and historians have usually accepted Xenophon's date for Timocrates' mission, and abandoned the connexion between it and the outbreak of the war; cf. Beloch, Gr. Gesch. ii. p. 193; Meyer, Gesch. d. Alt. v. pp. 231-2. Now, however, in the light of the new evidence another solution of the chronological difficulty in Xenophon's account is preferable. The error lies not in making Timocrates' mission precede the beginning of the war, but in supposing that he was sent by Tithraustes. On the view that he was inspired by Pharnabazus the difficulty vanishes, for it is clear from the order of the narrative in P, who does not reach the Boeotian war until xi. 34 sqq., that there was a considerable interval of time (more than a year) between the mission and the opening of hostilities in the summer of 395 . The reference in \(\pi \rho о \epsilon \iota \eta \mu\) évat \(\pi \bar{\lambda} \lambda \epsilon t\) (ii. 4 and \(3^{2)}\) seems to be to a not very distant passage, and it is possible that the description of Timocrates' mission in the main narrative occurred shortly before Col. i . If so, since the expedition of Demaenetus took place in the first half of 396 , the journey of Timocrates
must have occurred not later than the spring of that year. An earlier date for it would produce a conflict with Polyaenus, since he synchronizes the mission with the campaigns of Agesilaus in Asia, which began in the spring of 396. Polyaenus' statement is not lightly to be disregarded, especially as a close relation between him and P las been detected in another passage ; cf. vii. 4, note. On the other hand the argument in i. 33-ii. I is more logical if the dispatch of Timocrates preceded in point of time the embassy mentioned in i. 29-33, which took place in 397 (cf. 1. 30, note), and the year 397, in which Pharnabazus and Conon set to work to construct a fleet, is in itself a very suitable date. Hence the interval between the mission and the outbreak of the Boeotian war may be as much as two years. Even if Cols. i -iv are placed after v -viii and belong to the year 395 (cf. iii. 9, note), P's date for the mission cannot be brought down later than the spring of 39.5 , so that there would still remain an interval of some months between it and the Boeotian war. The chronological mistake made by Xenophon and others may well be due, as Mleyer suggests, to the circumstance that the fruits of the Persian bribes were not apparent till the summer of 395 .

On the question of the date of Timocrates' mission and the Persian who inspired it, P is certainly right as against Xenophon. Which account is to be followed in regard to the action of the Athenian democrats? Here, too, we think P's version is more probable than Xenophon's, and that Epicrates and Cephalus, as Pausanias also states, took the Persian gold. There was clearly a widespread belief in the fouth century that they did so, as is shown not only by our author's own view, but by that of the unnamed teves, which he controverts in ii. 1-7, without however disputing the fact of the bribes having been received. Moreover, P's explanation of the origin of the anti-Spartan feeling as due not to bribery; but to anterior and deeper lying causes, is eminently just, and exhibits his acute insight into the politics of the fourth century, in which many of the leading statesmen thought it no shame to be in the pay of a foreign fower, so long as the policy of which they really approved was pursued. And if P is right, as is practically certain, in minimizing the effects of Timocrates' bribes, he is probably correct also in his admission with regard to Epicrates and Cephalus. Xenophon must have known of the charges against them, but, exaggerating the part played by Persian gold in bringing about the league, and, like our author, being
 probably refer, as Meyer remarks, to the Athenian desire to recover their empire ; cf. Hell.
 seems to have excepted the Athenians, mainly in order that he might emphasize the accusations of Medizing which he brings against the other allies, in particular the Thebans. Only in one respect does P compare unfavourably with Xenophon, the desire for personal Irofit imputed as a motive to the Athenian war party (ii. 10-14). Here he seems to be influenced by an anti-democratic bias, which is quite in keeping with that of Theopompus (cf. p. 129), and to misrepresent the natural patriotic aspirations of the Athenians to which Xenophon alludes, thereby coming nearer to the truth.
36. For the omissions of. i. 5, note.
37. Tıцокра́тєt: so also Xenophon and Pausanias. Plato (Mino 90 A) calls him חoлvкрárys, but the fault may be due to his MSS. Plutarch in Arlax. 20 has the form
 that the mistake is presumably due to the MSS.
ii. r. tevès \(\lambda^{\epsilon} \gamma[\) ovalv: the view which our author here controverts, and which originated no doubt in Sparta, coloured the sources from which Pausanias drew his information, and Xenophon shared it to a large extent ; cf. note on i. 33. That P included Xenophon among the ruv's is not likely, seeing that P's work was written little, if at all, later than Xenophon's Hellenica (cf. p. 124); the reference may be to historical works which have perished or merely to current tradition.
ii．8．Bot \(\omega \tau[\ldots\) ．．．\(] \gamma \omega \tau a t\) ：if not \(\gamma\) ，the letter after the lacuna must be \(\tau\) ．］y \(\omega \tau a t\) or \(\tau \omega \tau a t\) is very intractable；and if a correction is necessary the simplest course is to read \(\sigma \tau a \sigma \iota] \gamma \omega \tau a t\) ，i．e．\(\sigma \tau a \sigma \iota \hat{\iota} \tau a t\) ，the superfluous \(\gamma\) being an example of the practice of inserting a \(\gamma\) between two rowels，which is not uncommon in Ptolemaic papyri．A difficulty， however，then arises about the termination of Botw［，for the lacuna ought to contain
 there is barely room．That the scribe wrote Botw［ot is in any case probable（cf．1．16）， but Botwós is not used as an adjective at this period，so that with Botwr，ot otact］\(]\) ctat two corrections are necessary，which is not a very satisfactory hypothesis．If otavt⿳亠丷厂犬土at is the word intended，it must apply to the Argives as well as to the Boeotians，for the two
 both，which implies that there was a philo－Laconian party at Argos as well as at Thebes． Theban politics at this period are discussed in greater detail in xii． 3 r sqq．

13－4．This sarcastic and somewhat unfair criticism of the motives of the Athenian war party favours the view that our author is Theopompus；cf．note on i． 33 and p． 129.

17．I［ \(\mu \mathrm{\mu} \boldsymbol{i}]\) גaos：both Xenophon and Pausanias state that he took Timocrates＇bribes （cf．i．33，note），and P no doubt admitted the fact，as he does definitely in the case of Epicrates and Cephalus；but he regarded Timolaus＇private quarrel with the Spartans as the chief reason for his present anti－Spartan attitude．In Xen．Hell．iv．2．II Timolaus appears as leader of the Corinthian contingent at the battle of Nemea．

21－32．Of Timolaus＇exploits in the Decelean war（which is again referred to in xiii． 16 and 30 ）the expedition to Thasos must，as Meyer remarks，have occurred towards the end of 411 ．Thucydides（viii． 64 ）records in that year the fall of the Thasian democracy，the fortification of the city，and the expectation of speedy assistance from the Spartans，with whom the exiled Thasian oligarchs had taken refuge．In 4 ro Thasos has a Spartan harmost（Xen．Hell．i．r． \(3^{2}\) ），so that the arrival of Timolaus with the Peloponnesian fleet falls in the intervening period．The incidents related in Hl．24－32 therefore occurred just after the point at which Thucydides＇history breaks off，and the reference in \(11 .{ }_{27}-8\) to a former mention of them（probably in the main narrative）is important as an indication that the present work was a continuation of Thucydides； cf．p．122．The eariier exploit，the plundering of certain islands（11．22－4），probably took place in 412 or early in 411 ，and is passed over by Thucydides．

26．\(\sigma \iota \nsucc\) tov must be corrupt，and more probably conceals the name of the Athenian strategus than a reference to Chios．The only name among the known Athenian strategi at that period which remotely resembles \(\Sigma_{i \chi 2 o s}\) is \(\Sigma \tau \rho \rho \mu \beta ı x i o \eta s\)（Thuc．viii． \(\mathbf{1}_{5}-79\) ），but he is not likely to be meant．
 \(3^{2}\) ，note．

29．\(\ddot{\epsilon} \pi] \epsilon \mu \psi a \nu: \pi a \rho \dot{\epsilon} \pi \epsilon \mu \psi a \nu\) would be expected（cf．Dem．viii． \(25 \pi a \rho a \pi \epsilon ́ \mu \pi \epsilon \sigma \theta a \iota ~ \tau a ̀ ~ \pi \lambda o i a ~\) т̀̀ aíт \(\hat{\nu} \nu\) ），but \(\kappa[a i ̀ a \hat{a} \pi a \rho \epsilon \pi] \in \mu \psi o \nu \tau \rho i a[\pi \lambda o i t a\) is not satisfactory．

30．Wilamowitz suggests［тùs \(\tilde{\tilde{\varepsilon}} \boldsymbol{\nu} \delta \kappa \kappa a\) ］in the lacuna．
33．Фарváßa ̧ov：cf．i．33，note．
34．The curious order of the words \(\dot{\epsilon} \pi \eta \rho \mu \dot{e} \nu o t \mu \iota \sigma \epsilon i \nu \bar{j} \sigma a \nu\) is due to the desire to avoid hiatus；cf．xi．22，note．
iii． \(1-5\) ．That Fr．I belongs to the top of this column is practically certain，（ 1 ）from internal evidence of its suitability to this context ；（2）from the colour of the papyrus，which resembles that of Cols．i－ii in being much lighter than the rest ；（3）from the recto，which has the beginnings of two lines that suit the first two lines of the column of the land－survey on the recto of Col．ii．The remainder of Col．iii（which on the recto has the ends of lines of a column of the land－survey）is on a separate fragment，but the correctness of its
position admits of no doubt ; cf. \(\delta \delta \dot{\epsilon}\) Mỉ \(] \omega \nu\) eis Aǐvuvav in 1. 6. Since the width of the gap separating Fr. i from the bulk of Col. iii camnot be determined with absolute precision, and the beginnings of lines are lost throughout this column, the size of the lacuna on each side of Fr. I may be slightly larger or smaller than we have supposed in our restoration, which proceeds on the assumption that 5 or 6 letters are missing at the beginning and 8 or 9 in the middle of \(11.1-5\).

It is not clear whose ship Demaenetus took possession of. Aeschines ii. \(7_{8}\) (cf. i. 3,
 in vii. 2, thinks that Demaenetus captured Milon's ship. To this there are the objections : (i) that it is not easy to see how Demaenetus obtained possession of Milon's ship without capturing Milon himself, who, as appears from 1.6, returned safely to Aegina; (2) that the

 Demaenetus took flight on Milon's approach rather than that he gave action. Hence we prefer to regard ait \(\bar{\omega} \nu\) as the inhabitants either of Thoricus or, reading \(\epsilon \pi i \quad \Pi o \lambda \nu . .\). or \(\Pi\). ap of that place, though we are unable to suggest a suitable place-name. \(\mu \hat{a} \leqslant \nu] \leqslant \omega\) s is, however. not satisfactory, and \(\tau \bar{\eta} s\) would suit the space better. For \(\tau\) wós there is no room, but rov (Bury) is possible.

\[
\text { Cols. iii. } 7 \text {-iv. } 4^{2}=\text { chs. IV-V. The Nazal War. }
\]
iii. 9. The mutilation of this passage, which if complete would have explained the chronological system adopted by our author, is much to be deplored. If Cols. i-iv are correctly placed before \(v\)-viii, which describe Agesilaus' campaign in the spring and early summer of 395 , the \(\theta\) 'fos in iii. 9 must be that of 396 , and the ' 8 th year', of which the beginning is noted in 1.10 , is \(396-5\). An earlier date is excluded by the description of Pharax in i. \(3^{1-2}\) as \(o\) ónótepoy vavapoos; for he is known to have held that office in the spring and summer of 397 (cf. i. 30 , note), and since the expedition of Demaenetus. in connexion with which he is mentioned, falls within the seventh year of P's reckoning and Pharax' term of office was then already over, it is impossible to make the 8th year begin in 397. Granted that the \(\theta\) épos in iii. 9 refers to 396 and is the beginning of the 8 th year (the possibility of its referring to 395 will be discussed later), it remains doubtful what month P precisely regarded as the starting-point. Thucydides, who divides each year of the war into two equal parts, \(\theta\) єfos and \(\chi \epsilon \mu \dot{\omega}^{\prime} \nu\), makes the former begin in the spring (cf. e.g. iv. 117
 the annalistic method of Thucydides, similarly reckons in years beginning with the spring. Since P's work is probably, like Xenophon's, a continuation of Thucydides' history (cf. p. 122) and seems to be constructed on chronological principles, which if not as strict as those of Thucydides are more careful than Xenophon's, there is a certain presumption that he too reckoned in years which began in the spring; and iii. II may even have commenced with some phrase like ëapos àp \(\chi\) ouévou. On the other hand \(\theta \dot{\epsilon} \rho o s\) in iii. 9 might very well refer to midsummer, the starting-point of the Olympiads and year of the Attic archons. The later columns are compatible with either hypothesis: v-viii cover the period from about March-June 395, xi-xxi that from about July-November of the same year, and the transition from the 8th to the 9 th year would, if it was noted and took place in the spring, naturally occur in the gap between Cols. iv and \(v\), while if it was at midsummer, it would occur in the gap before Col. xi. In xi. 34 toírou tov̂ éfpous referring to the war between Boeotia and Phocis probably means July, and the fact that the Theban intrigues and the dispute between Phocis and Locris, which are narrated in xiv. 21 sqq., began before midsummer (cf. xiv. 2 I , note) provides no argument against the view that the 9 th year began in
midsummer, for there is no reason to think that P's arrangement of facts was so strictly annalistic as to prevent his grouping together an intimately connected series of incidents belonging to the conclusion of the 8th and the beginning of the 9 th year. The later columns being thus indecisive, the question what is meant by \(\theta \dot{\epsilon} \rho o s\) in iii. 9 has to be decided by the evidence of Cols. i-iv. Assuming-as is most probable but by no means absolutely certain-that the incidents in i. r-iii. 7 refer to the conclusion of the 7 th year and those in iii. II sqq. to the beginning of the Sth, it is on the whole more satisfactory to regard the Ot ós in which the 8th year began as midsummer, not spring. The narrative of the expedition of Demaenetus does not help, for the only definite mark of date connected with it is the mention of Pharax as the former vavapxos, and if Pharax' term of office ended, as is likely, in the autumn of 397 (cf. iii. \(23-6\), note) the expedition may have taken place during the winter of \(397-6\) just as well as in the spring or early summer of 396 . But the account of the naval war in iii. II sqq. favours the view that the 8th year began in the summer. It would be surprising in the first place that the narrative of the 8 th year, if this began in the spring, should commence with the comparatively unimportant naval war in place of the expedition of Agesilaus to Asia. Secondly, the arrival of the reinforcements from Phoenicia (iii. 23-6, cf. note) is more likely to have occurred towards the end than at the beginning of 396 , for though Diodorus seems to have placed that event too late, the view that these reinforcements were available to Conon throughout the campaign of 396 does not well accord with the statements of Isocrates about the blockade of Caunus. Thirdly, the arrival of the new Spartan vavapoos (probably Pollis), which happened soon after the beginning of the 8th year (iii. 21, note), suits the late summer better than the spring, not merely because the summer or autumn was the normal time in which a new vavápxos entered on his duties, but because the arrival of Cheiricrates, the successor of Pollis, is definitely fixed by xv. 33 for the late summer (about July or August) of 395. If, therefore, the new vavapuos of iii. 21 came out in the spring, either he remained in office considerably more than a year, or he was not Pollis but some unknown individual, and Pollis' arrival occurred later, the notice of it in P being lost. Of these two alternatives the second would be preferable to the first, for great as are the irregularities connected with the Spartan vavapxia (cf. iii. 21, note), there is no precedent for a vavapxos who took over the command in the spring remaining in that position until the summer of the year following, and the mention of Pollis in iii. 21 is of course conjectural. No one of the arguments in favour of treating the \(\theta\) épos in iii. 9 as midsummer is very strong, but together they seem to counterbalance the presumption in favour of the other explanation created by the example of Thucydides and Xenophon, and for the present we leave the question open. In any case \(P\) does not use the Attic archons for dating purposes, but like Thucydides and Xenophon reckons back to a fixed point. What this was is owing to the lacuna in 1.10 not definitely ascertainable. It is not the end of the Peloponnesian war as foreshadowed by Thucydides v. 26, where he states his intention of carrying his history up to the surrender of Athens; for the capture of the city by Lysander took place on Munychion \(16=\) April 24, 404 according to Plutarch Lysand. 15 , and the 8th year on P's system being 396 -5, his epoch-year is 403-2, not 404-3. Xenophon, however (or rather, as is generally supposed, his interpolator), in Hell. ii. 3. 9 treats the capitulation of Samos in the autumn of 404 as the end of the war, and in any case it would seem that P connected the events of 404 , including the capture of Samos and the despotism of the Thirty, with the war, and made a fresh start in the spring or summer of 403 , i.e. approximately from the archonship of Euclides, a well-known landmark in Greek history. The restoration of the Athenian democracy and the general amnesty occurred on Boedromion 12 (=Oct. 4) 403 (Plut. de
 'A \(\begin{aligned} & \text { quaious. }\end{aligned}\)

Our discussion has so far proceeded on the fundamental assumption that Cols. i-iv are rightly placed before \(v\)-viii, and we have hitherto left out of account the hypothesis that the \(\theta\) épos in iii. 9 may refer not to 396 but to 395 . It is not worth while reviewing in detail the consequences that would ensue from the combination of the present arrangement of Cols. i-viii with the view that the \(\theta\) épos belongs to 395 , for that hypothesis would remove none of the difficulties which have led us to place Cols. i -iv before v -viii, and would not be supported by the chief argument for transposing \(v\)-viii before \(i\)-iv, the fact that Cols. i-iv are in the same hand as that of vi. \({ }^{27}\)-xxi (cf. p. 114). If the \(\theta\) 'fos in iii. 9 refers to 395 , there is not the least doubt that Cols. v-viii should precede i -iv, not follow them. What are the results of this arrangement ?

In the first place the \(\theta\) épos of iii. 9 would necessarily mean midsummer not spring, for the account of Agesilaus' campaign in the spring and early summer of 395 would have preceded; accordingly Demaenetus' expedition would have occurred in the spring or early summer of 395 . There is no insuperable objection to this, although the change of policy on the part of Thrasybulus and the moderate democrats with regard to a war with Sparta would become very sudden, and it is more satisfactory to suppose at least a year's interval between the events described in \(1.7^{-25}\) and the unanimously voted alliance of Athens with Boeotia in the late summer of 395 ; cf. i. 16, note. With regard to Pharax, the mention of him as ó \(\pi \rho\) ótepov vavap of his vavapxia, since whether he was vavap \(\begin{gathered}\text { os in } 39^{8-7} \text { or } 397^{-6} \text {, he would equally be }\end{gathered}\)
 to imagine what could have stood in the lacuna in iii. 10 , and what reasons P had for taking as his epoch the remarkably uneventful year 402-I, corresponding to the archonship of Mlicon. That P should have grouped the events of the year of avapxia with the Peloponnesian war is perfectly intelligible, but that he should have also included in it the whole of the archonship of Euclides, and made a fresh start with the Attic new year following the amnesty is very extraordinary. At the time when \(v\)-viii were placed before
 organization of the Spartan hegemony, but we should certainly expect some particular event of well-known importance to be mentioned there, not a vague phrase. And, since no important historical incident occurred in the archonship of Micon at all, the choice of \(402-1\) as a starting-point would remain a complete enigma. Problems of still greater difficulty would, however, arise in connexion with the appearance of the new vavapoos; for that he was Pollis, the predecessor of Cheiricrates, would be practically certain, and it would become necessary to suppose either that he disappeared almost immediately after his arrival, or that in iii. II sqq. P has abandoned altogether the chronological sequence of events and reverted to incidents which took place long before the beginning of the 8th year. Neither of the two explanations is at all satisfactory ; cf. iii. 21 , note, and iii. \(23-6\), note, where the whole question of the chronology of this period is discussed more in detail. The overwhelming difficulties which ensue concerning the starting-point of P's system of years and the vavapxin of Pollis, if the \(\theta\) 'िpos in iii. 9 refers to 395, seem to us much to outweigh the advantages which result from placing Cols. v-viii before i -iv: for apart from the argument based on the change of hands which is far from conclusive (cf. p. 115), especially as the margin before Col. i suggests that it is the commencement of a new book or section, the only gain afforded by making Cols. v -viii precede i -iv is that it would then be easy to bring P into harmony with Diodorus as to the date of the arrival of the reinforcements from Phoenicia recorded in iii. 23-6. It is, however, not absolutely certain that P and Diodorus differ on this point even if the \(\theta\) épos belongs to 396 , and in any case the apparent order of events in P possesses such manifest advantages over their sequence in Diodorus that we are prepared to admit an error on the part of the latter; cf. p. 213 .
iii. II sqq. P now turns to the naval war, the fragmentary account of which bristles with difficulties. The first is the identity of the person -apas (- \(\delta \rho o s\) cannot be read) who occurs in 1.11 and again apparently in 11. 19 and 30. The context (especially the mentions of Pharnabazus in 11.16 and 36) indicates that he was on the side of the Persians, not of the Spartans; and if ll. 11-20 all refer to him he seems to have been in command of the fleet and to have had negotiations with Pharnabazus concerning the pay (cf. xv. 37, sqq.), while 11.28 -31 perhaps refer to his departure as the result of some new arrangement about the command introduced by Pharnabazus, his place being apparently taken by Conon (1. 31). Against this interpretation may be urged the fact that in the account of Diodorus, who owing to the silence of Xenophon is practically the sole authority for the naval operations between the building of the Persian fleet and the battle of Cnidus, Conon is

 Pharnabazus as vavapxos, and it seems possible that at the period with which Col. iii is concerned Conon, though really directing the operations, was nominally subject to a Persian commander other than Pharnabazus. That -apos was one of Conon's lieutenants is not likely, for both P (xi. 10-1) and Diodorus mention Hieronymus and Nicophemus as acting in this capacity (cf. note ad loc.) ; that he was a Spartan vavap \({ }^{\circ}\) os is still less probable, for even if 11. 16-8 refer to Conon's negotiations with Pharnabazus, not to -apas, the Spartan fleet seems to be mentioned for the first time in 1.20 , and the \({ }^{2} \rho \chi \dot{\eta}\) of -apos in 1.30 most probably refers to the vavapxia in 1.28, which in view of the context is almost certainly the Persian, not the Spartan.
12. \(\left.\epsilon^{\prime}\right] \times \epsilon i:\) probably Caunus, the head quarters of the Persian fleet in the Aegean (cf. 11.24 sqq.). That Rhodes, which became the head quarters later, had already revolted from Sparta is on the whole unlikely ; cf. iii. 23-6, note.

21. Пód \(\lambda \iota s\)]: cf. xv. 32-5, where the arrival of Cheiricrates as successor to Pollis is mentioned as having taken place before Conon's visit to Tithraustes and the mutiny. Both vav́apxo were previously unknown. Since Cheiricrates' arrival is there mentioned in terms which seem to imply that this had not been previously referred to, it is not at all satisfactory
 the vavapxia at Sparta was an annual office is generally agreed, but whether it normally was entered upon in midsummer or in the autumn is much disputed. Meyer, who formerly (Gesch. d. Alt. iv. p. 619) agreed with Beloch (Philol. xliii. p. 261) in accepting midsummer, now agrees with Lohse (Quaest. chronol. ad Xenoph. Hell. pertinentes, pp. 43 sqq.) and with Beloch's former view (Rhein. Mus. xxxiv. p. 119) in regarding the autumn, i.e. the beginning of the official Spartan year, as the normal commencement of the term of office of the vavapरot. But whatever may have been the rule, there is no doubt that there were great irregularities in practice. Lysander, for instance, was in command not from autumn to autumn or even summer to summer, but from spring to spring; cf. Lohse, l.c. But since the episode in connexion with which Cheiricrates is mentioned is related by P after the Boeotian war, which took place in the summer (xi. 34), and before the campaign of Agesilaus in the late summer and autumn, Cheiricrates' arrival must have occurred soon after midsummer, 395 . He is mentioned again in connexion with the autumn campaign (xxi. 26), and was no doubt succeeded in the course of the winter by Pisander, who fell at the battle of Cnidus in August 394 ; cf. xv. 33, note. Cheiricrates' predecessor, Pollis, would therefore be expected to have come out in the summer or autumn of 396, and the great probability of this date for Pollis' arrival is one of the chief reasons for putting Cols. i-iv before \(v\)-viii in spite of the difficulty caused by the change of hands; cf. iii. 9 ,
note. For if Cols. i-iv are placed after v-viii and the 8 th year in iii. 9 is 395-4, not 396-5, the advent of Pollis seems to coincide almost with his replacement by Cheiricrates. This conflict of evidence can only be explained in one of two ways. It is possible that Pollis entered office in the summer of 395 , but only held it for a very short time before being succeeded by Cheiricrates. It is, however, not satisfactory to suppose that he was recalled so soon, still less that he died, for he is likely to be identical with the Pollis who was eimarodeús in 393-2 (Xen. Hell. iv. 8. ir), and perhaps with the vavirpxos of that name in 376 (Xen. Mell. v. 4. 6r). Or secondly, Pollis may have entered office in the summer of 396, and on the hypothesis that Cols. \(i-\mathrm{iv}\) follow \(v\)-viii the mention of his arrival is out of its proper chronological position. It must then be supposed that in relating the naval war P has departed from the fairly strict chronological arrangement followed by him in narrating the campaigns of Agesilaus and events in Greece, and has grouped together in Col. iii sqq. a series of events beginning with some which ought to have been mentioned long before. This explanation, however, is also very unsatisfactory, for in the subsequent sections dealing with the naval war (xi. 1-34, xv. 3-xviii. 33) the chronological arrangement is adhered to at the price of dividing the narrative of Conon's operations into two parts separated from each other by the account of the Boeotian war; and since iii. 9-10 seem to record the conclusion of one year and the beginning of another, it is singularly difficult to regard the events next related as really belonging to the beginning of the year just concluded.
22. 'ApXe入aîa: this seems to be the name of a ship rather than of a place ; cf. Frs. 19. 8 and 20. II, where it is perhaps mentioned again. Possibly there is some connexion with Archelaus king of Macedonia, a country which is mentioned in ix. 29.

 is no doubt derived directly or indirectly from P (cf. p. 137), though whether Diodorus and P agreed exactly with regard to the numbers of the ships is by no means certain in view of the differences between them as to numbers elsewhere; cf. v. 13-6, 60 , and vi. 2 I , notes. There is also the difficulty in Diodorus' account that these 90 ships added to the 80 which Conon possessed previously (xiv. 79. 6) make \({ }_{1} 70\) triremes, but in his description of the
 against 85 on the side of the Spartans. Xenophon, however, (Hell. iv. 3. I2) states that the Spartan fleet was greatly inferior in numbers, so that \(\pi \lambda \epsilon i o u s \tau \hat{\omega} \nu \dot{\varepsilon} \nu \in \nu \dot{\eta} \dot{\eta} o \nu \tau a\) seems to imply too low an estimate.

Diodorus' statement concerning the arrival of the 90 ships comes at the end of a section dealing with the naval war (79.4-8), in which he previously recounts the assistance offered by the king of Egypt to the Spartans, the blockade of Conon with 40 ships at Caunus by Pharax, the Spartan vav́apxos, with 120 ships, the relief of Conon by Pharnabazus and Artaphernes, the revolt of Rhodes from the Spartans, and the capture by Conon of the Egyptian corn-ships which sailed to Rhodes in ignorance of the revolt. These incidents of the naval war he synchronizes with the dispatch of Agesilaus to Asia and his first campaign
 corresponds to Cols. v-viii, follows immediately afterwards (80 . I \(\mu \epsilon \tau a ̀ ̀ \delta e ̀ ~ r a i ̀ r a), ~ b e i n g ~\)
 тòv тро́тоv \(\delta \iota \varphi \kappa \eta \mu \dot{\epsilon} \nu \omega \nu\)), and Conon's visit to Babylon (81. 4-6). The events of all three chapters 79-81 are assigned by Diodorus to the year \(396-5\), but his narrative of the two preceding years \(398-7\) and 397-6 deals only with Sicilian history, and it is clear that in those three chapters the events of two or more years have been compressed into one.

and it is not certain whether he is referring to the years \(397-5\) or \(396-4\) ．Beloch（Gr． Gesch．ii．p．146），supported by Lohse，op．cit．pp． 24 sqq．，takes the former view，placing the arrival of Conon at Caunus and the siege and relief of that place in 397，principally on account of the mention of Pharax，who is known from Xen．Hell．iii．2．I2 to have accompanied Dercylidas in his campaign of 397 ，which began in the spring．The revolt of Rhodes is referred by Beloch to the summer of 395，by Lohse to the summer of 396 ． Meyer，on the other hand（op．cit．v．pp．208－9），connecting Paneg． 142 with Evag．64，
 three years \(39^{6-4}\) up to the battle of Cnidus in August 394 （cf．Paneg．I 54 and Evag． 56

 town by Pharax to the spring of 396 ，placing the revolt of Rhodes at about the beginning of 395 ．That the naval war did not begin in the summer of 397 is，he thinks，implied by Xenophon，Hell．iii．4．I，where the commotion at Sparta caused by the news of the Persian preparations of a large fleet brings about the expedition of Agesilaus，which left Greece in the spring of 396 ．The chief objections to this view are（ I ）that it implies a very long term of office as vavapoos for Pharax，who is known to have been already acting in that capacity in the spring and early summer of 397，and（2）that if his operations in Asia against Conon took place in 396 it is difficult to account for his presence at Syracuse about midsummer of that year；cf．Diod．xiv． 63.4 and 70.2 ，where Фаракióas is no doubt identical with \(\Phi a ́ \rho a \xi ́\), though Diodorus is almost certainly wrong in still calling him vaváaXos．More－ over，as Lohse remarks（ \(o p\) ．cit．pp．26－7），the fear aroused at Sparta in 396 by the scale of the Persian preparations is not inconsistent with the supposition that the Persians had already a fleet of 40 ships in 397，and the three years of Isocr．Evag．in which the king \(\grave{i} \phi \epsilon \lambda \epsilon \tau \sigma \quad \tau \dot{\eta} \nu \dot{a} \rho \chi \dot{\eta} \nu\) are likely to be different from the three years of the Paneg．in which the Persian fleet was blockaded，and may be \(395-3\) ．Lohse＇s discussion of this point requires some modification in the light of the evidence from P that the visit of Conon to the Persian court happened not in the summer of 395 but in the following winter，but on the main questions of the date of Pharax＇vavapxia and the distinction between the three years of the Paneg．from those of the Evag．we agree with him against Meyer．

The account of the democratic rising（＇̇пavácta⿱宀八s）at Rhodes in xi．1－34 presupposes that the expulsion of the Spartans and the admission of Conon＇s fleet had taken place some time previously，the government of the island being in the interval in the hands of the
 то⿱㇒⿻二亅刂
 unlikely，for there is no reference in xi． \(1-34\) to the Spartans，and the rising of the democrats and the expulsion of the Spartans belong to different years according to P＇s reckoning． The question then arises whether the expulsion of the Spartans took place before or after the events recorded in Col．iii．If these belong to 395 it would be necessary to suppose that the revolt of Rhodes from the Spartans preceded them，for there would be only a very brief interval of time（one or two months at most）between the arrival of Pollis and the democratic revolution．P would then confirm Diodorus＇statement that the reinforce－ ments from Phoenicia arrived after the revolt of Rhodes．But it is in any case more probable that Pollis＇arrival took place in the summer of 396 （cf．iii． 9 and \(2 \mathbf{I}\) ，notes）； and if so there is an interval of practically a year between Cols．iii and xi，which gives ample time for the expulsion of the Spartans during this period．Unfortunately the remains of Col．iii are insufficient by themselves to show definitely whether the expulsion of the Spartans from Rhodes had taken place or not．On the one hand Caunus not Rhodes seems to be the head quarters of the Persian fleet ；and if＇Apraфє \(\overline{\text { ］}} \rho \nu \eta[s]\) be read in iii． 37 the situation may，
as Meyer suggests, correspond to that in Diod. xiv. 79. 5, when Pharnabazus and Artaphernes came to the rescue of Conon at Caunus, Rhodes being still held by the Spartans. On the other hand xi. 9 and \(\mathrm{xv} .3^{6}\) show that even after Rhodes had become the head quarters of the Persian fleet Conon was in the habit of visiting Caunus, and it is possible that a mention of Rhodes in connexion with the Persian flect occurred in iii. 11-2. Moreover, if the expulsion of the Spartans occurred after the events recorded in Col. iii, there is a discrepancy between \(P\) and Diodorus as to the date of the arrival of the reinforcements, since Diodorus places that event after the defection of Rhodes. In itself there is nothing at all improbable in the view that these reinforcements played a part in causing Rhodes to revolt from the Spartans, but we have some hesitation, in consideration of the agreements between P and Diodorus elsewhere, in accepting so serious a divergence between them as to the order of the events described in Diod. xiv. 79. 4-8, especially as the placing of Cols i-iv after v-viii would bring P into harmony with Diodorus on this point. On the whole, however, in view of the advantages gained by the hypothesis that the arrival of the reinforcements preceded the revolt, and the inextricable difficulties caused by maintaining that the events in iii. II sqq. belong to 395 , we prefer to suppose that the order of events in Diodorus is erroneous, and that the arrival of the reinforcements occurred in the late summer or autumn of \(39^{6}\), the revolt of Rhodes in the same autumn or the following winter, the account of the latter event being probably lost between Cols. iii and v.

The accuracy of Diodorus' narrative of the naval war in xiv. 79. \(4^{-8}\) having been denied in one important particular, it becomes somewhat doubtful how far the rest of it is to be trusted. If the siege of Caunus was conducted by Pharax, this must certainly be referred to 397 , not to 396 . For apart from other objections to the supposition that his vavapxia ex-
 the 8th year mentioned in iii. 9 and the arrival of Pollis apparently belongs to the 8th year (or at any rate to 396), it is very unlikely that he was the immediate predecessor of Pollis. And if another vav́apxos intervened Pharax' term of office cannot have extended into \(39{ }^{6}\). The probable chronology of the vav́apरot is in our opinion 398-7 (autumn) Pharax; 397 (autumn) to 396 (autumn) unknown ; 396 (autumn) to 395 (summer) Pollis; 395 (summerwinter) Cheiricrates; 394 Pisander (cf. xv. 33, note). Hence \(P\) on the whole seems to support Beloch's chronology of the naval war against that of Meyer. To make P consistent with Meyer's view that the naval war began in 396, it is necessary to suppose that Pharax in Diodorus xiv. 79. 5 is a mistake for Pollis or his unknown predecessor. There is, however, as Meyer remarks, a good deal to be said for treating Фápa \(\xi\) there as an error, for if the siege of Caunus began in 397, when Pharax was with Dercylidas in Caria, Diodorus ought to have mentioned it in his account of Dercylidas' campaign in xiv. 39, and the indecisive character of the operations on land, which ended in a tame avoidance of battle and a truce for further negotiations, ill accords with the hypothesis that the Spartans had in 397 so large a fleet as 120 ships in the Aegean, and were taking active measures against Conon. It is possible, therefore, to limit Pharax' period of office to 397, and yet to regard the naval war as commencing in the spring of 396 , for apart from the mention of Pharax in Diod. xiv. 79. 4 there is no clear evidence that Conon came to Caunus before 396. The substitution of another name for Pharax in that passage would however still be compatible with Conon's arrival there in 397, for Diodorus' expression with regard to Conon (8tatpi,3ovтa
 Isocr. Paneg. 142 (cf. p. 21I) is more excusable if the three years of the siege refer to 397-5 instead of \(396-4\), it does not seem worth while to reject Diodorus' statement that Pharax besieged Conon, though the number of the Lacedaemonian ships (120) may well be too large. The connexion suggested by Meyer between iii. 37 and the relief of Conon by Pharnabazus and Artaphernes (cf. p. 212) is therefore not very probable.

 The name＂Акт由 is not known，and јабакт \(\boldsymbol{\nu}\) may be all part of the name of the Sidonian．

30．］．apos：the vestige of a letter before \(a\) would suit \(\gamma\) or \(\tau\) best，but is also com－ patible with \(\kappa, \sigma, v\) ，or \(\chi\) ．It is of course quite uncertain how many letters intervene between ］．apos and \(\mu\) èv oivv．
 калох́цеvov in 1.35 ．

35．\(\epsilon\) is \(\left.\lambda_{i \mu \nu \eta}\right] \tau \pi \eta_{\nu} \mathrm{K}[a]\) viav：there was a large lake a little north of Caunus，which was

36．Ko \([\nu \omega r o s:\) the supposed \(\kappa\) has been corrected．
37．］\(\rho \nu \eta[s]\) ：perhaps Пa夫фф＇\({ }^{\prime}\) ovv［s］，who is mentioned in xvi． 27 as having been appointed by Tithraustes to command the Persian forces along with Ariaeus，or ＇A \(\rho \tau a \phi '\)＇\(] \rho \nu \eta[s]\) ，who，according to Diod．xiv．79．5，came with Pharnabazus to the help of Conon at Caunus（cf．iii．23－6，note），unless indeed＇Aртаф＇́puns there is a mistake for Пабьфє́ \(\rho \nu \eta s\), a name not known apart from xvi． 27.
\(40-3\). Fr．2，containing the letters ］uфı入［，］ar［，］\(\eta \lambda \epsilon[\text { ，and }]_{\text {Eaca }}\)［，is placed here chiefly on the evidence of colour；the recto is blank at this point，and the proposed arrangement is by no means certain．
\[
\text { Col. v. } 1 \text {-vii. } 4=\text { chs. VI-VII. Agesilaus in Asia. }
\]
v．1．The supposed stops at the beginning of this line and 1.3 may represent the tip of a letter．The second scribe sometimes fails to insert stops when he leaves a space，e．g．in 1.6.

4．\(\dot{\eta} \mu \dot{\epsilon} \nu\)［oîv：a new section probably begins here．Whether the preceding lines concerned Agesilaus＇preparations at Ephesus（cf．Xen．Holl．iii．4．16－9）or events in another part of the world is quite uncertain．

7．\(\pi\) of \(\sigma \tau \rho a t o \pi[\varepsilon \delta \delta \nu\) is corrected，and the vestiges after \(\sigma \tau \rho a \tau\) indicate something more than o．Perhaps the scribe began to write \(\sigma \tau \rho a \tau \epsilon v \mu a\).

 The ő \(\boldsymbol{\eta} \eta\) in l． 9 probably refer to Sipylus．Xenophon does not state Agesilaus＇route to Sardis．

 it would be more naturally introduced after the mention of Tissaphernes in 11．14－6，i．e．in ll． 17 sqq．，where the manœuvres of the march are described．Moreover the \(\xi\) of \(\tau a \xi a \mu \epsilon\) is very doubtful，and the correct division may be \(\tau\) à öp \(\eta \tau\) à \(. a \mu \epsilon .\).

 with P by emending \(\pi \epsilon \nu \tau a \kappa \iota \sigma \mu \nu \rho i o u s\) into \(\pi \epsilon \nu \tau a \kappa \iota \sigma\langle х \iota \lambda i o v s ~ к а i\rangle ~ \mu \nu \rho i o u s . ~ B u t ~ P ~ a n d ~ D i o d o r u s ~\) differ elsewhere in regard to figures（cf．notes on \(v .60\) and vi． 21 ），and the imteis may well have been mentioned before the \(\pi \epsilon \zeta o i\) ，as in Diod．l．c．and in xxi． 12 （though not in vii．41）．The restoration suggested in our text produces a conflict with Diodorus as to the number of the \(i \pi \pi \epsilon i s\) ，but not necessarily in that of the \(\pi \epsilon \zeta \alpha\) oi，since \(\pi \epsilon \nu \tau a \kappa \iota \sigma \mu \nu \rho i \omega \nu\) would suit the space．That figure is very high；but cf．Pausan．iii． \(9.6 \gamma \in \nu \partial \mu \hat{\varepsilon} \eta \eta s \quad \delta \dot{\varepsilon} \pi \rho \dot{\varepsilon} s\)

 between P and Diodorus, supported by Pausanias, concerning the movements of Tissaphernes' troops is very striking. Xenophon (Hell. iii. 4. 21, Ages. 1. 29) gives a wholly different account; according to him, the satrap expecied an invasion of Caria, and dispatched his infantry thither and his horse to the plain of the Maeander, so that Agesilaus reached the neighbourhood of Sardis unmolested and never met the Persian infantry at all; cf. note on v. 59 .

17-9. The restorations are due to Bury, who further suggests катьò̀v aùroús in 1. 17 and
 a passing compliment to Agesilaus' tactical skill ; cf. p. 123 . That the \(\pi \lambda \iota \nu \theta\) ion was mentioned here is probable in any case ; cf. ll. 9 and 34, notes.
22. The first \(a\) of \(\mu a \chi \in \sigma \theta a t\) is corrected.
24. \(\sigma a s^{\prime}\) : or \(\sigma a \sigma t\) without a stop; cf. note on I. r.
34. \(\pi \lambda_{u r}\left[\theta_{i o v}\right.\) : cf. vi. 35 and the passage from Diodorus quoted in 1. 9, note. Diodorus proceeds to describe Agesilaus' arrival before Sardis and the plundering of the environs, including the \(\pi a \rho a \dot{8} \epsilon \iota \sigma a s\) of Tissaphernes; but the scanty remains of \(11.36-58\) do not offer any points of connexion with his narrative, and it is not clear precisely where the battle described in v. 59 -vi. 27 took place. Xenophon, whose account in Hell. iv. \({ }^{22-4}=\) Ages. 1. 30-33 is widely different (cf. v. 59, note), describes it as occurring on the bank of the Pactolus before Agesilaus reached Sardis, the environs of which were, according to Ages. 1. 33, plundered after the engagement. Diodorus, whose description of the ambush in xiv. 80. 2-3 closely resembles that of P , represents Agesilaus as turning back (\(\dot{\epsilon} \pi \iota \sigma \tau \rho \dot{\epsilon} \psi a s)\) after reaching Sardis, and places the scene of the battle àvà \(\mu \dot{\epsilon} \sigma \sigma \nu \ldots \tau \bar{\omega} \nu\)
 quoted in note on Il. I 3-6 vaguely says that the fight occurred in the "Eppov \(\pi \in \delta i o v\), which is also mentioned in Ephorus Fr. I31, possibly in reference to this battle. From vi. 29, where it is stated that Tissaphernes after his defeat retreated with his troops (\(\dot{a} \pi \epsilon \chi \dot{\omega} \rho \eta \sigma a \nu\)) to Sardis, it is probable that in P's account Agesilaus had passed Sardis before the battle, and \(\dot{\epsilon} \pi \iota \sigma \tau \rho \dot{\epsilon} \psi a s\) in Diodorus is, as Meyer remarks, likely to be due to a misunderstanding, since he uses the same expression (\(\dot{a} \pi \epsilon \chi \dot{\omega} \rho \eta \sigma \epsilon\)) as P with regard to Tissaphernes.
40. A stop may be lost after \(\rceil \mu \pi \omega\) s.
\(4 \mathrm{I} . \mu a \lambda \mid \lambda o_{2} \nu\) : the position of Fr. 3 containing the supposed beginnings of \(11.4^{2-9}\) and \(54^{-60}\) is not absolutely certain, and it might belong to an earlier column. The recto gives no help. The combinations \(\mu a \lambda \mid \lambda o^{\prime} \nu\) and \(A^{\prime} \gamma \eta \sigma \sigma_{l} \mid \lambda a_{0}\) os and the fact that . \([\) is the last line of a column are the grounds for placing it as we have indicated. If \(\mu a \lambda \mid \lambda 0[\nu\) is correct, the iota adscript of \(\epsilon\) Yyetepot is perhaps erroneous.
45. \(\bar{\delta}\) in the margin opposite this line seems to indicate that this is the 400 th line of the MS. Similar indications of the successive hundreds are common in poetical texts, e. g. 223 and 841 ; but the only parallel that we can adduce from a prose MS. of this period occurs in the Pherecydes papyrus (P. Grenf. II. II), where 5 in the margin opposite ii. 3 is more likely to mean the 600 th line than the 6 th section.
56. Perhaps тoûto] vò̀ èvaar [रóv.

58 . There is a spot of ink in the margin before \(\epsilon \cdot[\), which might represent \(]\), but may be merely an accident. That it is connected with \(\bar{\delta}\) in the margin against 1.45 is unlikely.
v. \(59-\mathrm{vi} .53\).
'(Agesilaus sent) . . . hoplites and [.00 light-armed troops, and appointed as their leader Xenocles, a Spartiate, with instructions to form in order of batle when (the main
body of the army) marched past them. Agesilaus on the next day at dawn roused his army, and continued his advance. The barbarians accompanied them as usual, some assaulting the Greeks, others . . . them, others in loose order following them over the plain. When Xenocles considered that it was the moment to attack the enemy, he started up with the Peloponnesians from the ambush, and charged at a run. The barbarians at the sight of the advancing Greeks fled over the whole plain, whereupon Agesilaus perceiving the panic dispatched from his army the light troops and the cavalry in pursuit, and they in combination with the force which had issued from the ambush pressed hard upon the barbarians. They followed the enemy for no very long time, as they were unable to overtake them because the majority were horsemen or without armour, and after killing, about six hundred of them they desisted from the pursuit, and attacked the barbarians' camp. Finding the guard not strongly posted they soon took it, and captured from the enemy large supplies, many prisoners, and much baggage and money, including that of Tissaphernes himself. Such being the result of the battle, the barbarians in terror of the Greeks retired with Tissaphernes to Sardis, while Agesilaus after remaining there three days, in which he restored to the enemy their dead under a truce and erected a trophy and ravaged the whole country, led his army forward again into Phrygia Magna. He no longer kept his soldiers formed in column on the march, but allowed them to range over as much of the country as they liked, and to plunder the enemy. Tissaphernes on learning that the Greeks were continuing their advance, gathered the barbarians together once more, and followed in the rear of his adversaries, at a distance of many stades. After crossing the Lydian plain Agesilaus conducted his forces through the mountains which lie between Lydia and Phrygia, and after traversing these brought them down to Phrygia until they reached the river Maeander, which rises at Celaenae, the largest city in Phrygia, and flows into the sea near Priene and (Myus ?). There he encamped the Peloponnesians and their allies, and consulted the auspices whether he ought to cross the river or not, and whether he should march against Celaenae or retreat. Since the sacrifices proved unpropitious for him, after waiting there during the day of his arrival and the next, he retired with his army . . .'
v. 59 sqq. With the account of the ambush cf. Diodorus xiv. 80. 2-3, which is

 general resemblance between Diodorus and P is very close, though except in the last sentence of the extract (cf. vi. \(27-30\)) the verbal coincidences (which are indicated by the underlined words) are not striking, and besides minor differences there is a discrepancy as regards Agesilaus' tactics, since Diodorus represents him as bringing on a general engagement before giving the signal to Xenocles, while in P Xenocles chooses his own time for the attack, and is then reinforced by a portion of the main army. Diodorus' account has been generally supposed to be derived from Ephorus; and if so Ephorus must have been based on P; cf. pp. 135-7.

Xenophon on the other hand (Hcll. iii. 4. 22-4 = Ages. 1. 30-3.3) gives quite a different colour to the engagement. The Persian infantry having been sent to Caria (cf. note on v. 13-6), only the cavalry, under an unnamed \(\dot{\eta} \gamma \epsilon \mu \dot{\omega} \nu\), were engaged, at first with the Greek cavalry and subsequently with the infantry, while Tissaphernes himself is stated to have been at the time in Sardis and not present during the fighting. That Nenophon is referring to the same battle as Diodorus, though that has been doubted, is practically certain, for in both accounts the fight results in the capture of the Persian camp with much booty, and it is difficult to believe that if there had been two important victories, Xenophon would have omitted one of them ; cf. Meyer, Gesch. d. All. ii. p. 207. Xenophon's account is followed in the main by Plutarch, Ages. 10, but with some variation in details (c.g. according to Plutarch Tissaphernes was present in the engagement, and Agesilaus' attack is described somewhat differently), which are explained by Sachse (Die Quellin Pluturchs in dir I.ibensbeschreibung des Komigs Agesilaos, pp. 8-9) on the hypothesis that Plutarch was using Ephorus, who was based on Xenophon. If this view were accepted, it would follow that Diodorus' account was not derived from Ephorus; but Sachse secms to us to overestimate the extent to which Plutarch in his Ages. has used Ephorus ; cf. xx. 37, note, and p. 126. Nepos (Ages. 3) also follows Xenophon, but Pausanias (cf. note on v. \({ }^{13} 3^{-6}\)) supports Diodorus as to the presence of the Persian infantry. While Diodorus' story stood almost alone, and might be explained as a comparatively late invention, historians have naturally preferred to believe Xenophon; but the case is now much altered, and the alternative version of Agesilaus' victory found in P and Diodorus, which is clearly based on good evidence, has considerable claims to acceptance. The fact that Xenophon represents Tissaphernes as repeating in 395 the error which he had made with regard to Agesilaus' plans in 396 , and again sending his infantry to Caria where they were useless, is decidedly suspicious.
60. The traces of the first letter of the line do not suit \(\epsilon\). єï's tiva סaav̀v tótou (cf. Diod.) is therefore inadmissible. Diodorus gives the number of the \(\sigma \tau \rho a t \iota \omega \tau a \ell\) as 1400 in all. Since it is quite uncertain whether \([\pi \in \nu-]\), \([\hat{0} \kappa-]\) or \([\varepsilon \pi \pi-]\) occurred in the lacuna at the end of the line, we abstain from inserting a number before \(\dot{\delta} \pi \lambda i \tau a s\), especially as P and Diodorus differ elsewhere in respect of numbers; cf. iii. 23-6, note.
vi. 2. इєуоклє́a: cf. Diod. l. c. and Xen. Hell. iii. 4. 20, where it is stated that he was one of 30 Spartiates who came out with Herippidas in succession to oi \(\pi \epsilon \rho \grave{\imath}\) Aúravópov in the winter of \(39^{6-5}\), and was appointed one of the two leaders of Agesilaus' cavalry.
3. In the lacuna the \(\beta a \delta i \zeta o v \tau e s\) were no doubt specified: probably they were

 the enemy, although in the very similar account of the ambush against the Mysians in
 of \(\dot{\eta} \sigma a \nu\) is the enemy. There is, however, this difference between the arrangements for the attack in the two cases, that in xix. 28 the troops employed for the ambush were left behind when the main army continued its forward march, whereas in the present instance, as appears not only from P's account but more clearly from that of Diodorus, the ambush was laid on the line of march of the main army, which would thus have to pass it.

5. \(\hat{a}[\mu a \dot{\eta} \mu]\)] \(\rho a\left[\imath\right.\) : cf. Diod. and \(\tau \eta \eta_{s} \nu v \kappa \tau\) ós in v. 59 corresponding to vukтós in Diod. It would be possible to read \(\hat{a}\left[\pi a \nu\right.\) rò \(\sigma{ }^{1} \tau \rho \dot{\rho}[\tau \epsilon] \cup[\mu a] \cdot[\ldots\), but the other reading is preferable, though \(\tau] \hat{o}[\sigma \tau \rho a \dot{T} \tau e] v \mu a\) is very doubtful.
 the alteration of aivoús to uivirois, but cf, the error of case in l. 18. ime \([\hat{\text { feikv}}]\)]uov airoús is possible, but not very satisfactory.

 error, probably due to a corruption in the MSS. Cf. v. I3-6 and 60 , notes.

28-30. Cf. Diod. and v. 59, note.

 omits altogether the autumn campaign of Agesilaus described in xviii. 33 sqq . Xenophon (Hell. iii. 4. \({ }^{25}\)) says nothing of the advance to the upper Maeander, but proceeds direct to the death of Tissaphernes and the negotiations with Tithraustes which led to Agesilaus' departure into the satrapy of Pharnabazus. The details provided by \(P\) are therefore new.
34. Фрvүiav \(\pi \dot{\alpha} \lambda \iota \nu[\tau \dot{\eta} \nu] \mu \epsilon \gamma^{\alpha} \lambda \eta \nu:\) possibly P means to imply that this was the second
 (i.e. in 396), Xen. Hell. iii. 4. 12-5 and Diodorus xiv. 79. 3, where the first campaign of Agesilaus in Phrygia is described. The campaign of 396 , however, took place not in Phrygia Magna (i.e. the interior) which was in the satrapy of Tissaphernes, but in Phrygia \(\pi a \rho a \theta a \lambda a \pi \tau i \delta o s\) (\(\mathrm{cf}\). xxi. \({ }_{1} 7\)) in the satrapy of Pharnabazus; and though the order

 where \(\pi\) ádıv seems to be used loosely for 'further' and certainly does not imply a previous visit to Gordium, suggests that \(\pi \pi^{i \lambda \iota \nu}\) in vi. 34 merely qualifies \(\pi \rho \circ \hat{\eta} \gamma \epsilon \nu\), not \(\Phi \rho v \gamma i a \nu\).

 бтра́тєขна к.т.入.
 after \(a \dot{\jmath} \tau \hat{\omega} \nu\). For other instances of hiatus cf. i. 4, note.

4 r . The lacuna after \(\sigma \tau \rho\)]atáv may be filled up by à \(\mu a \chi \epsilon i\) (Wilamowitz) or \(\dot{\eta} \sigma v \chi \hat{\omega} s\).
42. \(\kappa^{\epsilon} \epsilon^{\prime} \mu \dot{\epsilon} \nu \omega \nu\) by itself does not fill the lacuna; кai may be inserted after it, but is superfluous, and \(\tau \hat{\eta} s] \tau \in\) [Avסias, though possible, is equally unsatisfactory. In the last five lines of this column, however, a blank space about three letters in width has been left in the middle of the lines owing to a roughness in the papyrus, and if this blank space extended as far as \(1.42 \mathrm{k} \mathrm{\kappa}\left[\mu \mu^{\prime} \hat{\nu} \omega \nu\right]\) would be sufficient. But since it tends to diminish in size in 11. 49-50, it is not very likely that it reached as far as 1.42 , though it seems to affect l. 48 , where the restoration, which is certain, gives only 16 letters in the lacuna in place of 20 .

44-7. Agesilaus no doubt followed the road taken by Cyrus; cf. Xen. Anab. i. 2. 5-7

 This verb is however much less suitable than \(\epsilon \in \delta i \delta \omega \sigma \iota v\), and the lacuna in 1.47 may be filled up by [ai followed by the name of another town (Wilamowitz suggests Moouvza). The coast at the mouth of the Maeander has greatly altered since ancient times, and Priene is now far inland and some distance from the river. The papyrus confirms the reconstruction of the ancient course of the Maeander in Wiegand and Schrader, Priene, pp. 8 sqq. Cf. also note on vii. \(1-2\).

51-2. Cf. the extract from Diodorus quoted in 1.30 , note.
vii. I-2. Agesilaus seems to have marched down towards the coast along the right bank of the Maeander, which river at this time probably formed the boundary between

Lydia and Caria ；cf．the mention in 1.3 of the Lydians in the plain of the Maeander with Strabo

 and would regard vi． 44 －vii． 4 as the passage in Theopompus mentioned by Strabo． This restoration and identification however seem to us very doubtful，even if P is Theo－ pompus；for ünò Kєлat ju⿳亠丷厂彡 in vi． 45 apparently refers to the Maeander not to the Mesogis， about which Theopompus was speaking，and there is no room for anything corresponding
 resemblance between vi． 44 －vii． 4 and Strabo＇s allusion to Theopompus as an argument for the identification of the latter author with P；cf．p．13r．

If our restoration of vii．39－40 is correct，Agesilaus spent a period of inactivity at Magnesia．The extant fragments of P do not mention him again until xviii．33，when he goes from Lydia northwards to the Hellespont；but xviii． \(37-8\) show that our author had described his negotiations with Tithraustes，no doubt in the gap between Cols．viii and xi． The correctness of the position assigned to Fr． 4 is guaranteed（i）by internal evidence， since it clearly contains the transition from Agesilaus＇campaign to the arrangements for the removal of Tissaphernes，（2）by the suitable combination \(\mu \hat{a} \lambda \mid \lambda o[\nu\) in \(11.9-10\) ，（3）by the evidence of the recto，which has ends of lines at the right point，（4）by the colour and texture of the papyrus，which agree with those of Fr．7，containing Col．viii．Frs． 21 and 22 also probably belong to Cols．vii or viii．

\section*{Cols．vii． 4 －viii． \(4^{2}=\mathrm{ch}\) ．VIII．Death of Tissaphernes．}
vii． 4 sqq．P now turns，like Xenophon and Diodorus，to the supersession of Tissaphernes by Tithraustes and the assassination of the former．Xenophon（Hill．iii．4．

 methods employed by Tithraustes and Ariaeus to accomplish their object is found in Polyaenus，Strat．vii．16．The account in P，which is unfinished at the end of Col．viii，was much longer still ；and although in the scanty remains of Cols．vii and viii only the general outline of the story can be perceived，the agreement with Diodorus and Polyanus is clear， and the accounts of both those writers are no doubt derived directly or indirectly from P．vii．4－20 probably describe the complaints against Tissaphernes and the king＇s resolve to get rid of him．In vii． 21 sqq．we have the departure of Tithraustes and appointment of Ariaeus，in vii． 35 sqq．the message sent by Ariaeus to Tissaphernes at Sardis to induce him to come to Colossae，in viii． 20 sqq．the arrival of Tissaphernes with a bodyguard at Colossae，and his arrest while bathing at Ariacus＇house．It is clear that P directly connects Tissaphernes＇fall with his want of success in the campaign round Sardis，as also in our opinion does Xenophon，in spite of Beloch＇s objection（Gir．Gesch．ii．p．148）；and it is notice－ able that in vii． 4 sqq．there is nothing to suggest that Conon was concerned．According to Nepos，Conon 3，the supersession of Tissaphernes was the consequence of the representations
of Conon, who was sent by Pharnabazus to the king to accuse Tissaphernes, and both Meyer (Gesch. d. Alt. ii. 209) and Beloch (l. c.) accept Nepos' story and adopt the date for Conon's visit implied by him and Pausanias iii. 9.2 (the winter of \(396-5\)) in preference to that of Diodorus, who (xiv. 81. 4) places this event between the revolt of Rhodes and the battle of Cnidus, i.e. in the winter of \(395^{-4}\), after Tissaphernes' death. But that P supported Diodorus' date admits of little doubt, for it is very improbable that Conon had an interview with the king himself before his visit to Tithraustes narrated in \(x v .3^{2} \mathrm{sqq}\)., and in Justin vi. I. II-2 Conon's visit to the king is mentioned after the mutiny, which is now known from xvi. 29 sqq. to have taken place in the late summer or autumn of 395. Diodorus' date for Conon's mission is therefore preferable, as Meyer now admits; the motive was not the removal of Tissaphernes, but, as Diodorus says, the need of money for the fleet and the appointment of Pharnabazus as commander-in-chief.
vii. r5.]anap [: there is possibly a reference to Artaxerxes' mother Parysatis; cf. Diod. l.c.
16. That Fr. 5 containing (as we suppose) parts of \(11.16-24\) belongs to Col. vii is practically certain, not only from internal evidence (e.g. the mentions of eimıor odás and \(\left.\left.\mathrm{T}_{i}\right] \sigma \sigma a \phi\left[{ }^{\prime}\right] \rho \nu \eta_{[}.\right)\), but on account of the recto, which contains ends of lines like Fr. 4 (cf. note on vii. \(\mathrm{I}-2\)) and resembles the recto of both the other portions of Col . vii and Fr . 7, containing Col. viii, in having some white stains on the surface. The supposed junction in 1. 18 is, however, not very satisfactory: for the vestiges at the beginning of the third line of Fr. 5 which, if our arrangement is correct, represent the second half of the \(\nu\) of ouvioyovv, would suit \(\omega\) better, and in 1.22 we should expect tàs \(\dot{\epsilon} \pi \iota \sigma \tau]_{0 \lambda a}\), for which there is no room. Perhaps therefore Fr. 5 should be placed further to the right and nearer to the ends of 11. 16-24 or even lower down in the same column.
17. If Fr. 5 is rightly placed, кar \(\eta[\) ap]a[.] is inadmissible, for the tail of the \(\rho\) ought to be visible, and the vestiges before \(a\) do not suit .
19. Perhaps \(\pi \alpha\left[\rho \rho^{\top} \omega{ }^{\omega} \nu\right.\).

 1. 21 refers to Tithraustes. For \(\dot{e} \pi \iota \sigma \tau] 0 \lambda a ́ s\) cf. viii. 18 and \(36 . \rho a\) in 1.23 is very likely \(\pi a \| \rho a\), but though the supposed ، (or \(\eta\)) after the lacuna might conceivably be \(\sigma\), there is not room for \(\left[\beta a \sigma \iota \lambda^{\prime} \omega\right]\) s. Me. [. . \(]\) atov in 1.24 is probably a proper name, perhaps that of another
 be \(a\) or \(o\); with \(o\), the third letter must be \(\tau\). The word preceding may be \(\left.\overline{\epsilon \pi} \pi{ }^{\prime} \mu \psi a r\right] o\). \(\sigma \nu \lambda]\) גaßeiv eikei[\(\nu 0 \nu\) (cf. Polyaen.) suggests itself in 1.25 , but the doubtful letter after \(\epsilon \kappa \epsilon\) suits \(\nu\) or \(\lambda\) (\(\ddagger \kappa \in \lambda[\) [vve ?) somewhat better than \(\iota\).

30-2. The ends of these lines, which are on Fr. 7, may be shifted one line higher up, but cf. the next note.
35. At the end of the line it is not certain whether the supposed o, which is on Fr. 7, belongs to 11.34 or 35 . But the last letter of 1.34 must be \(a\), which does not suit the vestiges of this letter.
\(3^{6-4}\) r. Tissaphernes was at Sardis according to Polyaenus, l. c. тò \(\mu \hat{\epsilon} \nu\) a \(\boldsymbol{\tau} \rho a+o ́ \pi \epsilon \delta o \nu\)
 who would pass that place on his way down the Maeander to the coast (cf. ll. 1-2, note), and \(11.36-4 \mathrm{I}\) seem to refer to Ariaeus' message to Tissaphernes, corresponding to Polyaen.
 belongs to this column is practically certain on account of the recto, which like that of Fr. 5, has ends of lines and white stains on the surface ; cf. notes on ll. r-2 and 16 . We have assigned it to ll. 35-4I on account of the suitable combination \(\tau \dot{\eta}[\nu]\) שarpario \([\nu\) in 1.39 .

The resulting combination Mayv[\(\eta] \sigma[i] a \nu\) in 1.40 is, however, not very satisfactory. The vestige of the supposed \(\sigma\) would suit \(\gamma, \pi\), or \(\tau\) better, and the traces of the supposed \(a \nu\) are compatible with many alternatives. Hence Fr. 6 may well belong to some other part of Col. vii.
37.]. pıa . [: possibly] 'Apıac[, but the vestiges before \(\rho\) do not suit \(a\) very well.
viii. 3. That Fr. 7, which contains this column, is correctly placed admits of no doubt ; for although the ends of a few lines of the preceding column preserved in it do not provide any certain combination with the rest of Col. vii, the mentions of Ariaeus, Tithraustes, and Tissaphernes and of the imarodai establish its near connexion with Col. vii, and the texture and colour of Fr. 7 closely resemble those of Fr. 4, while the white stains found on the recto of both Frs. 5 and 6 and the rest of Col. vii are also present on the recto of Fr. 7 The writing on the recto is here too much effaced to allow a combination between the middles of lines on the recto of Fr .7 and the scanty remains of ends of lines on Frs. 4-6.
6. та is no doubt the termination of a numeral, e. g. ímтá or тра́áкогтa.
18. ėmıoròá[s: cf. l. 36, Diod. l. c., and the extract from Polyaen. quoted in vii. 21-5, note.

23. For \(\kappa a \mid\) |rì \(\epsilon \downarrow\) єis cf. xviii. 38 , note.
 катé̀ขеу.

 \(\nu o \nu\) in 1.28 is very likely the termination of \(\lambda\) ovó \(\mu \in \nu 0 \nu\) (cf. Diod.) or \(\gamma \nu \mu \nu o ́ \nu\).
Cols. ix-x = ch. IX.
ix. 16 sqq. Whether Cols. ix-x precede or follow v-viii is quite uncertain ; of. p. 113 . Frs. 8 and 9 are assigned to Col. ix owing to the similarity of the script, which is here somewhat smaller than usual, and the colour of the ink, which is exceptionally black; but there is nothing to show whether they should be placed above or below ll. 16-20. Fr. 33 also may belong to this column. The reference to Macedonia in 1.29 is remarkable ; cf. Fr. 19. 8, note. In Col. \(x\) the ink is fainter and the writing much less compact. The subject there seems to be a favourable character-sketch of some important general or politician, but the fragments are unfortunately not sufficiently intelligible to allow of his identity being determined.
X. 5. \(\epsilon \pi \iota \tau \eta \delta \epsilon \nu \mu a \tau[\) cannot be read.
16. The first letter of the line may be \(a\), o, or \(\omega\), but hardly e; ítépous " \(E \lambda[\lambda] \eta[\) vas is therefore unsuitable.
17. Perhaps \(\pi[\rho] \lambda\langle\hat{\epsilon} \mu \circ v]\).
18. \([\dot{\eta}] \sigma[\nu] \times[i] a \nu\) or \([i]+\eta] x[i] a \nu\) (but not \(\left[\nu^{\prime} a v[a \rho]^{\prime} x^{\prime} a \nu\right)\) may be read. If not \(\sigma\) or r , the second letter must be \(\gamma\) or \(\pi\). The line may have ended f[ois \(\pi \rho \dot{\gamma} \mu \mu a \sigma \iota\) фaiverat, as Wilamowitz suggests.
19. oi indeiotot is hardly long enough.

\[
\text { Col. xi. } 1-34=\text { ch. X. Revolution at Rhodes. }
\]
'. . . every day Conon used to review the soldiers under arms in the harbour, on the pretext of preventing idleness from causing them to deteriorate in war, but really wishing first to render the Rhodians tranquil at the spectacle of his soldiers present under
arms and then to take action. When he had accustomed them all to the sight of the review he himself with 20 triremes sailed away to Caunus, as he did not wish to be present at the destruction of the Diagoreans, and Hieronymus and Nicophemus, his lieutenants, were ordered to take charge. These two waited during that day, and when on the next day the soldiers presented themselves for review as usual, marched some of them under arms to the harbour, and stationed others a little distance from the market-place. When the Rhodians who were privy to the plot considered the moment for action had come, they collected in the market-place wearing daggers, and one of their number, Dorimachus, mounting the stone from which the herald used to make proclamations, cried out as loudly as he could "Down with the tyrants at once, fellow-citizens". The rest when he called for help (?) rushed with their daggers into the council of the magistrates, and killed both the Diagoreans and eleven of the other citizens. Having accomplished this, they collected the Rhodian populace in an assembly, and when they had just met Conon returned from Caunus with the triremes. The authors of the massacre put down the existing constitution and set up a democracy, sending a few citizens into banishment. Such was the result of the insurrection at Rhodes.'
xi. 1. The revolt of Rhodes from the Spartans is ignored by Xenophon, but mentioned by Diodorus xiv. 79.6 (cf. iii. 23-6, note) and Androtion, ap. Paus. vi. \(7.6{ }^{\text {'Podicu } \tau \epsilon ~ \tau o ̀ \nu}\)
 'A \(\begin{aligned} & \text { quai } \\ & \text { v } \\ & \sigma v \mu \mu a x i a v . ~ T h a t ~ t h e ~ r e v o l t ~ w a s ~ c o n n e c t e d ~ w i t h ~ a ~ c h a n g e ~ o f ~ c o n s t i t u t i o n ~ w a s ~\end{aligned}\) clear (cf. Xen. Hell. iv. 8. 20, where the exiled Rhodian oligarchs appeal to Sparta in 391), but it now for the first time appears that the two events were not contemporaneous. In the interval the government was in the hands of one of the leading families (cf. 1. \({ }^{2} 5\), note), and Conon's fleet had already been admitted to the harbour before the democratic rising took place. Conon, though supporting the conspirators, took no active part in their proceedings, preferring to be absent at the critical moment. The date of the insurrection is fixed by xi. 34 as the summer of 395 ; the expulsion of the Spartans must have occurred in the winter of \(396-5\), if not earlier still ; cf. iii. \(23-6\), note.
 in 1.7 and à̉tòs \(\mu \dot{\epsilon} \nu\) in 1.8 were suggested by Wilamowitz. We prefer \(\dot{\epsilon} \pi \epsilon \dot{i} \delta \dot{\epsilon}\) to \(\dot{\epsilon} \pi \epsilon \epsilon \delta \dot{\eta}\), since
 in 1.9 , and \(\delta \epsilon^{\prime}\) in 1.5 only balances the preceding \(\left.\mu^{\prime}\right] \overline{0}\). A somewhat different sense, which seems less appropriate, is given to the passage if, abandoning \(\left.\pi \rho \circ \phi a \sigma \iota \zeta \zeta^{\prime} \mu \in \nu o s ~ \mu \epsilon ́\right] \nu\) and placing

 in 1.6 is due to Niese. The lacunae at the beginnings of 11. \(6-7\) ought not to contain more than four letters, and perhaps \(\notin a ́ v\) should be substituted for örav, while in 1.7 тa may have been omitted by mistake.
9. For \(\epsilon i s\) Kaûvol cf. 1.29 ėк Kaivov. Conon, having been admitted to Rhodes by the ruling oligarchs, was probably unwilling to be compromised by the action of the conspirators, and wished that the revolution should appear to be spontaneous.
10. \(\tau \hat{\omega} \nu \Delta x a \gamma \rho \rho \epsilon(\omega) \nu\) : cf. 1. 25 . The Diagoreans (cf. Aeschin. Ep. 4. 4) or Diagoridae were an illustrious Rhodian family descended from Damagetus, king of Ialysus, and renowned for their athletic prowess; cf. Paus. iv. 24.5 and vi. 7. 1-7. Diagoras himself won the boxing contest at Olympia in 464, the victory being celebrated by Pindar in Ol. vii, and his sons Acusilaus, Dorieus, and Damagetus, and grandsons, Eucles and Pisirhodus, were all famous athletes, especially Dorieus, who became the leader of the anti-Athenian party at Rhodes. Condemned to death with his kindred by the Athenians, he escaped to Thurii, and after fighting for some years on the Spartan side was taken
prisoner in 407, but released (Xen. Hell. i. 5. 19). According to Androtion, ap. Paus. vi. 7. 6 , when the revolt of Rhodes from Syarta with which we are concerned took place, Dorieus was near the Peloponnese, and was arrested and put to death by the Spartans, whose conduct is now much more intelligible in vies of the fact that the Diagoridae had clearly taken the lead in expelling the Spartan harmosts.

10-1. The Athenians Hieronymus and Nicophemus are known as Conon's chief lieutenants from Diod. xiv. 81.4, where they are left in charge of the fleet when Conon goes
 and Lysias (xix. 7) agree with P as to the form of the name. Concerning Hieronymus,
 є́viтך каі̀ \(\delta є к\) кí \(\eta\), but as he must have been mentioned in any detailed history of the naval war, this statement provides no argument for identifying \(P\) with Ephorus; cf. p. 126 .
12. \(\pi \Omega[\rho \epsilon \dot{\delta} \rho o t s\) was suggested by Dittenberger.
20. aùt \(\hat{\omega} \nu\) has no construction and something has dropped out, probably \(\tau t s\) or a word meaning 'leader'.

 desire to avoid hiatus; cf. ii. 34 , note.
 but \(\left[\right.\) Bo \(\eta_{\theta \text { etav }}\) seems inevitable, and the phrase is so easily intelligible that we prefer to regard the expression as one peculiar to our author rather than to treat it as corrupt ; cf. p. 124.
26. \(\tilde{\text { ev }} \delta \boldsymbol{\epsilon} \kappa a\) : the moderation of the victorious democrats is noticeable (cf. tuvis dxiyous in 1. \(3^{2}\)), and was clearly appreciated by our author, who here shows no trace of the aristocratic bias sometimes discernible ; cf. i. 33, note, and pp. 122-3.

\section*{Cols. xi. 34 -xii. \(3^{1}=\mathrm{ch}\). XI. Constitution of Boootia.}
'In this summer the Boeotians and Phocians went to war. Their enmity was chiefly caused by a party at Thebes; for not many years previously the Boeotians had entered into a state of discord. The condition of Boeotia at that time was as follows. There were then appointed in each of the cities four boulai, of which not all the citizens were allowed to become members, but only those who possessed a certain amount of money; of these boulai each one in turn held a preliminary sitting and deliberation about matters of policy, and made proposals to the other three, and a resolution adopted by all became valid. Their individual affairs they continued to manage in that fashion, while the arrangement of the Boeotian league was this. The whole population of the country was divided into eleven units, and each of these provided one Boeotarch, as follows. The Thebans contributed four, two for the city and two for Plataea, Scolus, Erythrae, Scaphae, and the other towns which formerly were members of one state with the Plataeans, but at that time were subject to Thebes. Two Boeotarchs were provided by the inhabitants of Orchomenus and Hysiae, and two by the inhabitants of Thespiae with Eutresis and Thisbae, one by the inhabitants of Tanagra, and another by the inhabitants of Haliartus, Lebadea, and Coronea, each of these cities sending him in turn; in the same way one came from Acraephium, Copae, and Chaeronea. Such was the proportion in which the chief magistrates were appointed by the different units, which also provided sixty bouleutae for every Boeotarch, and themselves defrayed their daily expenses. Each unit was, moreover, under the obligation to supply a corps of approximately a thousand hoplites and a hundred horsemen. To speak generally, it was in proportion to the distribution of their
magistrates that they enjoyed the privileges of the league，made their contributions，sent judges，and took part in everything whether good or bad．The nation then as a whole had this form of polity，and the general assemblies of the Boeotians used to meet in the Cadmea．＇
xi． 38 sqq．This digression on the constitution of Boeotia in 395 ，which is somewhat irrelevant to the account of the factions at Thebes，and still more so to the war between Boeotia and Phocis，is the most valuable section of the papyrus，and disposes of several long debated problems．First，as to the four \(\beta o v \lambda a i\) ；these were only known from Thuc．v．

 relation to each other was uncertain，it being often supposed that the four \(\beta\) oviai corresponded to four different districts．The present passage shows that Köhler（Sitzungsber．d．Berl．Akad． 1895，pp．455－6）was fully justified in connecting them with the four ßovalai which the
 and each of which was to consist of 100 persons and to hold office for a year in turn；and his conjecture that in the case of important matters，such as treaties，the four Boeotian Boviai sat together is now completely established．The present passage，however，brings out a new fact of considerable value，that the four 及ovnai were not councils of the Boeotian league as a whole，but existed in each of the separate states which formed the federation．Thucydides＇ expression raîs \(\tau \dot{\epsilon} \sigma \sigma a \rho \sigma \iota \beta\) ovגais \(\tau \hat{\omega} \nu\) Bo \(\omega \omega \bar{\omega} \nu\) is therefore somewhat misleading，since the natural supposition is that he meant \(\beta\) oviai of the league．There was indeed，in addition to the four \(\beta\) ou入aí in the individual states，one federal \(\beta\) ov入＇for Boeotia（cf．xiii．12），which met in the Cadmea and consisted of 660 members，contributed by the several states in the proportion of sixty ßovievaai for each Boeotarch，but it is clear that Thucydides is not referring to this ； and that the state \(\beta\) ov \(\lambda a i\) ，not the federal \(\beta o v \lambda \dot{\eta}\) ，possessed the supreme authority is indicated by the greater prominence given in P＇s account to the former，as well as by Thucydides＇ words aïтєр äтaע тò кîpos ë́Xovot，and the circumstance that the treaty in question provisionally made by the Boeotarchs depended for validity on the consent of each individual state，not on a resolution of the federal council．For membership of the state boulai there was a property qualification，so that the numbers of the ruling oligarchies must have varied in the different states，of which there were at least ten（ \(v\). inf．）．

Secondly，as to the number of the Boeotarchs，Thuc．iv． 91 mentions eleven in b．c． 424

 figure eleven included the two Theban Boeotarchs．A strong reason for supposing eleven to be the whole number of the Boeotarchs was supplied by Poppo（i．2，p．292），namely
 should have been written．The number eleven has also been disputed by Wilamowitz（Hermes， viii．p．440），who wished to alter it to seven，correspönding to the seven Boeotianstates mentioned in Thuc．iv．93，a change which has been supported on other grounds and widely accepted e．g．by Cauer，Pauly－Wissowa，Real－Encycl．iii．p． 647 ．Eleven is however the total number of the Boeotarchs in P （xii． \(1 \mathrm{I}-20\) ），so that the correctness of the figure in Thuc．iv． 91 is vindicated beyond dispute．It is also noteworthy that P uses äpx \(\omega \nu\) merely as a synonym for Boeotarch，and says nothing about an archon of the whole league ；this officer therefore， who first appears in third century b．c．inscriptions，is not to be identified with one of the Theban Boeotarchs，as was suggested by Wilamowitz，l．c．，still less to be regarded with Freeman（Hist．of Federal Gov．i．p．128）as the most ancient official of the league．

Thirdly，with regard to the members of the league，in 424 seven of them，Thebes， Haliartus，Coronea，Copae，Thespiae，Tanagra，and Orchomenus were known from
'Thucydides' account (iv. 93) of the battle of Delium. P now gives the complete list, adding the names of, firstly, Acraephium and Lebadea, which Thucydides there referred to in the expression кai oi ǜ \(\lambda\) ot of \(\pi \epsilon \rho i ̀ \tau \grave{\eta} \nu \lambda i \mu \nu \eta \nu\), and secondly Chaeronea, which in 424 was not yet independent (cf. xii. I 4 , note), and also provides some information about towns which were subordinate to the sovereign members of the league. What is still more important, we now for the first time learn the proportion in which the eleven Boeotarchs were distributed among the various states. Formerly all that was known was that Thebes at the time of the Peloponnesian war had at least two Boeotarchs and probably no more (Thuc. ii. 2, iv. 91). It now appears that Boeotia as a whole was divided into eleven \(\mu\) ép \(\eta\) or units, each of which provided oue Boeotarch and sixty members of the federal \(\beta 0 v \lambda \dot{\eta}\), 1000 hoplites and 100 cavalry, and that these \(\mu \epsilon \rho \eta\) were distributed among the sovereign states not evenly, but in widely varying proportions according to their relative importance. Thus four \(\mu \dot{\epsilon} \rho \eta\) were assigned to the Thebans, though only two of them belonged strictly to the city (cf. xii. 12-3, note), two to Orchomenus, two to Thespiae, one to Tanagra, one jointly to Haliartus, Lebadea, and Coronea, who appointed the Boeotarch in turn, and similarly one jointly to Acraephium, Copae, and Chaeronea. These units also provided a basis for calculating both the contributions paid by the states for the federal taxes, the number of judges sent to the federal courts, and for defining in general the rights and duties of the individual states where common action was required (xii. \({ }^{25-8)}\)).

The constitution of Boeotia in 395, which P directly contrasts with the conditions existing in his nwn day by тóte in xi. 38-9 and the use of the past tense throughout, lasted until 387 , when at the peace of Antalcidas the Thebans were unwillingly compelled to reconstitute the league, and even quite small Boeotian towns received complete autonomy ; cf. Xen. Hell. v. I. \(3^{2-6}\), whose statements are confirmed by the evidence of the coins. Besides the ten sovereign states mentioned by P, except Acraephium (unless the coin from Acraephium ascribed by Head, Coins of Central Greece, p. 44, to \(456-447\) really belongs to \(3^{87-374}\), in which case the exception disappears), Plataea, Pharae, Mycalessus, and perhaps some other towns of which the names are uncertain are thought to have had coinages of their own from 387-374 (Head, op. cit. p. xli). On the other hand the beginning of the period to which this constitution in the main applies may be placed at \(447-6\), when the Athenians were driven out of Boeotia and the league reconstituted under the hegemony of Thebes, which appears to have been the only Boeotian city to issue coinage between 446 and 387 (Head, \(o p\). cit. pp. xxxix-xl). Some changes, however, must have taken place between that year and 395 with regard to the states belonging to the league. Chaeronea was in \(4^{2} 4\) still subject to Orchomenus (Thuc. iv. 76. 3, cf. Hellanicus Fr. 49) : it was no doubt made independent soon afterwards by the Thebans in order to weaken their ancient and most formidable rival. Plataea, which during the period of alliance with Athens had stood outside the league, did not rejoin it until 427 , and that before that year two additional Boeotarchs were appointed by the Thebans besides the two who represented Thebes itself is not likely; cf. xii. \(\mathbf{1 2 - 3}\), note. Before 447 the league had probably been in abeyance during the ten years in which Athenian influence was predominant, and even from 480 to the battle of Oenophyta Thebes did not occupy the commanding position in Boeotia which she had held previously. From \(480-456\) the coins of only Thebes, Tanagra, and Orchomenus are known (Head, op. cit. p. xxxviii), and from \(550-480\) the members of the league were somewhat different from those in 395. The numismatic evidence of that period (Head, op. cit. p. xxxvii) indicates seven cities issuing coins with the leaguesymbol, Acraephium, Coronea, Haliartus, Mycalessus (? ; no coin of Mycalessus is ascribed to this period on p. 51), Pharae, Tanagra, and Thebes, besides Orchomenus which apparently did not adopt that symbol on its coinage before 387 , a circumstance of which the importance has, we think, been over-estimated ; cf. xii. 16 , note.
39. The space between \(\tau\) and o of tore was, we suppose, left blank owing to a roughness in the papyrus.
xii. \(\mathbf{I}-3\). Cf. Thuc. iii. 62 . 3 , where in 428 the Theban orator contrasts the \(\delta\) vvarteia
 in his own day.

 cause a hiatus.
10. Botwrapxoy: so in l. 22, but in l. 15 Botwtapxas.

12-3. Scolus, Erythrae, and Scaphae were towns in the Parasopia east of Plataea and Hysiae, between the Asopus and Mount Cithaeron. Scaphae is called \(\Sigma_{\text {кó } \rho \phi \eta}\) by Strabo (ix. 2. 24), who states that its earlier name was 'Etecuos, and confirms the connexion of

 of Erythrae (ix: 2. 1) and Scolus (ix. 4. 4) as belonging to \(\dot{\eta}\) плarauis, remarking in
 is thus clear that in much later times the boundary between the land of Plataea and Thebes was the same as it had been in the period which P calls vaguely \(\pi \rho o \sigma^{\prime} \tau \rho o \mathrm{v}\), contrasting it with тóтє, i. e. 395 . The question when these three towns became tributary to Thebes raises a difficult problem. The most natural interpretation of this passage taken by itself would be that Scolus, Erythrae, and Scaphae were traditionally united to Plataea, and only became subject to Thebes when that city rejoined the Boeotian confederacy on its capture in 427 . A necessary corollary of this view would be that the right to appoint two extra Boeotarchs was only obtained by the Thebans after the fall of Plataea; before 427 the number of the Boeotarchs would be nine, not eleven. To this inference there is no particular objection, for eleven as the number of the Boeotarchs is not attested before the battle of Delium in 424 , and in the scanty evidence hitherto available concerning the boundaries of the חiaarauis in the fifth century, there is nothing definite to show that Scolus, Erythrae, and Scaphae had ceased to be united with Plataea in the fifty years before 427 . In 519 the Athenians made the Asopus the boundary between Thebes on the one hand and Plataea and Hysiae on the other (Hdt. vi. 108), and in 507 , when Hysiae and Oenoë were
 \(\tau \hat{\eta} s\) 'Atrikins, though whether Hysiae really belonged to Attica rather than to Plataea is doubtful. In 479 Scolus is indeed mentioned in Hdt. ix. 15 as being ėv \(\gamma \hat{n} \tau \hat{g}\) \(\Theta \eta \beta a i \omega \nu\), and Erythrae and Hysiae, which occur later on in the same chapter, also seem to be Theban and outside the nidatais. But, even if Herodotus is correct on this point, which is by no means certain, after the battle of Plataea the territory of the Plataeans may have been increased at the expense of Thebes, and at any rate during the period of the Athenian predominance in Boeotia, it is unlikely that Thebes possessed any territory south of the
 \(\pi a ̂ \sigma a \nu\), but whether the Plataeans suffered a diminution of their land is not known. Oenoë in \(43^{1}\) was on the frontier of Attica and Boeotia (Thuc. ii. 18) and Erythrae and Hysiae, mentioned by Thuc. iii. 24 in connexion with the flight of the Plataeans to Athens, are called by the scholiast ad loc. \(\delta \bar{\eta} \mu o t\) Botwrias and have generally been regarded as not belonging to the חגatais; but since Plataea even when allied to Athens continued to be included in Boeotia, this evidence is not irreconcilable with the view that the Plataeans retained the south bank of the Asopus after-447 until the Peloponnesian war. An important fresh piece of evidence is provided by xiii. 23-8, where Erythrae, Scaphae, and Scolus occur in a list of Boeotian towns from which the inhabitants, owing to fear of an Athenian invasion, moved to Thebes. The date and circumstances of the removal
are not very clear (cf. note ad loc.), but it took place probably about 431 ; and Erythrae, Scaphae and Scolus, although coupled with three undoubtedly Theban towns, Aulis, Schoenus and Potniae, were, we think, dependent upon Plataea when the transference of the population occurred. For if Erythrae, Scaphae and Scolus were already in \(43^{1}\) separated from Plataea and joined to Thebes, it is very difficult to see what period is meant by \(\pi \rho \frac{1}{\tau} \epsilon \rho o d\) in 1. 13.

In any case, whatever may have been the relations of those three towns to Plataea and Thebes in the fifth century, three such unimportant places as Erythrae, Scolus and Scaphae cannot have returned two Bocotarchs by themselves apart from Plataea, so that the Thebans are not likely to have appointed more than two Bocotarchs until the fall of Plataca in +27 ; and on the other hand it is clear from the agreement between P and Thuc. iv. 9 I as to the total number of the Boeotarchs (eleven), that from 427 onwards they appointed four. Hence the manifest indication in Thuc. iv. 91 (cf. p. 224), that only two out of the eleven were \(\epsilon^{\prime} \kappa \theta_{\eta} \beta \hat{\omega} \nu\) in 424 is to be regarded as implying not an increase in the representation of Thebes between 424 and 395 , but a difference in status and mode of election between the two representatives of Thebes itself and the other two, who were, as Thucydides shows, not \(\epsilon^{\epsilon} \kappa \quad \Theta \eta \beta \hat{\omega} \nu\), and may well, as Dittenberger suggested, have been citizens of Plataea and the three dependent towns.
14. \(\sigma v \nu \tau \epsilon \lambda o v \boldsymbol{v}^{2} \tau \nu\) : this is the technical term for indicating the dependence of the lesser

16. 'Opхонévoo: Orchomenus, the ancient and most serious rival of Thebes, issued its own coinage without the league-symbol in the sixth century and in the first half of the fifth. No coins of the city are ascribed to the period \(456-387\), and the league-symbol does not make its appearance on the coins of Orchomenus till \(387-74\), though many of the types of that period are without it and have the traditional corn-grain of the city. On the strength of the numismatic evidence, and in particular the absence of the league-symbol, it has been supposed that prior to +47 Orchomenus was not a member of the federation, or at any rate was not closely connected with it (Head, op. cit. p. xxxxii ; cf. Cauer, ap. Pauly-Wissowa, Real-Encl. iii. p. 645) ; but that Orchomenus should have remained outside the league for so long is not very likely, and the importance attached to the absence of the league-symbol from its coinage prior to 387 seems to us exaggerated, especially as the symbol is not always found on the coins of Orchomenus from 387-74.
'Yotaiot: this, as Wilamowitz remarked, cannot refer to Hysiae near Plataea, but must mean the inhabitants of " \(\mathrm{Y}_{\eta}\) roos on Lake Copais, east of Orchomenus. It is, however, we
 a real variation in the form of the name ; cf. the ancient identification of Hysiae with Hyria mentioned by Strabo ix. 2. 12. Of Hyettus and its neighbour Olmones Pausanias (ix. 24. 3)
 the first statement is inexact, for Hyettus appears as an independent \(\pi\) ódes in inscriptions of the third century b.c. In 395, however, it was probably, as Meyer suggests, dependent upon Orchomenus in the same way as Thisbe and Eutresis were subordinate to Thespiae.
 view of its extensive territory at this period ; cf. Thuc. iv. 76.3, where £i申at on the Corinthian
 as well as Corsiae, a town further west, became independent in the third century b.c., as is shown by inscriptions.
17. Ẽva \(\delta \dot{e}\) Tavarpaiot: in later times the territory of Tanagra was very extensive, including Eleon, Harma, Mycalessus, and Pharae (Strabo ix. 2. 14, Pausan. ix. 19.4), Aulis (Strabo ix. 2. 8, Pausan. ix. 19. 8), and Hyria (Strabo ix. 2. 12); but, as Meyer observes,
the fact that Tanagra in 395 had only one Boeotarch indicates that it was then much less important，and probably most or even all of those six places at that time belonged to Thebes．Head（Coins of Central Greece，p．xxxviii）thinks that in 480－456 Tanagra aspired to the hegemony of the league，because it was the only town which struck coins in the name of the Boeotians as a whole；but this seems to us a very doubtful inference （Cauer l．c．wrongly states that Tanagra issued coins of its own in this period，and hence erroneously regards Tanagra as standing outside the league）．That Aulis was Theban in b．c． \(43^{1}\) is made probable by xiii． 25 ，where it is mentioned together with Schoenus and Potniae，which were undoubtedly Theban ；and of Hyria Strabo（l．c．）expressly says that it was formerly in the Thebais，while Pharae and Mycalessus，which were independent both before 480 and after 387 ，are much more likely to have belonged to Thebes than to Tanagra in the intervening period．Delium therefore seems to have been the only place of much importance belonging to Tanagra in 395 ；cf．Thuc．iv．76，Strabo ix．2． 7 ， Pausan．ix．20． 1.
xii． \(17-20\) ．On the six minor states divided into two groups with one Boeotarch to each group cf．pp．224－5．

20．＇Aкраифviov：the spelling of this name is subject to many variations．P＇s form ＇Akpai申utov has hitherto been found only in Pausan．ix．23．5，24．I．Inscriptions and the older literature have only forms without the \(\nu\) ，\(\dot{\eta}\)＇Aкраıфia，тò＇Aкраi申ıov，тà＇Aкраіфиa，but Steph．Byz．states that Theopompus employed the form тà＇Aкраі申иıa（cf．p．126）and that
 to have been derived from áxpaıф \(\bar{\eta}\)＇s．

21－3．That the federal boule，consisting of 660 members，was divided like the state Bov入ai into four parts，each of which held office in turn，is neither stated by P ，nor is at all likely．Lines 29－3I apparently refer to general meetings of the federal boule in the Cadmea，and another mention of it occurs in xiii． 12 ，but the ultimate decision in matters of supreme importance rested less with it than with the boulai of the individual states ； cf．p． 224.

23．av̀тoi：sc．the Boeotians．
 cf．i．4，note．

\section*{Cols．xii． 3 I －xiv． \(5=\mathrm{ch}\) ．XII．Parties at Thebes．}
＇At Thebes the best and most notable of the citizens were，as I have already stated， divided against each other，one faction being led by Ismenias，Antitheus，and Androclidas， the other by Leontiades，Asias，and Corrantadas．The political party of Leontiades sided with the Lacedaemonians，while that of Ismenias was accused of Atticizing，because it favoured the Athenian democracy when the latter was exiled．Ismenias＇party，however， was not concerned for the Athenians but ．．．．Such being the condition of affairs at Thebes，and each of the two factions being powerful，many people from the cities throughout Boeotia then came forward and joined one or the other of them．At that time，and for a short period previously，the party of Ismenias and Androclidas was the stronger both at Thebes itself and in the boule of the Boeotians；but formerly that of Asias and Leontiades was in the ascendant for a considerable period and（had complete control of ？）the city．For when the Lacedaemonians in the war with the Athenians were occupying Decelea and collected a large concourse of their allies，this party prevailed over their opponents both by reason of the proximity of the Lacedaemonians and because the latter were instrumental in conferring great benefits upon the city．The Thebans made a great advance in the direction of complete prosperity as soon as war between the Athenians and Lacedaemonians began ；for when the Athenians commenced to threaten（？）

Bocotia, the inhabitants of Frythrae, Scaphae, Scolus, Aulis, Schoenus, and Potnine, and many other similar places which had no walls, congregated at Thebes, thus doubling the size of the city. But it nevertheless came to prosper in a much higher degree when the Thebans in conjunction with the Lacedaemonians fortified Decelea against the Athenians; for they took over the prisoners and all the other spoils of the war at a small price, and, as they inhabited the neighbouring country, carried off to their homes all the furnishing material in Attica, beginning with the wood and tiles of the houses. The country of the Athenians at that time liad been the most lavishly furnished in Greece, for it had suffered but slight injury from the Lacedaemonians in the former invasions, and had been adorned and elaborated with so much extravagance that ... Such was the condition of Thebes and Boeotia.'
xii. 32. \({ }^{2} \sigma \pi \epsilon \rho\) каì \(\pi \rho o ́ \tau \epsilon \rho о \nu:\) i.e. in xi. \(3^{6-8}\).
\(34-5\). Ismenias and Androclidas are well known as the leaders of the anti-Spartan party at Thebes at this period and instigators of the war with Sparta, for the furtherance of which they took bribes from Persia; cf. i. 33, note. The form 'Av \(\delta \rho o \kappa \lambda \bar{\eta} s\) which occurs here is a slip ; 'Av \(\delta \rho o \kappa \lambda \epsilon i \delta a s\), the correct Boeotian form uniformly employed by Xenophon, is found in xiv. 6 and 35, and the Attic variant 'Avopokגeiòns in xiii. 11. 'Avtiteos is not mentioned by Xenophon, who (Hell. iii. 5. r) in his place associates with Ismenias and Androclidas an otherwise unknown 「aגa \(\xi_{i} \delta \omega \rho o s\). Pausanias, however (iii. 9. 8), couples Androclidas and Ismenias with 'A \(\mu \boldsymbol{\phi} \boldsymbol{\theta} \epsilon \mu \iota\) s, who is obviously identical with our 'Avti \(\theta\) eos, while Plutarch (\(L y\) sand. \({ }^{27}\)) calls him 'A \(\mu \phi i \theta\) eos. Of the leaders of the pro-Spartan party ^єovtáors (Atovtióas Plut.) is familiar, but 'Agias (or 'Agrias as he is called in xiii. 13) seems to be otherwise unknown, for the 'Apxias who is associated with Leontiades in 379 (Xen. Hell. v. 4. 2, 6, Plut. Pelop. 5 sqq., Cornelius Nepos, Pelop. 3. 2) is not likely to be the same as 'Arias. With regard to the form of that name, 'Agtias does not occur elsewhere, but faaias is found in a Boeotian inscription. Koppavtádas (cf. Koppıváoas in Boeotian inscriptions) may, as Meyer suggests, be identical with the Boeotian general Kotpariðas mentioned in Xen. Hell. i. 3. \(1^{-22}\) and Anab. vii. г. 33 sqq.
39. Though a plural subject for \(\bar{\epsilon} \phi v \gamma o v\) can be supplied out of \(\tau \grave{\nu} \delta \delta \bar{\eta} \mu o \nu\), the sentence is made much clearer by altering " \(\epsilon \phi \nu o \nu\) to \(\epsilon \phi \nu \gamma \epsilon \nu\), as proposed by Wilamowitz. The reference is of course to the restoration of the Athenian democracy in 403 .
xiii. \(1-5\). The general sense of this passage appears to be that Jsmenias and his party favoured Athens not from any regard for Athenian interests but from selfish motives, in order that they might use Athenian support in the contest with the pro-Spartan party at Thebes; cf. xiv. 6-16.
10. \([\mu \kappa \times] \rho \hat{\varphi} \pi \rho \sigma \boldsymbol{\tau} \epsilon \rho \frac{\nu}{:}\) : i. e. ever since the conclusion of the Peloponnesian war when the ascendency of Ismenias' party caused a complete change in Theban policy, and Thebes which had been the bitterest foe of Athens suddenly became leader of the opposition to Sparta; cf. Meyer, Gesch. d. Alt. v. pp. 213-4. P's description in xii-xiv of the attitude of Thebes and the origin of the anti-Spartan league is much fuller than the short accounts in Xenophon, Hell. iii. 5. 1-3, Pausan. iii. 9. 9, Plut. Lysand. 27 and Diod, xiv. 8 I ; and in particular his analysis of the motives of Ismenias' party (xii. 37 sqq., xiv. 6 sqq.) is acute and just (cf. i. 36 sqq., where he rightly treats the Persian bribes as a factor of secondary importance); but he tends to lay too much stress on the mere rivalry of the contending factions, and to obscure the underlying cause which brought Ismenias' party to the front, the dissatisfaction of Thebes with the Spartan domination in central Greece, which hindered Theban ambitions. Here, as in the case of the war party at Athens (cf. i. 33, note), P's sympathy with Sparta causes him to under-estimate the legitimate patriotic aspirations of Sparta's chief opponents, but it is noticeable that he does not attempt to cast aspersions
on Ismenias and Androclidas, who equally with the leaders of the pro-Spartan party at Thebes are among the \(\beta\) é̀тıбтoו кaì \(\gamma^{\nu} \omega \rho \iota \mu \dot{\omega} \tau a \tau o \iota\) (xii. \(3^{1}\)), and the contest of Theban factions is described in quite different terms from the opposition between the \(\gamma^{\nu} \omega \rho \not \rho o \iota\) кai

xiii. 13. For the spelling 'Aariav cf. xii. 34-5, note.
1. \(^{2}\). \([\tau i] \nu a\) : there is room for three or even four letters before \(\nu\), but \(\chi \rho o v o v\left[\tau i l^{2} \nu a\right.\) is preferable to \(\chi \rho o \mid[\nu o \nu \pi l] v a\) which seems the only alternative. The beginnings of lines tend to be irregular throughout the papyrus. The doubtful \(\pi\) before the lacuna can be \(\gamma, \iota, \kappa\), \(\mu\) or \(\nu\).] \(\chi^{o \nu}\) may well be \(\epsilon i \chi^{i} \chi^{\nu}\), but \(\delta \iota \grave{\alpha} \chi[\epsilon \epsilon \hat{\omega} \nu\) is inadmissible.
16. The vestiges after кає \(\sigma\) do not suit \(\tau \rho[a \tau \epsilon][\mu] a\) very well, and \(\tau \rho a \tau \varepsilon v \mu a \tau \omega\) seems too long for the space between \(\sigma\) and the final \(\nu\). \(\quad v \dot{v}\left[\left[\tau a j \lambda^{\mu} \mu\right]_{a}\right.\) (Bury) is also unsatisfactory.
22. o тó入є \(\frac{1}{}\) : from the context, especially the mentions of Deceleia in 11. 16 and 29, this would naturally be interpreted as the Peloponnesian war. For some time we agreed with Meyer who suggested a connexion between xiii. 23-8 and the statement of Diodorus (xi. 81. 3) that the Spartans in the period preceding the battle of Tanagra \(\tau \hat{\eta} s{ }^{\mu} \dot{\epsilon} \nu \tau \bar{\omega} \nu\)

 and Boeotians in 457 . But while both writers allude to the increase in the size of Thebes, the explanation of it is quite different in the two cases, and Mr. Walker has convinced us that the natural interpretation is right, and that P ascribed the transference of population to Thebes to b.c. 431. Whether he was correct in his statement, particularly in the alleged reason for the transference, the fear of Athenian invasion, is not clear. The Boeotians may have expected reprisals for the treacherous attack on Plataea, and that Athens cherished hopes of recovering Boeotia is shown by the expedition of Nicias against Tanagra in 426 (Thuc. iii. 91) and the invasion two years later which resulted in the battle of Delium; but there was of course no attack upon Boeotia in 43r, Attica being itself invaded, so that the impression conveyed by P's statement is not very accurate. It is noteworthy that in his account of the prosperity of Attica (xiii. 36 -xiv. 3) P unduly minimizes the extent of the injuries inflicted by the Lacedaemonian invasions in the Archidamian war, which, as Thucydides shows clearly, caused widespread devastation. If fear of Athenian
 event in the period after the battle of Tanagra and the withdrawal of the Spartans from Boeotia when the Athenians, according to Diod. xi. 83. r, gained possession of all the Boeotian cities except Thebes, which would naturally have become a centre of migration from other parts of the country.

Of the six places mentioned in connexion with the \(\sigma v{ }^{2} o \kappa \kappa \iota \mu\) ós, Erythrae, Scaphae and Scolus were in the Parasopia near the Athenian boundary and in 431 belonged to Plataea (cf. xii. \(12-3\), note), while Schoenus and Potniae were Theban and respectively 50 and 10 stades north of Thebes (Pausan. ix. 8. 1, Strabo ix. 2. 22, 24, 32). A slight difficulty arises in connexion with Aulis, which was on the coast and much further away from Thebes, especially as in later times it was dependent not on Thebes but Tanagra. There is however not much doubt about the reading \(\lambda \lambda \delta o s\), and there are other reasons for supposing that the territory of Tanagra was less extensive in \(43^{11}-395\) than later; cf. note on xii. 17.
23. \(\dot{a} \pi[\epsilon \lambda] \epsilon i v\), though it gives a suitable sense, is very doubtful, for there seems to be no parallel for the metaphorical use of this word in prose, and \(\gamma, \mu\) or \(\nu\) can be read in place of \(\pi\).
38. \(\mu\) ккрá: this is an exaggeration; cf. 1. 22, note.

 ä入入ots［ eixov．\(^{2}\)
 somewhat awkward．Probably some of the letters in the lacuna were erased．Before yíp \(\epsilon\) unaltered can be read instead of the supposed deleted \(\sigma\) ．a亢̇テ \(\boldsymbol{\omega} \nu\) ，like au̇roís in 1. i，probably refers to the Athenians．

4－5．The subject of ］．єגá \(\beta\) ßavov is here more probably the Thebans than the Athenians； cf．xiii．32．тoi［s］｜i8io us áypoús is not unlikely．

Cols．xiv． \(6-x v .3^{2}=\mathrm{ch}\) ．XIII．War between Boeotia and Phocis．
＇The party of Androclidas and Ismenias was anxious to involve Boeotia in a war with the Lacedaemonians，because firstly they wished to overthrow their supremacy in order to avoid destruction at the hands of the Lacedaemonians on account of the Laconizing party， and secondly they expected to achieve their object easily，on the supposition that the king would provide money in accordance with the promises of the envoy from Persia，and that the Corinthians，Argives and Athenians would join in the war，for these states，being hostile to the Lacedaemonians，would，they thought，provide support from among their citizens． Having this policy in view，they considered that it was difficult to attack the enemy openly， since neither the Thebans nor the other Boeotians would consent to a war with the Lacedaemonians while supreme in Greece；but they attempted to incite them to make war by the device of persuading certain Phocians to invade the territory of the so－called Hesperian Locrians．The enmity between these two states originated as follows．There is a disputed area near Parnassus，about which they have gone to war in former times also ： this is often encroached upon for grazing by both the Phocians and the Locrians，and whichever party perceives the other in occupation collects in considerable numbers and plunders the sheep．Many such quarrels had been provoked by either side，which formerly they were always in the habit of settling for the most part by legal proceedings or discussion ；
－but on this occasion when the Locrians retaliated by seizing an equivalent of the sheep which they had lost，the Phocians at the instigation of the men procured by Androclidas and Ismenias immediately took up arms and invaded Locris．Thereupon the Locrians when their country was ravaged sent ambassadors to the Boeotians accusing the Phocians and asking for assistance，these states having always been on friendly terms with each other．Gladly seizing the opportunity，the party of Ismenias and Androclidas persuaded the Boeotians to help the Locrians，whereat the Phocians on receiving news of the action of Thebes withdrew from Locris and sent ambassadors to the Lacedaemonians asking them to forbid the Boeotians to enter their country．The Lacedaemonians，although they considered the story unworthy of belief，nevertheless sent a message ordering the Boeotians not to make war on the Phocians，but if they considered themselves aggrieved on any point to take satisfaction at a meeting of the confederacy：The Boeotians，however，at the instigation of the men who had arranged the plot and its consequences，dismissed the Lacedaemonian envoys with an unfavourable answer，and taking up arms marched against the Phocians．They immediately invaded the country，and after ravaging the land of the Parapotamii，the Daulii and Phanoteis，they attempted an assault upon these cities． They attacked Daulia，but retreated without having effected anything，and even suffered some slight losses；of the Phanoteis，however，they took by storm the suburb of the town．After this success they advanced further into Phocis，where they overran part of the plain near Elatea and Pedieis and the people of that neighbourhood，and then turned homewards．As they were passing Hyampolis in the course of the retreat，they decided to make an attempt upon it．The place is remarkably strong，and though they attacked the walls and displayed no lack of energy they achieved no success，but had to retire with the
loss of about eighty soldiers．Having inflicted this amount of injury upon the Phocians the Boeotians returned to their own country．＇
xiv．12－3．\(\kappa a \theta^{\prime} \quad a \quad\) and the insertion of \(\delta \epsilon \in\) were suggested by Wilamowitz；Blass had proposed \(\dot{\epsilon} \pi \epsilon \iota \delta \dot{\eta}\) in 1.12 and made \(\mu \epsilon \theta \dot{\epsilon} \xi \in \epsilon \nu\) dependent on \(\dot{\epsilon} \pi \eta \gamma \gamma^{\prime} \lambda \lambda \epsilon \tau \sigma\) ，which is less satisfactory． The effects of the bribes of Timocrates and the anti－Spartan feeling at Corinth，Argos and Athens have already been described by P in ii．I sqq．Though the hopes of assistance from Athens were justified by the event，the expectation of help from Corinth and Argos proved somewhat premature，for these two states remained passive until the defeat of the Lacedaemonians at Haliartus had relieved Boeotia from danger．

14．The somewhat otiose sentence rovíovs ．．．то入itas is corrupt as it stands，and the simplest course is to read \(\sigma v \mu \pi a \rho a[\sigma \kappa] \in v a ́ \sigma \epsilon \ell \nu\) for \(\sigma v \mu \pi a \rho \epsilon[\sigma \kappa] \in v a \sigma \epsilon\) ；but this does not yield a very satisfactory sense，and possibly some words have dropped out．
\(2 \mathbf{I}\) sqq．With regard to the origin of the Boeotian war，P＇s account，which is much more detailed than those of the extant authorities，agrees with Xenophon＇s（Hell．iii．5．3）and Pausanias＇（iii．9．9）in attributing the ultimate responsibility for the outbreak to the party of Ismenias and Androclidas（cf．also Plut．Lysand．27），and the occasion of it to a border dispute between Phocis and Locris．Diodorus，who（xiv．81．1）says merely \(\Phi \omega \kappa \kappa\) îs \(\pi \rho o ̀ s\)
 \(B o \omega \tau \bar{\omega} \nu\) ，not only gives no details but produces the false impression that Sparta rather than Thebes was the aggressor，a view which is defended in vain by Grote，for though Plutarch （Lysand．\({ }^{27}\) ）says that some regarded Lysander as the cause of the war rather than the Thebans，there can no longer be any doubt that the latter were the prime movers．But while P so far supports Xenophon and Pausanias，his account differs widely from theirs in point of detail．In the first place Xenophon states that the Locrians in question were the Opuntian Locrians，whereas according to P they were the Hesperian Locrians and the
 agreeing with P ，who is likely to be right on this point．In 394 both sets of Locrians were allied to Thebes and Athens；cf．Xen．Hell．iv．2．17，3．15．Secondly，while Xenophon and Pausanias represent the Locrians as beginning the dispute by encroaching upon the disputed area at the suggestion of their allies the Thebans，according to P it was the Phocians who originally made a raid upon the flocks of the Locrians in the debatable ground，and the Locrians only assumed the offensive as a means of retaliation．The subsequent invasion of Locris by the Phocians is also attributed by \(P\) to the instigation of a band of Phocians in the pay of the Thebans．There is further a minor discrepancy with respect to the precise action of the Locrians in the disputed area．According to Xenophon they were persuaded \(\chi \rho \dot{\eta} \mu a \tau a \quad \tau \epsilon \lambda \epsilon \in \sigma a \quad\)（which is translated＇levy money＇though \(\tau \epsilon \lambda\)＇́ \(\sigma a t\) does not seem to be the right word in the context），and the Phocians retaliated by taking толдатлáota хрभ́mata．P＇s account on the other hand，according to which the dispute was concerned with the grazing of flocks，agrees
 ク̈入aaav 入eià äyoutes．Whether it was really the Locrians or，as P asserts，certain Phocians who allowed themselves to be made the tools of Thebes cannot be decided with certainty． The intrigue becomes more involved in P＇s version，which brings out the remarkable ingenuity of Ismenias and Androclidas in making the Locrians appear the injured party， and displays an apparently very detailed knowledge of the circumstances．Meyer is disposed to prefer Xenophon＇s account on the ground that the Locrians，not the Phocians，were allied to Thebes，and that the Phocians fell too readily into the trap prepared for them．On the other hand，if the facts were as P states，an abbreviated account of them would easily give rise to the version in which the Locrians took the first step．

The appeal of the Locrians for Theban support (xiv. 37-xv: 3) is also related by both Xenophon and Pausanias, but neither of these writers mentions the embassy of the Phocians to Sparta and the unsuccessful mission of the Spartans to Boeotia (xv. 3-14) prior to the actual invasion of Phocis. According to them the request for Spartan assistance was made by the Phocians after the invasion had begun, and then the pretext for a war with Boeotia was eagerly seized. Pausanias adds the statement that the Athenians tried to prevent
 an improbable story which looks like a perversion of the proposals of the Spartans in xv. 9-1 1 . P must have described the successful appeal of the Phocians for Spartan intervention in a later chapter after the campaign of Agesilaus, in the middle of which the papyrus breaks off ; but the narrative in xv. 7-I represents the Spartans as pursuing a pacific policy and showing no great anxiety to accept the opportunity for declaring war on Bocotia. This does not harmonize very well with Xenophon's eminently just remarks (Hell. iii. 5. 5) upon the reasons which the Spartans had for welcoming a war with Bocotia at this juncture, and, as Meyer suggests, P may be exaggerating the Spartan moderation. On the other hand Xenophon himself in Hell. iii. 5.3 says-what is probably true-that the Thebans had

 doubt about the truth of the impending invasion of Phocis, gave the Boeotians the chance of settling the quarrel peaceably, is not inconsistent with their ready intervention when the invasion was an accomplished fact. The arrogant tone of the Spartan message, in which the Boeotians were treated as if they were subordinate members of the Peloponnesian

 important bearing upon the date of the composition of P's work, cf. xvi. 3, note, and p. I34.

5. The vestiges after \(\left.\delta_{\epsilon} \epsilon\right]\) do not suit \(\mu\) [\(\left[\begin{array}{c}\text { à } \\ \text { taûra. }\end{array}\right.\)
\(I_{5}\) sqq. These details concerning the invasion of Phocis are all new, but of no special interest. With regard to the chronology of the war between Boeotia and Phocis, P's remark (xi. 34) that it began in the summer agrees with Pausanias' statement that the Locrians cut down tòv oîtov à áá̧ovta. Apparently the dispute between Phocis and Locris took place about May or June, the invasion of Phocis about July and August, and the battle of Haliartus about September or October.
 \(\Delta a v \lambda i a v\).
24. Пeठt'éas: this town is mentioned by Hdt. viii. 33, but חe \(\delta\) óas here may mean the people of Pedieis ; cf. the similar ambiguity in the case of Паратотáцьо.
 and Wilamowitz.
\[
\text { xv. } 3^{2-x v i} .29=\text { ch. XIV. The naval war. }
\]
'Cheiricrates, who had arrived as admiral in succession to Pollis, having now taken over the command of the fleet of the Lacedaemonians and their allies, Conon manned twenty triremes and setting out from Rhodes sailed to Caunus. Wishing to communicate with Pharnabazus and Tithraustes and to obtain money, he went inland from Caunus to visit them. The soldiers at this time had many months' pay owing to them, for their generals paid them badly, as is their invariable habit when fighting for the king. In the Decelean war also, when the Lacedaemonians were the allies of Persia, money was provided on a very mean and niggardly scale, and the triremes of the allies would often have been disbanded but for the energy of Cyrus. The responsibility for this lies with the king, who
when he begins a war, dispatches a small sum at the outset and neglects the army subsequently, while those in charge of the campaign being unable to defray the expenses privately sometimes suffer their forces to disband. This is what usually takes place, but on the arrival of Conon and his declaration that the Persian cause would run the risk of ruin through want of money, of which it was unreasonable for the king's soldiers to be in need, Tithraustes sent some of the barbarians in his following with two hundred and twenty talents for the pay of the soldiers; this sum was obtained from the property of Tissaphernes. After remaining a short time longer at Sardis he then went up to the court of the king, having appointed Ariaeus and Pasiphernes to take command, and delivered to them for the purposes of the war the silver and gold that was left behind, which proved, as it is said, to be about seven hundred talents.'
xv. 33. On Cheiricrates, who succeeded Pollis as vavápxos in the late summer of 395 , cf. iii. 21 and \(23-6\), notes. Neither vaíapoos was known previously. Cheiricrates seems to have taken no active steps against Conon: probably the bulk of the Spartan fleet was at Cnidus; but Pancalus was stationed with 5 ships at the Hellespont, where he cooperated with Agesilaus; cf. xxi. 25-7. In the course of the winter of 395-4 Cheiricrates was superseded by Agesilaus' brother-in-law, Pisander, who was killed at the battle of Cnidus in the following July or August. Xenophon, who (Hell. iii. 4. 27-9, supported by Plut. Ages. 10, Pausan. iii. 9. 6) represents Pisander as appointed vaváapos by Agesilaus when the latter was in the \(\pi \epsilon \delta i o v ~ \dot{v} \pi \grave{\rho} \rho\) K \(\dot{u} \mu \eta s\) on his way to invade Phrygia, i. e. in the late summer of 395 (cf. Hell. iv. I. I and xviii. 38 sqq. and xix. 2, note), has clearly placed the beginning of Pisander's vavapxia too early.

37 sqq. This visit of Conon to Pharnabazus and Tithraustes to obtain money is not recorded elsewhere. Diodorus (xix. 81. 4-6) relates that Conon went to the king himself at Babylon for the same purpose, synchronizing this event with the Boeotian war. His date for Conon's journey to Persia conflicts with that of Nepos (Conon 3) and Pausanias (iii. 9. 2), who imply that it took place in the winter of \(396-5\); but the correctness of Diodorus' date is now amply vindicated (cf. note on vii. 4), and Conon's journey to Babylon is to be assigned to the late autumn of 395 or winter of \(395-4\). That he should have found it necessary to go to the king to obtain money is not at all surprising, for the 220 talents which he received from Tithraustes cannot have been sufficient to make up the arrears of many months' pay upon a fleet of over 100 triremes and numerous Greek mercenaries on land, and the serious mutiny described in xvi. 29 sqq. shows the dangers to which he was exposed so long as he was ill provided with funds.
xvi. 2-4. This sentence seems to be the origin of Justin's remark (vi. 2. II) with regard to Conon's soldiers, quos praefecti regis fraudare stipendio soliti erant; cf. xvi. 29, note.
3. \({ }^{\epsilon} \theta^{-}\)os \(]\)evtiv: the use of the present tense here and in \(11.9-16\) is important as an indication that this history was composed before the fall of the Persian empire; cf. xiv. \({ }^{2} 5\), 27,40 , xix. 5 and p. 122.
 proposes. Cf. i. 4, note.
 \(\sigma \tau \rho a \tau(\omega ิ \tau a \iota)\).
14. \(\nu\) of evore is corrected from \(\kappa\).
17. \(a v\) of avoov is corrected. At the end of the line the \(v\) of \(\sigma v \nu\) is written above the \(\nu\).

24-6. Tithraustes, having fulfilled the objects of his mission, the removal of Tissaphernes and the necessary arrangements for the continuance of the war, had no justification for remaining in Lydia; cf. Meyer, op. cit. v. p. 249. While Pharnabazus
was at Conon's request made commander-in-chief of the Persian forces (I)iod. xiv. 8r. 6 ; cf. vii. 4, note) and acted as such in 394-3, the successor of Tissaphernes as satrap was Tiribazus, who is first heard of in the winter of 393-2 (Xen. Hell. iv. 8. 12).
27. For Ariaeus cf. vii. 36 and vii. 4, note. From Xen. Hell. iv. 1. 27 , it appears that he revolted from Persia in the course of the winter of \(395-4\). Pasiphernes was perhaps referred to in iii. 37 , but is not mentioned by the other authorities, unless he is identical with the general whom Diodorus calls Artaphernes; cf. iii. 37, note.
\[
\text { Cols. xvi. } 29 \text {-xviii. } 33=\mathrm{ch} \text {. XV. Mutiny of Conon's forces. }
\]
'The Cypriots who had sailed with Conon to Caunus, persuaded by certain persons who falsely asserted that there was no intention to give them the arrears of their pay, but that preparations were only being made for discharging the debts of the crews and marines, were filled with indignation, and having met in assembly elected as their leader a man of Carpasian stock, and gave him a body-guard of two soldiers from each ship . . . Conon after hearing their story urged them not to believe that (one section would be favoured), assuring them that they would all alike obtain their pay. Having given this answer, he said that he wished to make it known to the other soldiers also, whereupon the leader of the Cypriots, the Carpasian, followed him towards the main body of the troops. They started out in company, and when they were passing the gates Conon, being in front, came outside the wall first, but the Carpasian while he was going out at the gates was seized without Conon's consent by some of the Messenians in Conon's following, who wished to detain him in the city in order that he might be punished for his offences. The Cypriots who were accompanying him laid hold of the Carpasian and prevented the Messenians from arresting him, and the contingent of the 600 , perceiving the fight, also came to the help of their leader. Conon . . . (went back) to the city, while the Cypriots attacked and drove off the Messenians who had seized the Carpasian, and being persuaded that Conon's plans with regard to the distribution of the pay were altogether (unjust), thereupon embarked on the triremes with the object, as some said, of taking up the Cypriots at Rhodes and sailing to Cyprus. Leaving . . ., and conveying with them the Cypriots who consented to come, they marched against the acropolis in order to destroy the power of Conon, whom they regarded as the cause of all their troubles . . When the Cypriots landed at Caunus, Conon came to Leonymus the . . . and declared that he alone could save the king's cause, for if Leonymus would consent to give him the Greek guards protecting Caunus and as many Carians as possible, he would put an end to the mutiny in the camp. Leonymus having bidden him take as many soldiers as he wished, he remained inactive for that day, since it was already near sunset ; but on the next before dawn he took a large number of the Carians and all the Greeks, led them out of the city, and proceeded to post some of them round the outside of the camp, others . . . by the ships and seashore. Having done this and given orders to proclaim that each soldier should go ... he captured the Carpasian and sixty of the other Cypriots, whom he put to death, while the leader was crucified. The Cypriots who were left at Rhodes were enraged on hearing of this, and in their indignation first attacked and drove out the officers whom Conon had appointed, and then leaving the harbour caused a great tumult and riot among the Rhodians. Conon, however, arrived from Caunus, and having arrested their leaders put them to death, distributing pay among the remainder. Thus the king's camp, after it had reached a condition of extreme peril, was restored to peace by Conon and his energetic measures.'
xvi. 29 sqq. These Cypriot mercenaries were a land force, as appears from the

in xvii. 24 seems to be part of them, but that restoration is far from certain. The mutiny is only mentioned elsewhere by Justin (vi. 2. 1 1) Sed Cononem seditio militum invadit, quos praefecti regis fraudare stipendio soliti erant : eo instantius debita poscentibus quo graviorem sub magno duce militiam praesumebant. The sentence quos praefecti . . . erant closely resembles xvi. 2-4, and \(P\) is probably the ultimate source of Justin's reference to the mutiny.
xvi. \(3^{1}\). The correction of ovt \(\omega\), which makes an extremely awkward construction, to \(v \pi o\) is due to Wilamowitz.
37. Kapтáध́a: it is rather curious that P does not mention his name, for the narrative of the mutiny is conspicuous for its wealth of detail, which is likely to have been obtained from an eyewitness. The omission may however, as Meyer remarks, be intentional,
 the adjective, the agreement between the papyrus and Theopompus (Fr. 93) provides a strong argument for identifying him with our author ; cf. p. 131.
xvii. I. That the separate fragment containing the middles of \(11 . \mathrm{x}-8\) belongs to the upper part of this column is made certain by its colour and the mention of Conon in 1. 3 . The exact position is then fixed by the recto, which has the beginning of a new section
 the rest of Col. xvii.
5.] \(\in \rho a t \epsilon t\) : a can be read in place of the first \(\epsilon\). atєt is perhaps a separate word (=à \(\epsilon i\)); cf. atec in iii. 13.
 but there is not room for \(a[k o v] \sigma a s\), and the division \(a \mid[\) kovasas would make the line too short. Bury suggests \(\sigma \iota_{\llcorner } \omega \mid \pi \hat{y}\).

8-9. The general sense of Conon's answer is clearly that in the distribution of the money no one section of the troops would be favoured, but all would receive their share. In 1. 8 the doubtful \(\lambda\) may be \(\kappa\) or \(\nu\) or possibly \(\tau\); with the last reading [oưס́́va

 correctly, and most of which we have adopted. The letter before ts in l. II cannot be \(a\).
12. \(\delta\) Kapaa] \(\sigma \in[\) ùs a \(\dot{v} t \hat{\varphi}]\) is due to Wilamowitz.
24. \(\mathfrak{\varepsilon} \xi[\) ккоб \(] i \omega \nu[\sigma \dot{v} \nu \tau a \gamma \mu a]\) is very doubtful, especially as акоб is rather short for the first lacuna, which has room for 5 letters, and this supposed corps is not mentioned elsewhere. Perhaps \(\begin{gathered}\epsilon \\ \xi \\ \text { followed by a place-name should be read. }\end{gathered}\)

26. \(\tau \grave{\eta} \nu \pi \dot{\partial} \lambda \iota \nu\) : sc. Caunus.
28. \(\dot{a} \pi \epsilon \in \rho \rho\rceil u \sigma a \nu\) : the \(v\) is extremely doubtful, but \(a\) and \(\epsilon\) are inadmissible.
 probable before r]óv. In xvi. 33 пара⿱кєvá̧ovzat is more probably middle, but may be passive.
 to the statements of the Cypriots, and is not, we think, to be interpreted as a reservation on the part of the author, for which \(\tau \iota \nu \epsilon s\) 入є́ \(\gamma\) ovaı would be expected; cf. ii. \(\mathbf{1 - 2}\).

33 sqq. The narrative becomes very obscure at this point. \(\tau \hat{\eta} s \mathrm{~A} \lambda a v[.\).\(] urooov seems to\) be corrupt ; there is not much doubt about the reading vooov; the only possible alternatives to \(o t\) are \(o \pi\) or \(\omega t\), but these are less suitable. \(\tau \hat{\eta} \Sigma^{\Sigma} a \lambda a \mu[\epsilon \hat{i}] \omega c\) could be read, but yields no sense, and that the mutineers reached Cyprus is unlikely, since it is clear from xviii. \(\mathbf{1 - 2 2}\)
 out their original plans in full. Assuming that \(\mathrm{A} \lambda a v[\). .] \(]\) ootov is the name of an unknown
place, this was perhaps situated in Rhodes, for \(\pi a p a k[o \mu i \sigma a \nu]_{\tau \in s,}\), if correct, seems to refer
 the acropolis might be that of Rhodes. On the other hand if 'A \(\lambda a y \ldots\) was in Rhodes we should expect the statement that the mutineers sailed thither, whereas \(\dot{a} \pi \sigma \pi \lambda]\) civavtes or ik \(\pi \lambda\)]eígaves can hardly be avoided in the light of the following genitive, even though the omission of àmó before \(\tau \hat{\eta} s\) is not in accordance with our author's usage ; cf. xviii. r-2
 Cypriots who were left at Rhodes does not harmonize at all well with the view that the acropolis of the city of Rhodes had been attacked previously. It is therefore very doubtful whether the mutineers sailed as far as Rhodes, and possibly the acropolis and the supposed place \(A \lambda a \nu .\). were in the vicinity of Caunus.
37. aủroîs was suggested by Wilamowitz.
xviii. 2. The letter after \(\tau \hat{\eta} s\) might be \(a\), and it is conceivable that the name Adav..]utoov (xvii. 33) recurred here; but several other letters, e. g. \(\delta, \epsilon\), or \(\sigma\), are equally admissible. The verb lost probably had the sense of 'returned', sc. to Caunus.
3. If tois is not an error for tais, some part of the gear of the triremes is probably
 Aegospotami (Xen. Hell. ii. I. 29).
 had left Caunus, and Leonymus was clearly posted in the immediate neighbourhood of the city.
5. Perhaps tò \(\tau[\hat{\omega} \nu \pi \epsilon \zeta \bar{\omega} \nu\) äp \(\chi\) оутa, as Wilamowitz suggests.

18. Some word like \(\pi \rho o \sigma\) ingay is probable in the lacuna.
19. Wilamowitz suggests \(\tau\) [̀̀ кípuкa \(\beta\) ai \(]\) vet, but a compound of \(\beta\) aivet would rather be expected.
20. Wilamowitz proposes \(\tau \dot{\eta} \nu \nu\) éaurov̂, Bury \(\tau \dot{\eta}\left[\nu\right.\) \(\sigma \kappa \eta \eta^{\prime} \eta{ }^{2}\)
24. 'Pó \(\delta \varphi\) ク̆ クुavákг[ouv: another hiatus; cf. 1. 5.

30-3. With this favourable criticism of Conon cf. xvi. 8 סıà \(\tau \grave{\eta} \nu\) Kúpou \(\pi p o \theta u p i a v, ~ x x\). 35 Sıà rì̀ 'PaAávov \(\pi \rho \circ \theta v \mu i a v\), and p. 123.

\section*{Cols. xviii. \(33-\) xxi. \(39=\) chs. XVI-XVII. Agesilaus in Asia .}
'While Agesilaus was marching towards the Hellespont with the army of the Lacedaemonians and their allies, as long as he was passing through Lydia he did no injury to the inhabitants, wishing to abide by the truce made with Tithraustes. But when he reached the country of Pharnabazus, he plundered and ravaged the land as he advanced. Then crossing the plain of Thebe and the so-called plain of Apia he invaded Mysia, and gave urgent orders to the Mysians to take up arms on his side ; for most of the Mysians are autonomous and not subjects of the king. Those Mysians who elected to join the expedition suffered no injury from him, but he laid waste the land of the rest. When in the course of his advance he came to about the middle of the so-called Mysian Olympus, seeing that the pass was difficult and narrow, and being anxious to cross it in safety, he sent an envoy to the Mysians, and having made a truce with them began to lead his forces through the country. The Mysians however, after allowing many of the Peloponnesians and their allies to go through, attacked the rear-guard and struck down some of the soldiers, who were not in regular order owing to the confined space. Agesilaus encamped his army and remained inactive for the rest of that day while he was performing the due rites for the dead (about fifty of the soldiers had perished), and on the day following, having posted a large number of the so-called Dercylidean mercenaries in an ambush, again started on the march with his army. The Mysians all thought that Agesilaus was departing in
consequence of the loss received on the previous day, and coming out of their villages began to pursue the army with the intention of attacking the rear-guard as before; whereupon the Greeks in the ambush, when the enemy came up to them, charged out and attacked them at close quarters. The Mysian leaders and those in the forefront of the pursuit perished in the sudden onslaught of the Greeks, while the main body perceiving the losses of their comrades in front fled home to their villages. On receipt of the news Agesilaus wheeled round, and led his army back by the same road until he joined the force which had been in ambush, and pitched his camp on the spot where they had encamped on the previous day. Afterwards the Mysians, to whom the dead severally belonged, sent heralds and . . . took away the bodies under a truce, more than a hundred and thirty being killed. Agesilaus after obtaining guides from the villages and giving his soldiers a rest of [.] days led his army forward, and having brought them down into the country of the Phrygians (not that part which he had invaded in the previous summer but another which was unplundered), proceeded to lay it waste under the guidance of Spithradates and his son. Spithradates was by race a Persian, who for some time lived with Pharnabazus and was in his service, but having subsequently quarrelled with him, and being afraid that he would be seized and come to harm, took re.uge for the moment at Cyzicus, and afterwards presented himself to Agesilaus with his son Megabates, who was young and handsome. When this happened, Agesilaus received them favourably, chiefly for the sake of the youth to whom he is said to have been much attached, but partly also on account of Spithradates, who he hoped would act as guide of the expedition and be useful in other ways. For these reasons they obtained a warm welcome. Continuing the onward march of his army and plundering the country of Pharnabazus, Agesilaus reached the town called Leonton Ceplalae; and after making several assaults, but without success, moved his forces and led them forward, plundering and laying waste the unravaged part of the country. Arriving subsequently at Gordium, a town built upon a mound and strongly fortified, he encamped his forces and remained there six days, making assaults upon the enemy and keeping his soldiers from dispersing by affording them numerous comforts. When he failed to overpower the place owing to the energy of Rhathanes, a Persian by race, who was in command of it, he put his soldiers in motion and led them on, being urged by Spithradates to enter Paphlagonia. He next led the Peloponnesians and their allies forward to the borders of Phrygia and Paphlagonia, and encamped his army there, sending Spithradates himself in advance. The latter having gone on and come to terms with the Paphlagonians returned with ambassadors from them. Agesilaus made an alliance with the Paphlagonians and then retired with all speed in the direction of the sea, being afraid that there would be a lack of supplies in the winter. He did not march by the same road as that by which he had come, but by another, as he thought that it would be easier for his soldiers to cross (Bithynia). Gyes . . . sent him . . . horsemen and more than two thousand footsoldiers. Having conducted the army to Cius in Mysia, he first remained there ten days, and again harried the Mysians in revenge for their treachery at Olympus, and then led the Greeks forward through Phrygia on the seacoast, where he attacked a place called Miletou Teichos, but being unable to capture it withdrew his forces. As he was marching along the river Rhyndacus he arrived at Lake Dascylitis, near which lies Dascylium, an extremely strong place and fortified by the king, where Pharnabazus was said to store all his silver and gold. Having encamped his army there, he summoned Pancalus, who had sailed with the admiral Cheiricrates and was watching the Hellespont with five triremes. Pancalus arrived with all speed and entered the lake with his triremes, and was then ordered by Agesilaus to put on board all the more valuable part of the (booty) and transport it to at Cyzicus, that it might produce pay for the army. The soldiers from Mysia he dismissed with orders to return in the spring, as he was preparing during the coming winter to invade Cappadocia, having heard that
that country stretched in the shape of a narrow strip from the Pontic sea to Cilicia and Phoenicia, and that the length of it was such that persons journeying on foot from Sinope . . .'
xviii. 37. aais \(\sigma \pi o \nu ~ \delta j a i ̂ ́ s: ~ P ' s ~ a c c o u n t ~ o f ~ t h e ~ n e g o t i a t i o n s ~ b e t w e e n ~ A g e s i l a u s ~ a n d ~\) Tithraustes is lost in the gap between Cols. viii and xi. They are described in some detail by Xenophon (Hell. iii. 4. 25-6). Diodorus (xiv. 80. 8) states briefly that a six months' truce was arranged, while Isocrates (iv. 153) calls it eight months.
38. кa[T] \(\bar{\eta} \epsilon \nu\) : кaтaipetv is often used by Thucydides for arriving by sea (e. g. viii. \(3^{1}\) and 39), but is rare in the sense of coming by land. It was employed by Theopompus as equivalent to e \(\lambda \theta \in \mathrm{i} \boldsymbol{i}\) according to Stephanus Byz., who was perhaps referring to the present passage or viii. 22 ; cf. p. 13 1.
 Фpuriav, followed by Plutarch, Ages. II. Since the whole of the autumn campaign of Agesilaus in 395 is ignored by Diodorus, Xenophon has been hitherto practically the sole authority for it. The discrepancies between his account in Hill. iii. 4. 26-9 and iv. 1. 1-16 and that of P are no less marked here than in the campaign of the earlier part of the year (v. 6-vii. 4). The two historians are indeed writing from different points of view ; with Xenophon the glorification of Agesilaus is the central motive, and in order to illustrate his hero's personal character certain more or less dramatic episodes, e.g. the negotiations with the king of Paphlagonia and with Pharnabazus, are treated in great detail, so as to produce the impression that the author himself took part in the scenes which he describes: but the military operations, with the exception of the fighting round Dascylium which led to the desertion of Spithradates, are only sketched in outline. In the Agesilaus, Xenophon makes no attempt to give a connected story of the autumn campaign, but some anecdotes in the later chapters supplement the Hellenica on a few points, especially as to Agesilaus' relations with Megabates. P on the other hand, gives a plain, matter-of-fact account of Agesilaus' march, the course of which is now clear, and he shows no disposition to enlarge upon the picturesque incidents which enliven Xenophon's narrative. Hence while Xenophon (Hell. iv. I. i) briefly summarizes the earlier part of the campaign

 \(\pi \rho o \sigma \epsilon \lambda \alpha_{\mu} \beta a \nu \varepsilon\), the negotiations with the Paphlagonians brif fly described by P in \(\mathrm{xx} .3^{1-x x i}\). 5, occupy Hell. iv. 1. \({ }^{2-1} 5\).
xix. 2. The plain of Thebe was by Adramyttium, and according to Xen. Hell. iv. i. 41 Agesilaus returned thither in the following spring when forced to leave Dascylium. From Thebe he turned eastward; the plain of Apia ('Anias is due to Wilamowitz) was north of Nount Temnus on the upper Macestus; cf. Strabo xiii. 1. 70 and Polyb. v. 77.9. In
 heard the news of his appointment to the command of the fleet as well as the army (cf. \(x \mathrm{v}\). 33. note), but in view of the long distance from Cyme to Adranyttium, it is, we think, probable that the 'plain beyond Cyme' refers to that at the mouth of the Caicus, not to that of Thebe.
5. That the Mysians had made themselves independent of Persia at this period was known from Xen. Anab. i. 6. 7, 9. 14, Hell. iii. 1. 13, \&c. The use of the present tense єioi . . . Bagidics où inakovovess is another indication that P's work was written before the fall of the Persian empire ; cf. xvi. 3, note and p. 122.
\({ }^{1} 5\). Wilamowitz would insert toús after \(\delta \epsilon\).
22 sqq. Cf. the ambush described in v. 59 sqq., where the tactics are similar but not precisely identical, and p. 130 .

23．This band of mercenaries，formed by Dercylidas and handed on to Agesilaus， is not mentioned elsewhere．They were no doubt veterans who had served under Cyrus．
xx .7 －8．In the previous summer（i．e．396）Agesilaus had invaded Hellespontine Phrygia（ \(\Phi \rho v\) ria \(\dot{\eta}\) mapäa入atriòos as it is called in xxi．17）as far as Dascylium；cf．Xen． Hell．iii．4． 12 sqq．，Diod．xiv．79．3．On the present occasion after descending from the Mysian Olympus he turned eastward along the valley of the Sangarius．
 xxi． 3 in common with the MSS．of Xenophon and Plutarch．The form \(\Sigma \pi i \theta_{p a \delta a ́ r \eta s, ~ w h i c h ~}^{\text {a }}\) occurs in Ctesias Fr．52，is more correct ；cf．the variation with regard to＇Pa日ivis（xx．35）． Spithradates is mentioned in Xen．Anab．vi．5． 7 as one of Pharnabazus＇lieutenants．The circumstances attending his desertion to Agesilaus are described more precisely in Hell．iii． 4．10；it there appears that he was won over by Lysander and joined Agesilaus before the campaign of 396 ，whereas the present passage is vague as to the date of his arrival and in the absence of other evidence would produce the impression that it took place in 395 ． Concerning the origin of his quarrel with Pharnabazus（xx．12）Xenophon in Hell．l．c．says
 the fact that the satrap wished to take Spithradates＇daughter ävev qúpov．The detail that he first fled to Cyzicus（ \(x \mathrm{x} . \mathrm{I}_{5}\) ）is in accord with Xenophon（Hell．l．c．）．With regard to Megabates（xx．16）in the Hell．（iv．1． 6 and 28）Xenophon merely hints at Agesilaus＇ attachment to him，but P＇s blunt statement in xx．19－20 is amply confirmed by the stories in Ages．5．4－5，copied by Plutarch，Ages．in．The daughter of Spithradates，who plays an important part in Xenophon＇s story of the negotiations with the Paphlagonian king（Hell．iv． 1． \(4^{-15}\) ），is ignored by P；cf．xx． 37 ，note．

16．Wilamowitz would insert tóv before vióv．
 it was on the main road from Susa to Sardis．Appian，who（Mithr．19）employs the form
 Ramsay（Cities and Bishoprics of Phrygia，p．229）would place it near Ayaz－Inn．Since Agesilaus proceeded next to Gordium（1．29）\(\Lambda \in \dot{\sigma} \nu \tau \omega \nu\) Кєфалai seems to be in the parts of Phrygia watered by the Sangarius or its tributary the Tymbris．

29．\(\pi\) ádıl \(\pi \rho \stackrel{\rightharpoonup}{s}\) 「ópotov：on the site of Gordium，which was on the Sangarius，see A．Körte，Gordion（Ergänzungsheft v d．Jahrb．d．arch．Inst．1904）．Agesilaus had not been there previously，and \(\pi \dot{a} \lambda \iota \nu\) is really otiose ；cf．vi．34，note．

35．＇PaAávov：he is clearly identical with the＇PaAivns who appears as one of Pharnabazus＇ lieutenants in Xen．Anab．vi．5．7，Cyrop．8．3．32，and Hell．iii．4．I3．It seems necessary therefore to emend \(\Pi \eta{ }^{\prime} \gamma \eta s\) to \(\Pi \epsilon \in \rho \sigma \eta s\) ，though it is noticeable that the scribe specially draws attention to the reading \(\Pi \dot{\eta} \gamma \eta \mathrm{s}\) by a paroxytone accent to distinguish the word from \(\pi \eta \gamma \eta\) 今．

37 sqq．P＇s account of Agesilaus＇relations to the Paphlagonians is not only much briefer than Xenophon＇s（Hell．iv．1．2－15），but differs in several important respects． That the scheme of making an alliance with them was due to Spithradates is stated by both writers，but while Xenophon says that Agesilaus entered Paphlagonia and negotiated with the king in person，persuading him to marry the daughter of Spithradates， P represents Agesilaus as remaining on the border and using Spithradates as intermediary．Plutarch （Ages．11）abridges Xenophon with slight variations，which do not warrant Sachse＇s sugges－ tion（op．cit．p．9）that Ephorus is here Plutarch＇s authority ；cf．v．59，note．The name of the Paphlagonian king is given as＂Orvs in Xen．Hell．iv．1．3－14，Kórus in Xen．Ages． 3 and Plutarch，Ages．in（as Meyer remarks，this seems to be an ancient emendation of ＂Orvs）；and the king of Paphlagonia，whom Theopompus in the 35th book of the
\(\Phi_{\iota} \lambda \iota \pi \iota \iota a^{\prime}\) (Athen. iv. p. 144 and x. p. 4 I5) calls \(\Theta \hat{v} s\) (acc. © \(\hat{v} v\), but in Aelian V. H. I. 27 when copying Athenaeus \(\Theta \hat{v} o \nu\)) and \(\operatorname{Nepos}\left(D_{a t} .2\right)\) Thuy's, has generally been regarded as the same person, though the events recorded about him (his war with Artaxerxes Mnemon and capture by Datames) took place some fifteen or twenty years later than 395 . P has yet another name for him, rúns, a form which in itself is not objectionable (cf. ríyns), but in view of the errors in the papyrus does not carry much weight; cf. pp. \(131-2\). Wilamowitz, who regards \(\theta \hat{v} s\) as the correct form, would restore it both here, where \(\Gamma v \eta s\)

 Hartmann had already proposed to emend to "Orvv. The form "Orvs occurs however several times in Hell. iv. r. \(3^{-1} 4\).
 Dercylidas is described. Theopompus probably treated of that campaign in the 8th book of the Hellenica, for several Bithynian names are quoted from it by Stephanus Byz. Since Agesilaus was anxious to return by a different, i.e. more northerly route, and Cius in Mysia on the sea-coast is the next place mentioned on his march (1. 13), he would naturally pass through Bithynia. áко] \(\bar{\pi} \omega \tau \dot{\epsilon} \rho \omega\) s was suggested by Wilamowitz. á \(\pi o] \nu \omega \tau \dot{\epsilon} \rho \omega s\) is also possible. The comparative adverb in -ws is attested in neither case.

 is more likely, especially as P and Xenophon do not agree precisely with regard to the number of the \(\pi \epsilon \zeta \circ i\).
15. \(\pi \dot{d} \lambda] \iota \nu\), unless merely redundant (cf. xx. I9, note), refers to the former plundering of Mysia in xix. 8.
\(\grave{a}^{\nu} \theta^{\prime}{ }_{\omega}{ }^{\circ} \kappa\) к.т. \(\lambda .: ~ c f, ~ x i x . ~ 14-8\).
18. Minjrov Teixos is clearly identical with the town near the confluence of the Macestus and Rhyndacus (cf. l. 20), known in later times as Mi \(\lambda \eta\) ícov \(\pi o ́ \lambda \iota s\) or Mı \(\lambda \eta \tau o ́ \pi o \lambda ı s\); cf. Strabo xii. 8. 10, xiv. 5. 29.
21. \(\Delta a\langle\sigma\rangle \kappa u ́ \lambda \iota \rho[\nu\) : Agesilaus' arrival at Dascylium is also recorded by Xenophon (Hell. iv. 1. 15), who describes the richness of the district surrounding the BaбiAtia of Pharnabazus (cf. Il. 22-4), but without mentioning the dispatch of Pancalus with the booty to Cyzicus (11. 25-33). His statement that Agesilaus passed the winter there is in accordance with P's description of Agesilaus' plans in Il. 33 sqq.

25-6. Pancalus is only known from the present passage ; \(\bar{\epsilon} \pi \iota \beta i \pi \eta s\) is somewhat curious and is possibly an error for \(\epsilon \pi \iota \sigma r o \lambda \epsilon \dot{s} s\). The fact that Cheiricrates is still spoken of as vav́apðos produces a conflict with Xenophon ; cf. xv. 33, note.
31. Some participle like \([\delta \iota \eta \rho \pi a \sigma \mu] \epsilon \nu \omega \nu\) (Bury) is required.
 Agesilaus according to xix. \(6-7\), and whose homes were therefore not far from Dascylium. That Agesilaus should have disbanded all the soldiers who had served under him in Mysia (as the words might mean) is incredible, for his position at Dascylium was far from secure. Xenophon (Hell. iv. 1. 17) states that owing to the lack of precautions he was attacked by Pharnabazus.
及adi乡ctv, a winter campaign being of course out of the question. Agesilaus' intention of invading Cappadocia is not recorded by Xenophon, but he credits him even when obliged to retire to Thebe with ambitious dreams of conquest (Hell. iv. I. \(4 \mathrm{I} \pi и \rho \epsilon \sigma \kappa \in v a ́ \zeta \epsilon \tau\)

Agesilaus entertained the plan of invading Cappadocia, although not only did unexpected obstacles, first the desertion of Spithradates and then his own recall to Europe, prevent any attempt to put the scheme into execution, but the plan itself was based on a complete misunderstanding of the geography. The description of Cappadocia as 'a narrow strip reaching from the Pontic sea to Cilicia and Phoenicia' (i.e the gulf of Issus) is of course inaccurate, and the distance from Sinope to the southern coast (ll. 37-8) was no doubt much underestimated. In this respect however Agesilaus only shared the general misconception of the ancient Greek world with regard to the shape of Asia Minor, which even later than the fourth century b.c. was conceived of as a kind of triangle, of which the apex was formed by a comparatively narrow isthmus joining Sinope to the Gulf of Issus; cf. Strabo's discussion (xiv 5. 2 I) of the views of Apollodorus and Artemidorus. The latter writer had estimated the width of the isthmus at 1500 stades, which, as Strabo rightly remarks, are just half the correct number, and Pliny is no nearer the mark when he reckons the distance as only 200 Roman miles. That the journey from Sinope to \(\dot{\eta} \dot{\partial} \rho \epsilon \iota \nu \dot{\eta}\) Kıi九cia could be accomplished in five days was the opinion of Herodotus (i. \(7_{2}\), ii. 34), who in the former passage uses the word aủ \(\chi \dot{\eta} \boldsymbol{\nu}\) to describe the position of Cappadocia, and five days is also the duration of the journey from Sinope to Soli on the Cilician coast according to Scylax 102. Scymnus (who is probably following Ephorus), criticizing Herodotus' view, estimates it at seven days. Herodotus' statement has been explained (Wiedemann, Herodots zweites Buch, p. 145) as a misunderstanding of the time occupied by the relays of Persian postal messengers, and is certainly wide of the truth. But that Agesilaus was better informed is unlikely, and the incomplete sentence in 11. 38-9 may well have continued éviòs \(\pi \dot{\epsilon} \nu \tau \epsilon\)

Fr. 16. The compactness of the writing makes it almost certain that this fragment belongs to Cols. \(v\) or vi. It is more probably in the second than in the first hand.

Fr. 17. The apparent mention of Tissaphernes renders it probable that this fragment belongs to Col. iv. Like Frs. 18, 23, and 38, it comes from the top of a column.
 king Archelaus of Macedonia (cf. ix. 29), not to the ship (?) Archelais. Fr. 20 is probably to be placed in a line above or below Fr. 19, but apart from the supposed connexion with Col. iii the position of these two fragments, together with 18 which seems to belong to the top of the same column as Frs. 19 and 20 on account of its colour and general appearance, is quite uncertain. There is a possible mention of Lysander in Fr. 20.6.

Frs. 21 and 22. That these two fragments belong to Cols. vii or viii is almost certain on account of the colour of the recto.

Fr. 29. This fragment does not suit iii. 19-22 or vi. 42-5.
Fr. 33. The exceptional blackness of the ink in this fragment suggests that it comes from Col. ix. But it is not certain that it belongs to 842 at all. The recto is blank.

Fr. 44. This fragment is from the bottom of a column, like Fr. 6r.
Fr. 65. That this fragment and 68 belong to 842 is not certain.
Frs. 71-2. It is very doubtful whether these fragments come from 842 . Fr. 71 is written in a larger hand and on thicker papyrus than elsewhere, and some traces of writing on the recto seem to be in a different hand from the two hands of the land-survey, while on the recto of \(\mathrm{Fr} .7_{2}\) is some writing proceeding in the opposite direction to that of the land-survey and in a different hand.

\title{
III. EXTANT CLASSICAL TEXTS
}

\author{
843. Plato, Symposium.
}

Height 31.1 cm .
Plate VI (Cols. xxxi-ii).
Tiils, the largest literary papyrus found at Oxyrhynchus, consists of the latter half of a roll containing the Symposium of Plato. The part covered is from 200 B to the end, comprised in thirty-one columns of which four (xix-xxii) are missing entirely, while two others (i and xviii) are represented by small fragments ; but the remainder is in a very fair state of preservation. The space occupied by a column with the adjacent margin is about 10 cm . in breadth, and the total length of the roll may thus be estimated at some 23 or 24 feet. The small and well-formed but somewhat heavy writing exemplifies a common type of book hand, and probably dates from about the year 200 A.D. N at the end of a line of full length is written as a stroke above the preceding vowel ; and the common angular mark is freely added at the end of short lines. Double dots are as usual employed to mark the alternations of the dialogue, but sometimes appear in other positions than at the end of a speech, e.g. in ll. 955 and 122 I . A single high point is used, more especially in the latter part of the papyrus, to mark a pause ; the marginal paragraphus commonly accompanies both forms of punctuation, or stands by itself without them. Other lectional signs, apart from the diaeresis, are rare and for the most part due to a second hand which has corrected the decidedly careless work of the original scribe. The corrector's ink, however, does not differ markedly in colour from that of the text, and in the case of minor insertions the two hands are at times difficult to distinguish. But as they are certainly not separated by any wide interval of time the question has no great practical importance. The clearest instance of a rough breathing by the first scribe occurs in 1. 352. In cases of doubt we have as a rule credited alterations to the corrector, to whom is also due an isolated and seemingly futile scholium at 1.391 .

The text, as so often with papyri, is of an eclectic character, showing a decided affinity with no single MS. Compared with the three principal witnesses for the Symposium it agrees now with IB against TIV, now with the two latter as against the former, rarely with T against BWV (ll. 112, 180, 297, 350, 435, 660) or with W against BT (11. \(183,674,776,966,1007\), 1015). Similarly in a passage cited by Stobacus some agreements with his readings against the consensus of BTV
are counterbalanced by a number of variations from Stobaeus' text (cf. notes on 11. \(141 \mathrm{I}-79\)). A few coincidences occur with variants peculiar to the inferior MSS., the more noticeable being those with Vindob. 21 alone or in combination with Venet. 184 (ll. 59, 898, 986, 999, I194) and Parisin. 1642 alone or with Vat. 229 (ll. \(349,462,1196\)). Of the readings for which there is no other authority, including several variations in the order of words, the majority, if unobjectionable, are unconvincing. The more valuable contributions, some of which are plainly superior to anything found in other MSS., are: l. \(92 \epsilon \pi, 1.112\) the omission of каí (so Stallbaum), 1. \(239 a v \in \iota \eta\), where BTW have a meaningless aٌ \(\nu, 1.368 \kappa a \lambda \omega\) as conjectured by Badham for \(\tau \hat{\varphi} \kappa_{\text {. }}\), \(1.471 \mu \epsilon \tau \epsilon \chi \in \iota\) as restored by Stephanus (\(\mu \in \tau \epsilon \in \chi \epsilon \iota \nu\) MSS.), 1. 517 \(\tau \epsilon \kappa \epsilon \iota \nu\) confirming a conjecture of Hug (\(\kappa v \in \imath \imath \nu \mathrm{MSS}.), 1.529 \epsilon \pi \imath \theta v \mu \eta\) as conjectured by Stephanus (\(\grave{\epsilon \pi \iota \theta v \mu \in \imath \imath ~ M S S .), ~ 1 . ~} 577\) кaı \(\sigma v\) omitted by MSS., 1.699 \(\theta \epsilon о ф \iota \lambda \epsilon \iota\left(-\hat{\eta}\right.\) BTW), 1. 770 катьঠє[v (?) (каөi \(\xi_{\epsilon \iota \nu}\) MSS.), 1. \(898 \mu 0 \iota\) (probably) with Vind. 2 I (\(\mu\) ov BTW), 1. II42 \(\delta \iota a \beta a \lambda \epsilon \iota\) as conjectured by Hirschig (\(\delta \iota a \beta a ́ \lambda!\eta\) BTW). On the other hand in many cases the papyrus once more proves the antiquity of readings which modern criticism rejects or suspects.

In the accompanying apparatus, which is based on Burnet's Oxford edition, we usually confine ourselves to the readings of BTW. With regard to the last named MS., Prof. H. Schöne of Basel has very kindly placed at our disposal his new collation which often supplements and sometimes corrects the report of Burnet. Occasional references to the readings of other MSS. are derived from the edition of Bekker, and that of Schanz has also been consulted. We neglect minor orthographical variations such as \(\dot{a} \in i ́ l\) and aíí, the interchange of \(\iota\) and \(\epsilon \iota, \sigma\) and \(\xi\), \(\dot{\epsilon} \dot{a} \nu\) and \(\alpha \nu \nu\), occurrence of elision, crasis, and \(\nu \dot{\epsilon} \phi \epsilon \lambda \kappa v \sigma \tau \leftarrow \kappa o ́ v\), and attraction of consonants.

Col. i.
5 lines lost.
 40 lines lost.

Col. ii.
\([\tau \tau v \tau \omega \nu \omega \nu] \alpha \nu \quad \epsilon \nu \delta \epsilon \iota \alpha \pi \alpha \rho \eta \nu \quad \alpha \nu \tau \omega\rangle \quad 200 \mathrm{E}\)
\([\nu \alpha \iota \phi \alpha \nu \alpha \iota \quad \epsilon] \pi[\epsilon]]<\delta \eta\) тovtoıs \(\alpha \nu \alpha \mu \nu \eta \quad 201 \mathrm{~A}\)
\(50[\sigma] \theta \eta \tau \iota \tau[\iota \nu] \omega \nu \in \phi \eta \sigma \theta \alpha \in \nu \tau \omega \lambda о \gamma \omega \epsilon \iota \nu \alpha \iota\)
\(\tau 0 \nu \quad \epsilon \rho[\omega] \tau \alpha \in \iota \quad \delta €\left[\begin{array}{lllllll}\beta\end{array}\right] 0 v \lambda \epsilon \iota \quad \epsilon \gamma \omega \quad \sigma \epsilon \alpha \nu \alpha \mu \nu \eta\)

\(\mu a \tau \alpha \delta_{\iota}[\epsilon] \rho \omega \tau \alpha[\llbracket] \kappa \alpha \lambda \omega \nu \alpha \iota \sigma \chi \rho \omega \nu \quad \gamma \alpha \rho\)

\([\epsilon]\) lтov rap фaval tov Aya日由va：каı

бо \(\epsilon \rho \omega s\) at \(\chi \backslash \llbracket \rho \rrbracket\) ous \(\delta \epsilon\) ov \(\omega \mu о \lambda о \gamma \epsilon \iota\) ：ouкой
 ［TTov
［ \(\epsilon \chi \epsilon \ell]\) тov［ \(\epsilon] \rho a \nu: \nu \alpha \iota \epsilon \iota \pi \epsilon \epsilon \nu: ~ \epsilon v \delta \epsilon \eta S\rangle\)

\(\sigma_{5}\)［ \(\lambda\) ovs］кає \(\mu \eta \delta[a] \mu \eta\) кєк \(\kappa \eta \mu \epsilon \nu \nu \nu \kappa \alpha \lambda\)
［ \(\lambda\) os \(\alpha \rho] \alpha[\lambda] \in \epsilon \epsilon[s]\) ov калоข \(\epsilon \iota \nu a l\) ：ov \(\delta \eta \tau \alpha\) ：

201 C

\(\left[\begin{array}{lll}\alpha \lambda \lambda \alpha & \sigma \mu l k \rho o \nu] & \epsilon \tau \iota \\ \epsilon l \pi \epsilon & \tau \alpha & \alpha \gamma \alpha \theta \alpha\end{array}\right.\) ov \(\rangle\)

\([\rho \alpha\) о \(\epsilon \rho \omega S \tau \omega]\) ］ка入 \(\kappa \nu \quad \epsilon \nu \delta \epsilon \eta S\) \(\epsilon \sigma \tau \iota \nu\)

［ \(\sigma 0 \iota\) o］uk av \(\delta v \nu a \iota \mu \eta \nu\) avt \(\lambda \lambda \epsilon \gamma \epsilon \iota \nu\)

\(\mu \epsilon \nu\) ov \(\tau \eta\) \(a \lambda \eta[\theta] \epsilon \iota \alpha\) фavaı \(\omega\) ф \(\langle\lambda \epsilon\rangle\)
\(80[A \gamma] a \theta \omega \nu\) dvvaбal a \(\alpha \tau \iota \lambda \epsilon \gamma \epsilon \iota \nu \in \pi \epsilon \iota\)
\(\sum \omega \kappa \rho \alpha \tau \epsilon l \gamma \epsilon \quad\) ov \(\delta \epsilon \nu \chi^{\alpha \lambda \epsilon \pi o \nu} \kappa \alpha l \sigma \epsilon\) ）

\(\pi \epsilon \rho \iota \tau[0 v]\) є \(\rho \omega \tau 0\)＠

\(\left.8_{5}^{4} \llbracket \sigma \rrbracket \eta \tau \alpha \nu \tau \alpha \quad \tau \epsilon \sigma \circ \phi \eta \eta \nu \llbracket \alpha \iota \rrbracket \kappa \alpha \iota \alpha \lambda \lambda \alpha\right\rangle\)

 \(\epsilon \mu \epsilon \tau \alpha \epsilon \rho \omega \tau \iota \kappa \alpha \epsilon \delta i \delta \alpha \xi \epsilon \nu\) oे \(\nu\) ouv 90 入oyov \(\epsilon \kappa \epsilon \iota \eta \quad \epsilon \lambda \epsilon \gamma \epsilon \nu \quad \pi \epsilon \iota \rho \alpha \sigma \circ \mu \alpha \iota\) \(\ddot{\nu} \mu \epsilon \tau \nu \delta \epsilon \epsilon \lambda \theta \epsilon L \nu \epsilon \kappa \tau \omega \nu \quad \omega \mu \circ \lambda o \gamma \eta\rangle\) \(\mu \epsilon \nu \omega \nu \quad \epsilon \mu \circ \iota \kappa \alpha \iota A \gamma \alpha \theta \omega \nu \iota \alpha \nu \tau 0 s \in\rangle\) \(\pi\) є \(\mu a v \tau o v\) oт \(\omega s\) a \(\delta^{\delta} \delta \nu \omega[\mu] a \iota \delta \epsilon \iota\) \(\delta \eta \omega A \gamma \alpha \theta \omega \nu \omega \sigma \pi \epsilon \rho \sigma v \delta \imath \eta[\eta \eta \sigma] \omega\rangle\)

Col．iii．
\(95 \delta_{\iota \epsilon \lambda \theta \epsilon \iota \nu}\) avtov \(\pi \rho \omega t o \nu\) tis \(\epsilon \sigma \tau \iota \nu\)

\(\gamma \alpha\) avtov סoкєl ovv \(\mu\) ol paбтov єl）

\(100 \tau \iota \kappa \alpha \iota \in \gamma \omega \pi \rho 0 s\) avt \(\eta \nu \in \tau \epsilon \rho \alpha\) тol〉
\(\alpha \nu \tau \alpha\) є \(\lambda \in \gamma \circ \nu\) ol \(\alpha \pi \epsilon \rho \nu v \nu \pi \rho o s \in \mu \epsilon A \gamma \alpha \theta \omega \nu\rangle\) ws \(\epsilon \ell \eta\) O \(\epsilon \rho \omega s\) \(\mu \epsilon \gamma \alpha s\) \(\theta \epsilon \sigma s \in \iota \eta \delta \epsilon \tau \omega \nu \quad \kappa \alpha \lambda \omega \nu\rangle\)
 \(\epsilon \gamma \omega\) тovtov \(\omega\) оитє ка入os \(\epsilon \iota \eta\) ката тov＞

 кає какоs：кає \(\dot{\eta}\) оик єиф \(\quad \mu \eta \sigma \epsilon \iota s\) є \(\phi \eta\) मे〉 оієє от८ єav \(\mu \eta\) калоข \(\eta\) avaүкаเov av〉

 \(\sigma \tau \iota \nu \tau \iota \mu \epsilon \tau \alpha \xi v\) ooplas каı a \(\alpha \alpha \theta \iota a s:\) т८ тоито：то op \(\theta \alpha\) \(\delta o \xi \alpha \xi \epsilon \iota \nu\) a \(\nu \in \nu\) тоט

ovтє \(\epsilon \pi \iota \sigma \tau \alpha \sigma \theta \alpha \iota \epsilon \sigma \tau \iota \nu\) a入oyov \(\gamma \alpha \rho \pi \rho \alpha \gamma\)
\({ }_{115} \mu \alpha \pi \omega S \alpha \nu \epsilon \iota \eta \epsilon \pi \iota \sigma \tau \eta \mu \eta\) оutє \(\left.\alpha \mu \alpha\right\rangle\)
\(\theta_{\iota} \alpha\) то \(\gamma \alpha \rho\) тоv ovтos \(\tau v \gamma \chi \alpha \nu 0 \nu \pi \omega s\)
\(\alpha \nu\) єı \(\quad \alpha \mu \alpha \theta \iota \alpha\) єбть \(\delta \epsilon \delta \eta \pi o v\) тоוоито
\(\eta\) op \(\theta \eta\) \(\delta о \xi \alpha \quad \mu \epsilon \tau \alpha \xi v\) фроข \(\eta \sigma \epsilon \omega s\) каı \(\rangle\)
\(\alpha \mu \alpha \theta \iota \alpha s \alpha \lambda \eta \theta \eta \quad \eta \nu \delta \epsilon \gamma \omega \lambda \epsilon \gamma \epsilon เ s: \mu \eta\rangle \quad 202 \mathrm{~B}\)
120 тolvv \(\alpha \nu \alpha \gamma \kappa \alpha \zeta \epsilon[0] \mu \eta \kappa \alpha \lambda o \nu \epsilon \sigma \tau \iota \nu\rangle\)
\(\alpha \iota \sigma \chi \rho o \nu \epsilon \iota \nu \alpha \iota \mu \eta \delta\) о \(\mu \eta\) а \(\gamma \alpha \theta\) о како
оขт \(\omega\) К ка८ тоע \(\epsilon[\rho] \omega \tau \alpha[\epsilon \pi \epsilon \iota \delta \eta\) аuтоS

125 X \(\rho \circ \nu\) к \(\alpha \ell\) какоข \(\epsilon \iota \nu \alpha \iota \alpha \lambda \lambda \alpha \tau!, \mu \epsilon \tau \alpha\rangle\)
\(\xi \cup\) тoutoıv \(\epsilon \phi \eta\) каl \(\mu \eta \nu \quad \eta \nu \quad \delta \quad \epsilon \gamma \omega\) o＞
\(\mu \circ \lambda o \gamma \epsilon \iota \tau \alpha[\iota] \quad \gamma \in \pi \alpha \rho \alpha \pi \alpha \nu \tau \omega \nu \quad \mu \epsilon \gamma \alpha s\rangle\)
\(\theta \in o s \in l \nu \alpha l \tau \omega \nu \quad \mu \eta\) єlסoт \(\tau \nu \in \phi \eta \pi \alpha \nu\)
\(\tau \omega \nu \quad \lambda \epsilon \gamma \epsilon \iota \varsigma \quad \eta\) каו \(\tau \omega \nu\) є \(\ell \delta \sigma \tau \omega \nu: \xi v \mu \pi \bar{\alpha}\)
\(130 \tau \omega \nu \quad \mu \epsilon \nu\) ouv ка८ \(\eta \quad \gamma \in \lambda \alpha \sigma \alpha \sigma \alpha\) каl \(\pi \omega s\) ）
\(\alpha \nu \in \phi \eta \omega \Sigma \omega \kappa \rho \alpha \tau \epsilon \varsigma\) о \(\omega\) о入оуоเто \(\mu \epsilon \gamma \alpha\) s
\(\theta \epsilon o s\) єlval \(\pi \alpha \rho \alpha\) тоитшข ol \(\phi \alpha \sigma \iota \nu\) avtō ov \(\delta \epsilon \theta \epsilon o \nu\) єเval \(\tau \iota \nu \epsilon s\) outol \(\eta \nu \delta \in \gamma \omega\rangle\)

\(\gamma \epsilon \gamma a \rho[\mu] o l\) ov \(\pi \alpha \nu \tau \alpha s\) \(\theta\) єous \(\phi \eta[s]\) є \(v \delta \alpha \iota \mu\) o［
vas єıval кal кa入ous \(\eta\) то入 \(\mu \eta \sigma \alpha \iota s\) av＞

\(\nu \alpha \theta \epsilon \omega \nu\) єıval \(\mu \alpha \Delta \iota\) ovk \(\epsilon \gamma \omega \gamma \quad \epsilon \phi[\eta \nu\)
140 єv \(\delta(\alpha \iota \mu]\) ovas \(\delta \epsilon \delta \eta[\lambda] \epsilon \gamma \epsilon \iota s\) o［ \(v]\) Tous \(\tau \alpha\)

Col．iv．
ou tous \(\tau \alpha \gamma \alpha \theta \alpha \kappa \alpha \iota \tau \alpha \kappa \alpha \lambda a \quad \kappa \epsilon \kappa[\tau \eta] \mu \epsilon\)
vous：\(\pi \alpha \nu v \gamma \epsilon \alpha \lambda \lambda \alpha \mu \eta \nu \in \rho \omega \tau \alpha[\gamma \epsilon] \omega\rangle\)
202 D
\(\mu 0 \lambda о \gamma \eta \kappa \alpha s \delta_{\iota} \epsilon \nu \delta \epsilon \iota \alpha \nu \tau \omega \nu\) a \(\gamma[\theta] \omega \nu\)
\(145 \kappa \alpha \iota \kappa \alpha \lambda \omega \nu \epsilon \pi \iota \theta v \mu \epsilon \iota \nu\) аvт \(\omega \nu \quad \tau[0] \nu\rangle\)
\(\tau \omega \nu \omega \nu \in \nu \delta \epsilon \eta S \in \sigma \tau เ \nu: \omega \mu 0 \lambda \circ \gamma \eta\rangle\)
\(\kappa \alpha \gamma \alpha \rho \pi \omega s\) \(\alpha \nu\) ov \(\theta \epsilon o s \in \iota \eta\) о \(\gamma \epsilon \tau \omega \nu\rangle\) \(\kappa \alpha \lambda \omega \nu\) кa[l \(\alpha \gamma] \alpha \theta \omega \nu\) a \(\mu\) olpos: ov \(\delta \alpha\rangle\)
\(\mu \omega \mathrm{S}\) ws \(\gamma \epsilon \epsilon \circ \iota \kappa \epsilon \nu\) : opas ovv \(\epsilon \phi \eta\) отו〉
 \(\alpha \nu \in \phi \eta \nu \in \iota \eta\) o \(\epsilon \rho \omega s\) \(\theta \nu \eta \tau 0 s: ~ \eta \kappa \iota \sigma \tau[\alpha\) \(\gamma \epsilon: \alpha \lambda \lambda \alpha \tau \iota \mu \eta \nu: \omega \sigma \pi \epsilon \rho \tau \alpha \pi \rho о \tau \epsilon\) \(\rho \alpha \epsilon \phi \eta \mu \epsilon \tau \alpha \xi v\) \(\theta \nu \eta \tau о v\) ка८ \(\alpha \theta[\alpha] \nu \alpha\) тov \(\tau \iota\) ov̀ \(\omega \Delta \iota о \tau \iota \mu \alpha \delta \alpha \iota \mu \omega \nu \quad \mu[\epsilon\)
\(155 \gamma \alpha\) S \(\omega \sum^{1} \omega \kappa \rho \alpha \tau \epsilon S\) ка८ \(\left.\gamma \alpha \rho \pi \alpha \nu \tau 0 \delta \alpha \iota\right\rangle\)

\(\theta \nu \eta \tau o v: \tau i \nu \alpha \quad \eta \nu \delta \in \gamma \omega \delta v \nu \alpha \mu \iota \nu\rangle\)
\(\epsilon \chi \circ \nu\) : є \(\rho \mu \eta \nu \epsilon \nu \circ \nu\) ка८ \(\delta \iota \alpha \pi \rho \circ \theta \mu \epsilon \nu\)
ov \(\theta \epsilon o \iota s \tau \alpha \pi \alpha \rho \alpha \nu \theta \rho \omega \pi \omega \nu\) каı \(\alpha \nu\rangle\)
160 Op \(1 \pi \pi\) וs \(\tau \alpha \pi \alpha \rho \alpha\) \(\theta \epsilon \omega \nu \tau \omega \nu \quad \mu \epsilon \nu \tau \alpha s\)
\(\delta \epsilon \eta \sigma \epsilon \iota \varsigma ~ \kappa \alpha \iota ~ \theta v \sigma \iota \alpha s ~ \tau \omega \nu \quad \delta \epsilon \tau \alpha s \in \pi \iota\rangle\)

\(\epsilon \mu \mu \epsilon \sigma \omega\) \(\delta \epsilon\) ov \(\alpha \mu \phi о \tau \epsilon \rho \omega \nu \quad \sigma v \mu \pi \lambda \eta\)
ро८ \(\omega \sigma \tau \epsilon \tau о\) то \(\pi \alpha\) avto \(\alpha v \tau \omega\) छvv \(\delta \epsilon\rangle\)
\({ }_{1} 6_{5} \delta \epsilon \sigma \theta \alpha \iota\) dıa тоvтоv кає \(\eta \mu \alpha \nu \tau \iota \kappa!\)
\(\pi \alpha \sigma \alpha\) Х \(\omega \rho \epsilon \iota\) кає \(\eta \tau \omega \nu\) ї \(\epsilon \epsilon \epsilon \omega \quad \tau \epsilon \chi \nu \eta\)
\(\tau \omega \nu \quad \tau \epsilon \pi \epsilon \rho \iota \tau \alpha s\) \(\theta v \sigma \iota \alpha s\) к \(\alpha \iota\) т \(\alpha s\) [\(\tau] \epsilon\rangle\)
\([\lambda \epsilon] \tau \alpha \varsigma \kappa \alpha \iota \tau \alpha \varsigma \quad \epsilon \pi \omega \delta \alpha \varsigma\) ка८ \(\tau \eta \nu[\mu] \bar{\alpha}\)

য7० \(\alpha \cdot \theta \rho \omega \pi \omega\) ov \(\mu \epsilon \iota \gamma \nu v \tau \alpha \iota \alpha \lambda \lambda \alpha \delta \iota \alpha\)

\(\delta[l] \alpha \lambda \epsilon \kappa \tau\) os \(\theta\) єols \(\pi \rho o s\) a \(\alpha \rho \omega \pi\) ous
\([\kappa \alpha \iota] \epsilon \gamma \lambda \eta \gamma \circ \rho \circ \sigma[\llbracket]\rceil \iota\) к \(\alpha \iota\) ка \(\theta \epsilon v \delta о v \sigma \iota\) к \(\alpha \iota\) \(\sigma\)
\(\left[\begin{array}{lllll}0 & \mu \epsilon\end{array}\right] \nu \pi \epsilon \rho \iota \tau \alpha\) тoıavia oфos \(\left.\delta \alpha[\iota] \mu o\right\rangle\)

\(\nu a[s]\) Bavavoous ovtol \(\delta \eta\) ol \(\delta \alpha \not \mu o \nu \epsilon s\)
\(\pi о \lambda \lambda о \iota ~ \tau \epsilon \kappa \alpha \iota \pi \alpha \nu \tau о \delta \alpha \pi о \iota ~ \epsilon \iota \sigma \iota \nu \in \iota S\)
\(\delta \epsilon \tau 0 v \tau \omega \nu \cdot \epsilon \sigma \tau\left[\begin{array}{ll}\iota \alpha & \kappa\end{array}\right]\) ! \(0 \quad \epsilon \rho \omega s: \pi \alpha \tau \rho \circ S\)
\(180 \delta \epsilon \eta \nu \delta \epsilon \gamma \omega \kappa \alpha \iota \mu \eta \tau[\rho] o s ~ \tau \iota \nu o s \in \sigma \tau \iota \nu\) :
\(\mu \alpha к \rho о т \epsilon \rho о \nu \quad \mu \epsilon \nu \in \phi \eta \delta_{\iota} \eta \gamma \eta \sigma \alpha \sigma \theta \alpha \iota\)
op \(\omega \mathrm{s} \delta \epsilon \sigma 0 \iota \in \rho \omega\) ot \(\delta \boldsymbol{\gamma} \rho \rho \in \boldsymbol{\epsilon} \in \nu \in \tau[0] \quad \eta A\) \(\phi \rho o \delta \epsilon \iota \tau \eta\) ї \(\sigma \tau \iota \omega \nu \tau 0\) ol \(\theta \in 0 \ell\) ol \(\tau \epsilon[\alpha \lambda \lambda 0] \iota\) ка८ o \(\tau \eta\) 行 Mitıסos ülos Пopos \(\epsilon \pi[\epsilon l] \delta \eta\)
\(185 \delta \epsilon \epsilon \delta \epsilon \iota \pi \nu \eta \sigma \alpha \nu \pi \rho \circ \sigma \alpha \iota \tau \eta \sigma o v \sigma \alpha \quad \circ[\iota] \nu\) \(\delta \eta \epsilon^{\prime} \omega \chi^{\iota} \alpha \mathrm{S}\) ovo \(\eta \mathrm{S}\) aфıкєто \(\eta \Pi_{[\epsilon] \nu \iota}\) a каı \(\eta \nu[\pi] \epsilon \rho \iota ~ \tau \alpha s ~ \theta v p a s ~ o ~ o v \nu ~ \Pi o[\rho o s ~\) \(\mu \epsilon \theta v \sigma \theta \epsilon i\) s rov \(\nu[\epsilon \kappa] \tau \alpha \rho o s\) olvos \([\gamma \alpha \rho\)

Col．v．

\(190 \theta \omega \nu \beta \epsilon \beta \alpha \rho \eta \mu \epsilon \nu 0\) ¢ \(\epsilon \nu \delta \epsilon \nu \quad \eta\) ov \(\Pi_{\epsilon \nu \iota \alpha}\)
 рıау \(\pi \alpha \iota \delta \iota \circ \nu \pi о \iota \eta \sigma \alpha \sigma \theta \alpha \iota ~ \epsilon \kappa\) тоv По＞
 \(\epsilon \kappa v \eta \sigma \epsilon \tau 0 \nu \epsilon \rho \omega \tau \alpha\) ठıo \(\delta \eta \kappa \alpha \iota \tau \eta S A\rangle\)
 \(\left[\begin{array}{ll}\text { pov } & \alpha k] 0 \lambda o v \theta o s ~ к \alpha \iota ~ \\ & \epsilon \rho \alpha \pi \omega \nu \quad \gamma \in \gamma o \nu \in \nu\end{array}\right.\) －\(\epsilon \rho \omega \mathrm{S} \gamma \epsilon \nu \nu \eta \theta[\epsilon] / S \in \nu\) Tols \(\epsilon \kappa \epsilon \iota \nu \eta \rho \gamma \epsilon\rangle\) \(\nu \in \theta \lambda \iota o \iota s\) каl \(a \mu \alpha \quad \phi \nu \sigma \in l\) єpaбтךs \(\omega v\rangle\) \(\pi \epsilon \rho \iota\) то ка入оv кає \(\tau \eta s\) A \(\phi \rho о \delta \epsilon \iota \tau \eta s\)
200 ка入ךs ovбךs ate ouv Пopov ка［l Пє vias vios \(\omega \nu\) o \(\epsilon \rho \omega \mathrm{s} \in \nu\) тolavt \(\eta[\tau v\rangle\)
\(\chi \eta\) к \(\alpha \theta \epsilon \sigma \tau \eta \kappa \epsilon \nu \quad \pi \rho \omega \tau \sigma \nu \quad \mu \epsilon \nu \pi \epsilon\rangle\)

\(\tau \epsilon\) каl ка入os olov ol mo入入ol olovтаl＞
\(205 \alpha \lambda \lambda \alpha \sigma \kappa \lambda \eta \rho o s\) к \(\alpha \iota ~ \alpha v \chi ̣ \mu \eta \rho o s ~ к \alpha \iota ~ \alpha \nu>\)
üтобךтоs кає аоเкоs \(\chi^{\alpha \mu \alpha \iota \pi \epsilon \tau \eta s}\)
\(\alpha l \epsilon \iota \omega \nu\) каl \(\alpha \sigma \tau \rho \omega \tau\) оs \(\epsilon \pi \iota\) Өvpals каl〉
\(\epsilon \nu\) oঠoıs \(\ddot{\sim} \pi \alpha \iota \theta \rho \iota o s\) коı \(\mu \omega \mu \epsilon \nu 0 s ~ \tau \eta \nu\)
\(\tau \eta s \quad \mu \eta \tau \rho o s \phi v \sigma \iota \nu \quad \epsilon \chi \omega \nu \quad \alpha \in l \in \nu \delta \epsilon \iota \alpha l\)
\(210 \sigma v v[o \iota k] \rho S \kappa \alpha \tau \alpha \delta \epsilon \alpha v\) тov \(\pi \alpha \tau \epsilon \rho \alpha \epsilon \pi \iota\rangle\)
Bounos єбт！［ka入ots］ka！ayaOols av \(0 \rho \epsilon \iota\) os \(\omega \nu\) каl їт \(\eta s\) каl \(\sigma v \nu \tau 0 \nu 0 s \theta \eta[\rho \in v\)
\(\tau \eta S\) \(\delta \epsilon i \nu 0 s\) a \(\alpha \iota\) тu＇as \(\pi \lambda \epsilon \kappa \omega \nu \stackrel{\mu \eta \chi a}{[\alpha]}]_{\mathrm{ras}}\)
\(\overline{\beta \alpha s} \kappa \alpha \iota\) ф \(о \nu \eta \sigma \epsilon \omega s\) \(\epsilon \pi \iota \theta v \mu \eta \tau \eta s\) каı〉

Bıov סєєvos yoךs фар \(\mu \alpha \kappa \epsilon \cup s\) ка८ бофı〉 \(\sigma \tau \eta S\) кає оитє \(\omega\) s aӨavaтos \(\pi \epsilon \phi \cup к \epsilon \nu\)
оитє \(\omega s\) 泣тоs \(\alpha \lambda \lambda \alpha\) тотє \(\mu \epsilon \nu\) т \(\eta \mathrm{S}\) \(\eta \mu \epsilon \rho \alpha s\) \(\theta \alpha \lambda \lambda \epsilon \iota\) к \(\alpha \iota\) § \(\eta\) от \(\alpha \nu\) єvாор \(\eta\) 〉 \(\pi a \lambda \iota v\)
\(220 \sigma \eta\) тотє \(\delta \epsilon \alpha \pi о \theta \nu \eta \sigma \kappa \epsilon \iota \pi \alpha \lambda \iota \nu \quad \delta \epsilon \alpha\rangle\)
\(\nu \alpha \beta \iota \sigma \kappa \kappa \in \llbracket \iota \rrbracket \tau \alpha \iota \delta \iota \alpha\) т \(\eta \nu\) тоv \(\pi \alpha \tau \rho о s\rangle\) \(\phi \nu \sigma \iota \nu\) то \(\delta \epsilon \pi \pi \rho \iota \zeta о \mu \epsilon \nu 0 \nu\) аlє८ \(̈ \pi \epsilon \epsilon \kappa \rho \epsilon \iota\) \(\omega \sigma \tau \epsilon\) ovтє \(\alpha \pi о \rho \epsilon \iota \in \rho \omega \mathrm{~s} \pi о \tau \epsilon\) оитє \(\pi \lambda 0 v\) av
\(\tau \epsilon \iota\) бoфıas каı \(\alpha \mu \alpha \theta \iota \alpha s \quad \epsilon \nu \quad \mu \epsilon \sigma \omega \quad \epsilon \sigma \tau \bar{\iota}\)
\(225 \epsilon \chi \epsilon \iota \gamma \alpha \rho \omega \delta \epsilon \theta \epsilon \omega \nu\) ov \(\delta \epsilon \iota\) ф \(\phi \iota \lambda 0 \sigma o \phi \epsilon \iota\) ov
\(\delta \epsilon \pi \iota \theta v \mu \epsilon \iota\) ooфos \(\gamma \in \nu \epsilon \sigma \theta \alpha \iota \quad \epsilon \sigma \tau \iota \quad \gamma \alpha \rho \cdot\) ov

\(\delta \alpha v\) ol \(\alpha \mu \alpha \theta \epsilon \iota\) ф \(\langle\lambda 0 \sigma o \phi 0 v \sigma \iota v\) ov \(\delta \epsilon \pi \iota\rangle\)
\(\theta v \mu o v \sigma \iota\) бофоاs \(\gamma \epsilon \nu \epsilon \sigma \theta \alpha \iota\) аuто \(\gamma \alpha \rho\) тоv
\({ }_{2} 3 \circ\) то \(\epsilon \sigma \tau[l] \nu \quad \chi^{\alpha \lambda} \epsilon \pi \eta \quad \alpha \mu \alpha \theta \iota \alpha\) то \(\mu \eta\) оעт \(\left.\alpha\right\rangle\)

 \(\theta \nu \mu \epsilon \iota \llbracket \nu \rrbracket\) o \(\mu \eta\) oוo \(\mu \epsilon \nu 0 S \in \nu \delta \epsilon \eta S\) \(\epsilon \iota \nu \alpha l\rangle\) ov \(\alpha \nu \mu \eta\) oı \(\eta \tau \alpha \iota \epsilon \pi \iota \delta \epsilon \iota \sigma \theta \alpha \iota \tau \iota \nu \in S\) ou

\section*{Col．vi．}
\(\tau \epsilon S\) є८ \(\mu \eta \tau \epsilon\) ol \(\sigma 0 \phi\) ol \(\mu \eta \tau \epsilon\) ol \(\alpha \mu \alpha \theta \epsilon \iota S:\rangle\) \([\delta] \eta \lambda о \nu \quad \delta \eta \epsilon \phi \eta\) точто \(\gamma \epsilon \eta \delta \eta\) кає \(\pi \alpha \iota\rangle\)

204 B

\([\rho] \omega \nu \quad \omega \nu \alpha \nu \quad \epsilon \iota \eta\) ка！\(\left[\begin{array}{lll}0 & \epsilon \rho] \omega S & \epsilon \sigma \tau \iota \nu \\ \gamma \alpha \rho & \delta \eta\rangle\end{array}\right.\)
\(340 \tau \omega \nu \kappa \alpha \lambda \lambda \iota \sigma \tau \omega \nu \quad \eta \quad \sigma \circ \phi \iota \alpha\) єр \(\omega \varsigma \delta \epsilon \sigma \tau \iota \nu\rangle\) \(\epsilon \rho \omega S \pi \epsilon \rho \iota\) то ка入ov \(\omega \sigma \tau \epsilon \alpha \nu \alpha \gamma \kappa \alpha \iota o \nu \epsilon\rangle\) \(\rho \omega \tau \alpha\) фı入oनoфov \(\epsilon \iota \nu \alpha \iota\) ф \(ا \lambda о \sigma \circ \phi \circ \nu \delta \epsilon\rangle\)
ovтa \(\mu \epsilon \tau \circ \xi \nu\) єเval \(\sigma \circ \phi\) ov каı a \(\mu \alpha \theta\) ous aıтıa \(\delta \in[\alpha \nu \tau \omega\) каı \(\tau 0]\)]qт \(\omega \nu \quad \eta \quad \gamma \in \nu \epsilon \sigma \iota \varsigma\rangle\)
\({ }_{2}{ }^{2} 5 \pi \alpha \tau \rho \circ s \mu[\epsilon \nu \gamma] \alpha \rho\) бофои \(\epsilon \sigma \tau \iota \nu \kappa \alpha \iota \in \cup \pi \circ\) pov \(\mu \eta \tau\left[\rho o s \delta_{\epsilon}\right]\) ov \(\sigma 0 \phi \eta\) каl a atopov \(\left.\eta\right\rangle\)

 \(\epsilon \iota \nu a l\) \(\theta a v \mu a \sigma \tau o \nu\) ov \(\delta \epsilon \nu \in \pi a \theta \epsilon s \quad \omega \eta\rangle\)

\(\epsilon \xi\) \(\omega \nu \sigma v\) є \(\lambda \epsilon \gamma \epsilon s \tau_{0} \epsilon \rho \omega \mu \epsilon \nu 0 \nu \in \iota \nu a \iota \in \rho \omega\)

p
\({ }^{2} 55\) ßov каl \(\tau \in \lambda \epsilon \iota \circ \nu\) каl \(\mu\) акарıбтоу то
\(\delta \epsilon \gamma \epsilon \epsilon \rho \omega \nu\) a \(\alpha \lambda \eta \nu\) ї \(\delta \epsilon \alpha \nu\) тоlavt \(\eta \nu\)
\(\epsilon \chi^{\circ \nu}\) olav \(\epsilon \gamma \omega\) ס \(\eta \lambda \theta_{0 \nu} \kappa \alpha \iota \epsilon \gamma \omega \epsilon \iota \pi \bar{o}\)
\(\epsilon \epsilon \epsilon \nu \quad \delta \eta \omega \xi \in \nu \eta\) кaj \(\omega s\) रap \(\lambda \epsilon \gamma \epsilon \iota s\) тol \(\rangle\)

\(\epsilon \phi \eta \omega \sum_{\omega \kappa \rho a \tau \epsilon s} \pi \epsilon \iota \rho a \sigma о \mu \alpha \iota \sigma \epsilon \delta_{\iota} \delta a\) каи оитш
\(\xi \alpha \iota \epsilon \sigma \tau \iota \mu \epsilon \nu\) रap \(\delta \eta\) tolovtos \(\gamma \epsilon\rangle\)
yov \(\omega\) s o \(\in \rho \omega \mathrm{s}\) є \(\sigma \tau \iota \delta \epsilon \tau \omega \nu \kappa \alpha \lambda \omega \nu \omega\rangle\)

\({ }_{265} \kappa \alpha \lambda \omega \nu \in \sigma \tau\left[\begin{array}{lll}l \nu & 0 & \epsilon\end{array}\right] \rho \omega S \omega \sum_{\omega} \omega \kappa \rho \alpha \tau \epsilon S \tau \epsilon \kappa \alpha \iota\)
\(\Delta \iota о \tau \mu \alpha \omega[\delta \epsilon \delta] \epsilon \quad \sigma \alpha \phi \epsilon \sigma \tau \epsilon \rho \circ \nu \quad \epsilon \rho a \quad\) о \(\epsilon \rho \bar{\omega}\)
 \(\gamma \in \nu \in \sigma \theta \alpha \iota \quad a v[\tau] \omega[[]. a \lambda \lambda \in \tau \iota \pi \circ \theta \in t \in \phi \eta\rangle\)

\({ }_{2} \gamma_{0} \epsilon \sigma \tau \alpha \iota \quad \epsilon \kappa \epsilon เ \nu \omega \hat{\omega} \epsilon \alpha \nu \gamma \epsilon \nu \eta \tau \alpha \iota \tau \alpha \kappa \alpha\)
\(\lambda \alpha\) ov \(\pi \alpha \nu \nu \epsilon \phi \eta \nu \in \tau \iota \in \chi \epsilon \iota \nu \in \gamma \omega \pi \rho \circ S\)
\(\tau а \nu \tau \eta \nu \tau \eta \nu \in \rho \omega \tau \eta \sigma \iota \nu \pi \rho \circ \chi \epsilon 1\rangle\)

\(\alpha \nu\) єt \(\tau \iota s \mu \epsilon \tau \alpha \beta \alpha \lambda \omega \nu\) a \(\alpha \tau \iota\) тоv калоט

\(\phi \epsilon \rho \epsilon \omega \sum \omega \kappa \rho a \tau \epsilon s\) є \(\epsilon \alpha \iota\) о \(\left.\epsilon \rho \omega \nu \tau \omega \nu \alpha\right\rangle\)
\(\gamma \alpha \theta \omega \nu \quad \tau \iota \in \rho \alpha \quad \gamma \in \nu \in \sigma \theta \alpha \iota \quad \eta \nu \delta \in \gamma \omega \alpha v\rangle\)
\(\tau \omega\) каl \(\tau \iota \in \sigma \tau \alpha \iota ~ \epsilon \kappa \epsilon \iota \nu \omega \omega \alpha \nu \quad \gamma \epsilon \nu \eta \tau \alpha \iota\)
\(\tau а \gamma \alpha \theta \alpha\) тоит єvторютєроン \(\eta \nu \delta \epsilon\rangle\)
\(280 \gamma \omega \epsilon \chi \omega\) атокрєєขaбөal от८ \(\epsilon v \delta \alpha \iota \mu \omega \nu\)
\(\epsilon \sigma \tau \alpha \iota:\) кт \(\eta \sigma \epsilon[\iota] \quad \gamma \alpha \rho \in \phi \eta\) a \(\gamma \alpha \theta \omega \nu\) ol \(\epsilon v \delta a \mu \mu v \epsilon s\)

Col. vii.
\(\left.\left[\begin{array}{llllll}\sigma \theta \alpha \iota & \imath \nu \alpha & \tau \iota & \delta \epsilon & \beta\end{array}\right] o v \lambda[\epsilon \tau \alpha \iota \quad \epsilon v \delta] \alpha \iota \mu \omega \nu \quad \epsilon l\right\rangle\)
\(\left[\begin{array}{llll}\nu \alpha \iota & \circ & \beta o v \lambda o \mu \epsilon \nu 0\end{array}\right] s \quad \alpha \lambda\left[\begin{array}{ll}\lambda \alpha & \tau \epsilon \lambda o\end{array}\right] s\) סok[\(\left.\epsilon \iota \quad \epsilon\right]\)
\(2 S_{5}[\chi \epsilon \iota \nu \quad \eta\) atoкрıбוs \(\left.\alpha \lambda \eta \theta \eta \lambda] \epsilon \gamma \epsilon \iota S \quad \epsilon \iota\right\rangle\)
\([\pi o \nu \in \gamma \omega \tau \alpha v \tau \eta \nu \delta] \epsilon \tau[\eta] \nu\) ßov \(\eta \eta \sigma \iota \nu\)

[\(\nu 0 \nu\) olє८ \(\epsilon \iota \nu \alpha \iota \pi] \alpha \nu \tau \omega \nu \quad \alpha \nu \theta \rho \omega \pi \omega \nu\)
[ка८ таעтаs т]aya日a \(\beta\) ov \(\lambda \epsilon \sigma \theta \alpha \iota ~ \alpha v \tau о \iota s\)

[Kot]vov \(\epsilon \iota \nu \alpha \iota \pi \alpha \nu \tau \omega \nu: ~ \tau \iota \delta \eta\) ouv \(\epsilon \phi \eta\)
\(\omega \Sigma \omega \kappa \rho \alpha \tau \epsilon S\) ov \(\pi \alpha \nu \tau \alpha[S \in \rho a] \nu \quad \phi \alpha \mu \epsilon \nu\rangle\)
\(\epsilon \iota \pi[\epsilon] \rho \quad \gamma \epsilon \pi \alpha \nu \tau \epsilon S \quad \tau \omega[\nu \quad \alpha v] \tau \omega \nu \quad \epsilon \rho \omega \sigma \iota\rangle\)
ка८ \(\alpha \iota \epsilon \iota \alpha \lambda[\lambda \alpha]\) тıvas \([\phi \alpha \mu] \epsilon \nu\) єраע tovs
\(295 \delta\) ov: \(\theta \alpha \nu \mu \alpha[\xi \omega] \quad \eta \nu[\delta\) є \(\gamma \omega\) к] \(\alpha \iota \alpha v \tau \circ s\rangle\)
\(\alpha \lambda \lambda \alpha \mu \eta \quad \theta \alpha[v \mu \alpha \zeta \epsilon \epsilon \phi \eta \quad \alpha \phi] \in \lambda o \nu \tau \epsilon[s]\rangle\)
\(\gamma \alpha \rho \alpha \rho \alpha\) тov [\(\epsilon \rho \omega]\) тos \(\tau \iota \stackrel{\epsilon}{i}\) iठos ovo \(\mu \alpha\rangle\)
§о \(\mu \in \nu\) то \(\tau \circ[v \quad o \lambda] o v\) \(\epsilon \pi เ \tau \iota \theta \epsilon \varphi \tau \in s \quad o\rangle\)
\(\nu о \mu \alpha\) єршт \(\tau\left[\begin{array}{ll}\alpha & \delta \epsilon\end{array}\right] \alpha \lambda \lambda \alpha\) \(\left.\alpha \lambda \lambda o \iota s ~ к \alpha\right\rangle\)
\(300 \tau \alpha \chi \rho \omega \mu \epsilon \theta \alpha\) о \(\nu \nu \mu] \alpha \sigma \iota: \omega \sigma \pi \epsilon \rho \tau \iota \eta \nu\)
\(\delta \epsilon \gamma \omega \omega \sigma \pi \epsilon \rho \tau[0 \delta \epsilon \quad \circ \iota] \sigma \theta\) oт८ \(\pi 0 \iota \eta \sigma \iota\) ¢ \(\epsilon\)
\(\sigma \tau \iota \nu \tau \iota \pi \circ \lambda v\) ! \(\gamma \alpha \rho \tau \hat{\omega} \epsilon \kappa \tau o v \mu \eta\) ov \(\rangle \eta\) үap \(\hat{\omega}\)
tos eis to ov ï \([0] \nu \tau \iota\) oтшovv altia)
\(\pi \alpha \sigma \alpha \in \sigma \tau \iota \pi o \iota \eta \sigma \iota s \omega \sigma \tau \epsilon\) ка८ \(\alpha \iota\) ü \(\pi 0\rangle \quad 205 \mathrm{C}\)

\(\eta \sigma \epsilon \iota S\) єІб८ каl ol тоитшע \(\delta \eta \mu \iota o v \rho \gamma o \iota\)
\(\pi \alpha \nu \tau \epsilon s\) по८ \(\eta \tau \alpha \iota: \alpha \lambda \eta \theta \eta \lambda \epsilon \gamma \epsilon \iota s, \alpha \lambda\rangle\)


```

$310 \tau \alpha a \pi[0 \delta \epsilon \pi] \alpha[\sigma], \eta s \quad \tau \eta S \pi o เ \eta \sigma \epsilon \omega s \in \nu$
$\mu \circ \rho \iota \circ[\nu \quad a \phi] \circ \rho \iota \sigma \theta \epsilon \nu$ то $\pi \epsilon \rho \iota \tau \eta \nu \quad \mu \circ v$
$\sigma \iota \kappa \eta \nu$ каı $\tau \alpha \mu \in \tau \rho \alpha$ т $\omega$ тov o入ov ovo
$\mu \alpha \tau \iota$ тробауорєยєта८ то८ทб८८ $\gamma \alpha \rho\rangle$
$\tau \alpha v \tau \alpha$ ноvov ка入є८та८ ка८ ol єXov

```

```

    \(\omega s \pi o \iota \eta \tau \alpha \iota: ~ \alpha \lambda \eta \theta \eta \quad \epsilon \phi \eta[\nu] \lambda \epsilon \gamma \epsilon \iota \varsigma\rangle\)
    оขт由 \(\tau \circ \iota \nu v \nu\) кає \(\pi \epsilon \rho \iota \tau 0 \nu\) [ \(\epsilon] \rho \omega \tau \alpha\rangle\)
    то \(\mu[\epsilon] \nu \quad \kappa \epsilon \phi \alpha \lambda \alpha \iota \nu \quad \epsilon \sigma \tau \iota \nu[\pi] \alpha \sigma \alpha \quad \eta\rangle\)
    \(\tau \omega \nu\) aүa \(\theta \omega \nu\) є \(\pi \iota \theta \nu \mu \iota \alpha\) ка८ \(\tau 0 \nu \epsilon \nu\)
    ```

```

    pos \(\epsilon \rho \omega s \pi \alpha \nu \tau \iota \alpha \lambda \lambda\) ol \(\mu \epsilon \nu \alpha \lambda \lambda \eta \tau \rho \epsilon\)
    ```

```

        \(\vee\)
    Хр \(\eta \mu \alpha \tau \iota \sigma \mu \circ \quad \eta\) ката ф८лоуv \(\mu \nu \alpha \sigma \tau \iota\)
    \(\alpha \nu \eta\) ката ф८入обоф८a оит єра \(\kappa \alpha\rangle\)
    325 [ $\lambda o u] \nu \tau \alpha l$ out $\epsilon \rho \alpha \sigma \tau \alpha l$ ol $\delta \epsilon \kappa \alpha \tau \alpha$ є $\tau l \in \ell$
סos їоעтєs $\tau \epsilon$ ка८ єбтоиסакотєs то
тov o入ov ovo $\mu \alpha \in \sigma \chi \circ \nu$ є $\rho \omega \tau \alpha \tau \epsilon$ кає $\epsilon$ )

```

```

    \(\theta_{\eta} \epsilon \phi \eta \nu \quad \epsilon \gamma \omega \lambda \in \gamma \epsilon[l] \nu: \kappa \alpha \iota \lambda \epsilon \gamma \epsilon \tau \alpha \iota \mu \bar{\epsilon}\)
    ```

Col．viii．

\(330[\gamma \epsilon \tau \iota s] \epsilon \phi \eta \lambda o \gamma[0 s\) ws ol \(\alpha] \nu \tau[0] \quad \eta \mu \llbracket \epsilon \rrbracket / \sigma v \in\rangle\) ［a］ut \(\omega \nu\) § \(\eta \tau \omega \sigma[\iota \nu\) outol \(\epsilon] \rho \omega \sigma \iota\) o \(\delta\) є \(\mu\) оs \(\lambda_{0} \quad 205 \mathrm{E}\) रos outє \(\eta \mu[\epsilon \iota \sigma \iota o s ~ \phi \eta \sigma \iota] \nu\) єเval тоע \(\epsilon \rho \omega\) \(\tau \alpha\) є \(\overline{\nu \alpha \alpha L}[0] \nu \tau \epsilon[0 \lambda o v \epsilon \alpha \nu] \mu \eta \tau v \gamma \chi \alpha \nu \eta\rangle\)
\(\gamma \epsilon \pi o v \omega \epsilon \tau \alpha[\iota \rho \epsilon \alpha \gamma \alpha \theta \circ \nu \quad o \nu] \in \pi \epsilon \iota \alpha \nu \tau \bar{\omega}\)
\(335 \gamma \epsilon \kappa \alpha \iota \pi o[\delta \alpha s\) к \(\alpha \iota \chi \in \iota \rho \alpha s \quad \epsilon \theta \epsilon \lambda o v \sigma \iota] \nu \alpha \pi \circ\)
\(\tau \epsilon[\mu \nu \epsilon \sigma \theta a \iota\) oै \(\alpha \nu \theta \rho \omega \pi\) ol \(\epsilon \alpha \nu\) a]utoıs \(\delta\) o

 \(\delta \iota \omega \kappa[0 \nu] \tau \omega \nu\) avтo кає \(\epsilon \nu \tau[l] \nu \tau \pi \rho \alpha\rangle\)方
 \(\kappa \alpha \lambda[0]!\tau 0 \tau!\tau[0 \nu \tau 0 \quad \tau] \nu \gamma \chi^{\alpha \nu \epsilon \epsilon}\) ov \(\tau 0\)

 \(\sigma о \phi \iota \alpha\) каı єфоוтшע \(\pi \alpha \rho \alpha \quad \sigma \epsilon \alpha v \tau \alpha \quad \tau \alpha v\) \(\tau \alpha: ~ \mu \alpha \theta \eta \sigma о \mu \epsilon \nu 0 s \alpha \lambda \lambda\) є \(\gamma \omega\) бо८ \(\epsilon \phi \eta \in \rho \omega\) єбт८ \(\gamma \alpha \rho\) тоуто токоs \(\epsilon \nu\) кал \(\kappa\) ка८〉 \(\kappa \alpha \tau \alpha\) то \(\sigma \omega \mu \alpha \kappa \alpha \iota \kappa \alpha \tau \alpha\) \(\tau \eta \nu \psi \nu \chi \eta \nu\)
 \(\lambda \epsilon \gamma \epsilon \epsilon\) кає ov \(\mu \alpha \nu \theta \alpha \nu \omega: \alpha \lambda \lambda \epsilon \gamma \omega \delta \eta \quad 206 \mathrm{C}\) \(\sigma \alpha \phi \in \sigma \tau \epsilon \rho 0 \nu\) є \(\epsilon \omega\) кvovatv \(\gamma \alpha \rho\) € \(\phi \eta\rangle\) \(\omega \sum_{\omega} \omega \kappa \rho \alpha \tau \epsilon s \pi \alpha \nu \tau \epsilon s\) a \(\nu \theta \rho \omega \pi о \iota\) ка८ \(\kappa \alpha \tau \alpha\) то \(\sigma \omega \mu \alpha \kappa \alpha \iota \kappa \alpha \tau \alpha ~ \tau \eta \nu \psi \nu \chi \eta \nu\)
\(365 \kappa \alpha \iota \in \pi \epsilon \epsilon \delta a \nu \in \nu \quad \tau \iota \nu \iota \eta \lambda \iota \kappa \iota \alpha \gamma \in \nu \omega \nu\) \(\tau \alpha \iota \tau \iota \kappa \tau \epsilon \iota \nu \quad \epsilon \pi \iota \theta v \mu \epsilon \backslash \llbracket \nu] \eta \mu \omega \nu \quad \eta \phi v\) \(\sigma \iota S \tau \iota K \tau \epsilon \nu \nu \delta \epsilon \nu \mu \epsilon \nu\) al \(\delta \chi \rho \omega\) ov \(\delta v\) \(\nu a \tau \alpha \iota \in \nu \delta \in \kappa \alpha \lambda \omega \quad \eta\) रap \(\alpha \nu \delta \rho o s\) ка८ रvvaıkos бvyovaıa токоs єбтเv
 \(\mu \alpha\) кац тоито \(\epsilon \nu \quad \theta \nu \eta \tau \omega\) оут८ \(\tau \omega\) ऽ \(\omega \omega\) aӨavatov \(\epsilon \nu \in \sigma \tau \iota \nu \quad \eta\) кvך \(\sigma \iota s\) каl \(\eta \gamma \epsilon \nu \nu \eta \sigma \iota s \tau \alpha \delta \in \nu \tau \omega \alpha \nu \alpha \rho\) \(\mu о \sigma \tau \omega\) a \(\delta v \nu a \tau o v \quad \gamma \in \nu \in \sigma \theta a \iota\) avap \(\mu \circ\rangle\)
 \(\theta \epsilon \omega\) то \(\delta \epsilon\) ка入ov apرотто⿱ \(\mu\) оוра ovv \(\kappa \alpha \iota ~ \epsilon \iota \lambda v \theta v i ̈ \alpha \stackrel{\dot{\eta}}{\kappa} \alpha \lambda \lambda о \nu \hat{\eta} \epsilon \sigma \tau \iota \nu \quad \tau \eta \gamma \epsilon\rangle\)

Col．ix．
\(\nu \epsilon \sigma\left[\epsilon \epsilon \delta_{i}^{\prime}\left[\begin{array}{lll}\alpha & \tau \alpha] v \tau \alpha & \text { or } \alpha[\nu\end{array} \quad \mu \epsilon \nu\right] \quad \kappa \alpha\left[\begin{array}{lll}\lambda \omega & \pi \rho o \sigma\end{array}\right.\right.\) \(\pi \epsilon \lambda \alpha \zeta \eta\) то киov \(i \quad i \lambda \epsilon[\omega] \nu \quad \tau \epsilon \quad \gamma \iota \gamma \nu[\epsilon] \tau \alpha l\rangle\)
 \(\kappa \tau \epsilon \iota \quad \tau \in \kappa \alpha \iota \gamma \in \nu \nu \alpha: \quad \varrho[\tau \alpha] \nu\) dє \(\alpha \iota \sigma \chi[\rho] \omega\) бк \(\nu\)
 рата८ ка८ атот \(\rho \in \pi \epsilon \tau[\alpha] \iota\) к \(\alpha[\iota]\) a \(\alpha[\iota \lambda] \lambda \in \tau \alpha \iota\) \(\kappa \alpha \iota\) ov \(\gamma \epsilon \nu \nu[\alpha]\) a \(\lambda \lambda \iota \sigma \chi \circ \nu\) то \(\kappa v \eta \mu[\alpha \quad \chi \alpha] \lambda \epsilon\)
\(385 \pi \omega s \quad \phi \epsilon \rho \epsilon \iota[0 \theta] \epsilon \nu \quad \delta \eta \tau[\omega]\) кvovขт \(\quad[\tau \epsilon \kappa \alpha \iota]\rangle\)
\(\eta \delta \eta \sigma \pi \alpha \rho \gamma \omega \nu \tau \iota \pi 0 \lambda \lambda \eta \quad \eta \pi \tau 0 \iota \eta \sigma[\iota \varsigma \gamma \epsilon\)
\(\gamma о \nu \epsilon \pi \epsilon \rho \iota\) то \(\kappa \alpha \lambda 0 \nu[\delta] \iota \alpha\) то \(\mu \epsilon \gamma \alpha \lambda[\eta \zeta] \omega\rangle \quad 206 \mathrm{E}\)

390 p \(\omega\) S \(\omega\) S \(\left.\sigma[\nu]{ }^{\circ}[\iota] \epsilon \iota: \alpha \lambda \lambda \alpha \tau \iota \mu \eta \nu[:] \tau \eta S \quad \gamma \in \nu\right\rangle\)

ка८ a \(\theta \alpha \nu \alpha \tau 0 \nu\) ws \(\theta \nu \eta \tau \omega \quad \eta \quad \gamma \in \nu \nu \eta \sigma \iota s\)
395 aӨavaбıas \(\delta \epsilon\) а \(\nu \alpha \gamma к \alpha \iota o \nu ~ \epsilon \pi \iota \theta v \mu \epsilon \iota \nu\)
\(\mu \epsilon \tau \alpha\) a \(\alpha \alpha 0 v \in \kappa \quad \tau \omega \nu \quad \omega \mu о \lambda о \gamma \eta \mu \epsilon \nu \bar{\omega}\)
\(\epsilon[l] \pi \epsilon \rho\) тov ara月ov єavto єเval alє८ єршs
\(\epsilon[\sigma] \tau \iota \nu\) алаукаוоv \(\delta \eta\) \(\epsilon \kappa\) тоитоv тоv
Noyov кає \(\tau \eta s\) a日avaбıas тоע \(\epsilon \rho \omega \tau \alpha\)
\(4<0\) єเval．\(\tau \alpha u \tau \alpha \tau \epsilon\) ovv \(\pi \alpha \nu \tau \alpha \in \delta i \delta \alpha\rangle\)
\(\sigma \kappa є \mu \epsilon\) ототє \(\pi \epsilon \rho \iota \tau \omega \nu \quad є \rho \omega \tau \iota \kappa \omega \nu\) 入o
```

    \gamma[0]us \piоlot\tauo: ка\iota \piот\epsilon \eta\rho\epsilon\tauо: \taul ol\epsilonl>
    \omega \sum\omegaк\rho\alphaт\epsilons altiov \epsilontval tovtov tov
    \epsilon\rho\omegaтоs к\alphal \tau\etas \epsilon\pi\iota0v\mulas \eta ovк \alpha\iota\sigma0\alpha
    4 0 5 \nu \epsilon \iota ~ \omega s ~ \delta \epsilon t \nu \omega S ~ \delta \iota a \tau \ell \theta \epsilon \tau \alpha l ~ \pi \alpha \nu \tau \alpha ~ \tau \alpha

```

```

    \pi\iota0v\mu\eta\sigma\eta к\alpha\iota \tau\alpha \pi\epsilon\zeta\alpha к\alpha\iota \tau\alpha \pi\tau\eta>
    \nu\alpha \nuo\sigmaovv\tau\alpha \tau\epsilon \pi\alpha\nu\tau\alpha к\alpha\iota \epsilonр\omegaт\iota\rangle
    \kappa\omegas \delta\iotaa\tau\ell0\epsilon\mu\epsilon\nu\alpha \pi\rho\omegaто\nu \mu\epsilon\nu \pi\epsilon
    410 \rho\iota \tauо \xiv\mu\mu\iota\gamma\eta\nu\alpha\iota a\lambda\lambda\eta\lambdao\iotas \epsilon\pi\epsilon\iota\tau\alpha
\pi\epsilon\rho\iota \tau\eta\nu \tau\rhoоф\eta\nu \tauо\nu \gamma\epsilon\nuо\mu\epsilon\nuоv

```

```

    \deltaı\alpha\mu\alpha\\epsilon\sigma0a\iota \tau\alpha \alpha\sigma0\epsilon\nu\epsilon\sigma\tau\alpha\tau\alpha \tauоוS
    ```

```

415 к\alpha\iota \alphav\tau\omega \tau\omega \lambda\epsilon\iota\mu\omega \pi\alphaрат\iota\nuо\mu\epsilon\nu\alpha
\omega\sigma\tau\epsilon \epsilonк\epsilon\iota\nuа \epsilonкт\rho\epsilon\phi\epsilon\iota\nu ка\iota а\lambda\lambdaо>
\pi\alpha\nu \piolov\nu\tau\alpha \tauovs }\mu\epsilon\nu \gamma\alpha\rho \alpha\nu0\rho
\piovs \epsilonф\eta olotr av \tauts \epsilonк \lambdao\gammaเ\sigma\muov
\tauаv\tau\alpha \piоו\epsilon\iota\nu \tauа \delta\epsilon Ө\etapla \tauוs a\iota
4 2 0 ~ \tau \iota \alpha ~ o v \tau \omega s ~ \epsilon \rho \omega \tau \iota к \omega s ~ \delta ı a \tau \iota \theta \epsilon \sigma \theta \alpha \iota ~
\epsilon\chi\epsilon\iotas \lambda\epsilon\gamma\epsilont\nu: к\alphal \epsilon\gamma\omega \epsilon\lambda\epsilon\gammao\nu o\taul>
оvк \epsilon\iota\delta\epsilon\iota\eta\nu: \eta \delta \epsilonו\pi\epsilon\nu \delta\iotaa\nu0\epsilon\iota
ov\nu \delta\epsilon\epsilon\nu\nu[s \pio]\tau\epsilon \gamma\epsilon\nu\eta\sigma\epsilon\sigma0\alpha\iota \tau\alpha \epsilon
р\omegaт\iotaка \epsilon\alpha[\nu \tau]av\tau\alpha \mu\eta \epsilonv\nu0\etas \llbracket \eta\rrbracket]
425 \alpha\lambda\lambda\alpha \delta\iota\alpha [\tau\alphav]\tau\alpha \tauо\iota \omega <br>iota\varrhoฺ\tau\mu\alpha

```

Col. x.
 ○[\(\left.\tau \iota \delta_{l}\right] \delta \alpha \sigma \kappa \alpha \lambda \omega \nu \quad \delta \epsilon о \mu \alpha \iota[\alpha \lambda \lambda] \alpha \mu[0 \iota \lambda \epsilon\) \(\gamma \in \kappa \alpha \iota \quad \tau 0 v \tau \omega \nu \quad \tau \eta \nu \alpha \iota \tau[[\alpha \nu \quad \kappa] a \iota \tau[\omega \nu\) \(\alpha \lambda \lambda \omega \nu \tau \omega \nu \pi \epsilon \rho \iota \tau \alpha[\epsilon] \rho \omega \tau[\iota \kappa \alpha \in \iota \tau\)

 [\(\lambda\)]oy \(\eta \sigma a \mu \epsilon \nu \mu \eta\) \(\theta \alpha \nu \mu \alpha \xi_{\epsilon} \epsilon \nu \tau \alpha \nu \theta a\) \([\gamma] \alpha \rho\) тov avtov \(\epsilon \kappa \epsilon \iota \nu \omega\) \(\lambda 0[\gamma 0] \nu \eta\) \(\theta_{\nu} \eta\) 207 D

435 T€ єเval каl aӨavatos סuvatal \(\delta \epsilon\) \(\tau \alpha v \tau \eta\) मovov \(\tau \eta \quad \gamma \epsilon \nu \epsilon \sigma \epsilon \iota\) oтl \(\alpha \epsilon \iota\)
 \(\pi \alpha \lambda \alpha \iota o v \in \pi \epsilon \iota\) ка८ \(\epsilon \nu \stackrel{\hat{\omega}}{\omega} \epsilon \nu \epsilon \kappa \alpha \sigma \pi о \nu\)

\(4 \ddagger 0 \nu \alpha \iota\) то аuto otov \(\epsilon \kappa\) таıठaplov>
o avtos \(\lambda \epsilon \gamma \epsilon \tau \alpha \iota\) є \(\omega\) s av \(\pi \rho \epsilon \sigma \beta v \tau \eta s\)
\(\gamma \epsilon \nu \eta \tau \alpha \ell\) ovtos \(\mu \epsilon \nu \tau 0 \ell\) ov \(\delta \epsilon \pi 0\rangle\)
\(\tau \epsilon \tau \alpha \nu \tau \alpha \in X \omega \nu \quad \epsilon \nu\) av \(\epsilon \omega\) o \(\omega \omega\) s o>
\(\alpha v \tau 0 s\) к \(\alpha \lambda \epsilon \iota \tau \alpha \iota \quad \alpha \lambda \lambda \alpha\) \(\nu \in O S\) alєt \(\gamma \iota\)
 \(\tau \rho \iota \chi \alpha s\) кає \(\sigma \alpha \rho \kappa \alpha\) к \(\alpha[\iota]\) обт \(\alpha \kappa \alpha \iota \alpha \iota \mu \alpha\) к \(\alpha \iota\)
\(\sigma \llbracket \xi] \quad \nu \mu \pi \alpha \nu\) то \(\sigma \omega \mu \alpha\) ка८ \(\mu \eta\) отє ката то
\(\sigma \omega \mu \alpha \alpha \lambda \lambda \alpha[k] \alpha \iota\) кат \(\alpha \quad \tau \eta \nu \psi \nu \chi \eta \nu\) ol \(\rangle\)

\(450 \nu \alpha \iota \lambda u \pi \alpha \iota\) фоßоц тоvт \(\omega \nu\) єкабта ov \(\epsilon\) \(\pi о \tau \epsilon \tau \alpha \cup \tau \alpha\) т \(\alpha \rho \epsilon \sigma \tau \iota \nu\) єкабт \(\alpha \lambda \lambda \alpha\) \(\tau \alpha \mu \epsilon \nu \quad \gamma \iota \gamma \nu \in \tau \alpha \iota \quad \tau \alpha \delta \alpha \pi 0 \lambda \lambda \nu \tau \alpha \iota \pi 0\)
 al \(\epsilon \pi \iota \sigma \tau \eta \mu \alpha \iota \quad \mu \eta\) oтl al \(\mu \in \nu \quad \gamma \iota \gamma \nu 0 \nu \tau \alpha \iota\)
\(455 \alpha \iota \delta \epsilon \alpha \pi 0 \lambda \lambda v \nu \tau \alpha \iota \quad \eta \mu \iota \nu\) к \(\alpha \iota\) ov \(\delta \epsilon \pi \circ\rangle\)
\(\tau \epsilon\) ol avtol \(\epsilon \sigma \mu \epsilon \nu\) ov \(\delta \epsilon\) ката \(\tau \alpha \mathrm{s} \epsilon \pi \iota\)
\(\sigma \tau \eta \mu \alpha s, ~ \alpha \lambda \lambda \alpha\) ка८ \(\mu \iota \alpha\) єк \(\alpha \sigma \tau \eta \tau \omega \nu\rangle\)
\(\epsilon \pi \iota \sigma \tau \eta \mu \omega \nu\) т \(\alpha v \tau 0 \nu \pi \alpha \sigma \chi \epsilon \ell\) о \(\gamma \alpha \rho\) к \(\alpha\)
\(\lambda \epsilon \iota \tau \alpha \iota \mu \epsilon \lambda \epsilon \tau \alpha \nu\) wS \(\epsilon \xi \iota \circ \sigma \sigma \eta S \in \sigma \tau \iota \tau \eta S\)
\(460 \epsilon \pi \iota \sigma \tau \eta \mu \eta S \quad \lambda \eta \theta \eta \quad \gamma \alpha \rho \in \pi \iota \sigma \tau \eta \mu \eta S \in\rangle\)
छoסos \(\mu \in \lambda \epsilon \tau \eta \delta \epsilon \pi \alpha \lambda l \nu\) каl। \(\eta \nu \in \nu\)
 \(\zeta \epsilon \iota ~ \tau \eta \nu \quad \epsilon \pi \iota \sigma \tau \eta \mu \eta \nu \omega \sigma \tau \epsilon \tau \eta \nu \quad \alpha v\rangle\)
\(\tau \eta \nu\) סокєเv \(\epsilon เ \nu \alpha \iota\) тovi \(\omega\) रa \(\rho \tau \omega \tau \rho o\)
\({ }^{6}{ }_{5} \pi \omega \pi \alpha \nu\) то \(\theta \nu \eta \tau 0 \nu \sigma \omega \zeta \epsilon \tau \alpha \iota\) ôv \(\tau \hat{\omega}\)

\(\omega \sigma \pi \epsilon \rho\) то \(\theta \epsilon \iota \circ \nu \alpha \lambda \lambda \alpha\) т \(\omega\) то \(\alpha \pi \iota \nu\)
\(\kappa \alpha \iota \pi \alpha \lambda \alpha \iota o v \mu \epsilon \nu O \nu \quad \epsilon \tau \epsilon \rho \circ \nu \quad \nu \in O \nu \overline{\epsilon \nu}\)
\(\epsilon\)
\(\epsilon \nu \kappa \alpha \tau \alpha \lambda \iota \pi \epsilon \iota \nu\) oוov avto \(\eta \nu \tau \alpha v\rangle\)
\(470 \tau \eta \tau \eta \mu \eta \chi^{\alpha \nu \eta} \omega \sum \omega \kappa \rho \alpha \tau \epsilon S \epsilon \phi \eta\)
\(\theta \nu \eta \tau o \nu\) a \(\theta \alpha \nu \alpha \sigma \iota \alpha s{ }^{\mu} \epsilon \tau \epsilon \chi \in \iota\) к \(\alpha \iota\)
\(\sigma \omega \mu \alpha \kappa \alpha \iota \tau \alpha \lambda \lambda \alpha \pi \alpha \nu \tau \alpha \quad \alpha \theta \alpha \nu \alpha\rangle\)

\section*{Col. xi.}
\([\tau 0] \nu \delta \epsilon \alpha\left[\lambda \lambda \eta \mu \eta\right.\) ovv \(\left.\theta \alpha v \mu \alpha \xi_{\epsilon} \epsilon l\right]\) тo \(\alpha v\) \([\tau o v] \alpha \pi o \beta[\lambda \alpha \sigma \tau \eta \mu \alpha \quad \phi v \sigma \epsilon \iota \pi \alpha \nu] \tau \epsilon \iota \mu \alpha\)
\(475 \alpha \theta[\alpha \nu \alpha \sigma \iota \alpha s \quad \gamma \alpha \rho\) X \(\alpha \rho \iota \nu \pi \alpha \nu \tau \iota \alpha] v \tau \eta \quad \eta\)
 [коvбas \(\tau 0 \nu\) 入oyov \(\epsilon \theta \alpha u \mu \alpha \sigma \alpha] \tau \epsilon \kappa \alpha \iota\rangle\) \([\epsilon \iota \pi o] \nu \in[\iota \epsilon \nu \quad \eta \nu \quad \delta \quad \epsilon \gamma \omega \omega \sigma \sigma 0 \phi \omega \tau] \alpha \tau \eta \quad \Delta \iota 0\rangle\) \([\tau \iota] \mu \alpha \quad \tau \alpha v \tau \alpha\) \(\omega s[\alpha \lambda \eta \theta \omega S\) o]v \([\omega S \quad \in X \in \iota\rangle\)
\(480[\kappa \alpha] \iota \hat{\eta} \omega \sigma \pi \epsilon \rho\) ol \(\tau \epsilon[\lambda \epsilon 0 \iota \sigma 0 \phi] \iota \sigma \tau \alpha \iota \in v \iota \sigma \theta \iota\)
\([\epsilon \phi] \eta \omega \sum \omega \kappa \rho \alpha \tau \epsilon s[\epsilon \pi \epsilon \iota \quad \kappa] \alpha \iota \tau \omega \nu \quad \alpha \nu \theta \rho \omega\)

\(\beta \lambda_{\epsilon} \psi \alpha \iota \quad \theta \alpha v \mu \alpha[\delta \circ \iota s]\) av \(\tau \eta s\) a \(\lambda o \gamma \iota \alpha s\) \(\pi \epsilon \rho \iota\) a \(\epsilon \gamma \omega \epsilon \iota \rho \eta \kappa\left[\begin{array}{lll}\alpha & \epsilon\end{array}\right] \quad \mu \eta \quad \epsilon \nu \nu 0 \epsilon \iota S \in \nu \theta v\)
\(485 \mu \eta \theta_{\epsilon \iota S} \omega S \delta \epsilon \iota \nu\left[\omega S \delta_{l}\right] \alpha \kappa \epsilon \iota \nu \tau \alpha \iota \quad \epsilon \rho \omega \tau \iota\) тov ovo \(\mu \alpha \sigma \tau[0 \iota \quad \gamma \epsilon \nu] \epsilon \sigma \theta \alpha \iota\) к \(\alpha \iota \quad \kappa \lambda \epsilon о S\) єis tov alєl Xpovov aOavatov ка \(\tau \alpha \theta \epsilon \sigma \theta \alpha \iota\) к \(\alpha \iota ~ \ddot{u} \pi \epsilon \rho\) тоvтоv кı \(\downarrow \delta \cup\) vous \(\tau \epsilon \kappa \iota \nu \delta \nu \nu \epsilon \nu \epsilon \iota \nu\) єтоו \(\mu \circ \iota \in \iota \sigma \iota\)
\(490 \pi \alpha \nu \tau \alpha s \in \tau \iota \mu \alpha \lambda \lambda o[\nu \quad \eta] \ddot{v} \pi \epsilon \rho \tau \omega \nu\rangle\) \(\pi \alpha \iota \delta \omega \nu \kappa \alpha \iota \quad \chi \rho \eta \mu \alpha[\tau] \quad \alpha \nu \alpha \lambda \iota \sigma \kappa \epsilon \iota \nu\)
\(\mu \epsilon \nu\) ous a \(\alpha a \nu \alpha \tau o \nu \quad \mu \nu \eta \mu \eta \nu \quad \alpha \rho \epsilon\)
\(500 \tau \eta \mathrm{~S} \pi \epsilon \rho \iota \epsilon \alpha \nu \tau \omega \nu \in \sigma \epsilon \sigma \theta \alpha \iota \quad \eta \nu \nu v \nu\rangle\) \(\eta \mu \epsilon \iota S \in \chi \circ \mu \epsilon \nu\) то入入ov \(\gamma \epsilon \delta \epsilon \iota \epsilon \phi \eta\rangle\) \(\alpha \lambda \lambda\) oıцає \(̈ \pi \epsilon \epsilon \rho\) \(\alpha \rho \epsilon \tau \eta S\) \(\alpha \theta \alpha \nu \alpha \tau о v\) кає тоเаutךs \(\delta 0 \xi \eta s\) єvк \(\lambda \in\) оus \(\rangle\) \(\pi \alpha \nu \tau \epsilon s \pi \alpha \nu \tau \alpha\) тoloval \(\boldsymbol{\sigma} \sigma \omega\) a \(\alpha\)

\(\gamma \alpha \rho \alpha \theta \alpha \nu \alpha \tau[0] v \quad \epsilon \rho \omega \sigma l \cdot\) ol \(\mu \in \nu\) ovv \(\in \nu\) кข \(\mu\) оvєs \(\epsilon \phi \eta\) ката \(\tau \alpha \sigma \omega \mu \alpha \tau \alpha\) оv
 \(\pi о \nu \tau \alpha \iota\) каl таvтך єратıко८ єเб८〉
 \(\mu \nu \eta \mu \eta \nu\) каь єv \(\delta \alpha \iota \mu\) о̀ıa \(\nu\) ws ol ovtal avtols \(\epsilon![S\) тo］\(\nu \in \pi \iota \tau \alpha\) Xpo \(\nu 0 \nu \pi \alpha \nu \tau \alpha \pi o \rho \iota \xi[0] \mu \in \nu 0 l\) ol \(\delta \epsilon\rangle\) \(\kappa \alpha \tau \alpha ~ \tau \eta \nu \psi v \chi \eta \nu\) є \(\sigma \iota\) \(\gamma \alpha \rho\) ovv \(\epsilon \phi \eta\)
\(5^{15}\) ol \(\epsilon \nu\) таıs \(\psi v \chi \alpha \iota s\) кvovaıv \(\epsilon \tau \iota \mu \alpha \lambda \lambda \bar{o}\) \(\eta \in \nu\) тols \(\sigma \omega \mu \alpha \sigma \iota \nu\) a \(\psi v \chi \eta \pi \rho[0 \sigma] \eta \kappa \iota\) ка८ кขךба \(\tau \llbracket \alpha \rrbracket]\) ка८ \(\tau \epsilon \kappa \epsilon \iota \nu\) тו ovv \(\pi \rho \circ \sigma\). \(\eta \kappa \in \iota \quad \phi \rho о \nu \eta \sigma \iota \nu \tau[\epsilon \kappa \alpha] \iota \tau \eta \nu \quad \alpha \lambda \lambda \eta \nu\) \(\alpha \rho \epsilon \tau \eta \nu \quad \omega \nu \quad \delta \eta \in[\iota \sigma \iota \quad \kappa] \alpha \iota\) ol \(\pi \circ \iota \eta \tau[\alpha \iota\) \(520 \pi \alpha[\nu \tau] \epsilon S \quad \gamma \epsilon \nu \nu \eta[\tau 0 \rho \epsilon] s\) ка८ \(\tau \omega \nu \delta[\eta\)

Col．xii．
\(\mu \iota o v \rho \gamma \omega \nu\) oбol \(\lambda \epsilon \gamma 0 \nu \tau \alpha \iota\) єvp \([\epsilon \tau] \iota \kappa 0 \iota\rangle\)
\(\epsilon[l] \nu \alpha \iota \pi 0 \lambda v\) 片 \(\mu[\epsilon \gamma] \iota \sigma \tau \eta \quad \epsilon \phi \eta[\kappa] \alpha \iota \kappa \alpha \lambda\rangle\)
\(\lambda \iota \sigma \tau \eta \tau \eta s \quad \phi \rho о \nu \eta \sigma \epsilon \omega s \quad \eta \pi \epsilon \rho \iota \tau \alpha s \tau \bar{\omega}\) \(\pi о \lambda \epsilon \omega \nu \quad \tau \epsilon \kappa \alpha \iota\) о८к \(\eta \sigma \epsilon \omega \nu\)［ \(\delta\) ］८акоб \(\mu \eta\rangle\)
525 бוs \(\eta\) \(\delta \eta\) оขо \(\mu\) є \(\sigma \tau \iota \nu ~ \sigma \omega ф \rho о \sigma \nu \nu \eta ~ \tau \epsilon\)

\(\epsilon \kappa \quad \nu \epsilon 0 v\) єккข \(\mu \omega \nu \quad \eta \quad \tau \eta \nu \psi v \chi \eta \nu \quad \theta \epsilon \iota \circ S\)
209 B
\(\omega \nu\) каı \(\eta к о \cup \sigma \eta\) S \(\tau \eta S\) \(\eta \lambda \iota \kappa \iota \alpha s\) тıктє \(\bar{l}\)
\(\tau \epsilon \kappa \alpha \iota \gamma \epsilon \nu \nu \alpha \nu \quad \eta \delta \eta \quad \epsilon \pi \iota \theta \nu \mu \eta\) \(\zeta \eta \tau \epsilon \iota\)
\(530 \delta \eta\) оє \(\mu \alpha \iota\) кац оутоs \(\pi \epsilon \rho \iota i ̈ \omega \nu\) то кал \(\bar{o}\) \(\epsilon \nu \omega \alpha \nu \quad \gamma \epsilon \nu \nu \eta \sigma \epsilon \epsilon \epsilon \nu \quad \epsilon \nu\left[\begin{array}{ll}\tau \omega & \gamma\end{array}\right] \alpha \rho \quad \alpha \sigma \chi \rho \omega\) ov \(\delta \epsilon \pi о \tau \epsilon \gamma \epsilon \nu \nu \eta \sigma \epsilon \iota \quad \tau \alpha \tau[\epsilon]\) ov \(\sigma \omega \mu \alpha\) \(\tau \alpha \tau \alpha \kappa \alpha \lambda \alpha \mu \alpha \lambda \lambda o \nu \quad \eta \tau[\alpha] \alpha \iota \sigma \chi[\rho] \alpha \alpha \sigma \pi \alpha\) \(\zeta \epsilon \tau \alpha \iota a \tau \epsilon \kappa \nu \omega ิ \nu \kappa \alpha \iota \quad \alpha \nu \epsilon \nu \tau v \chi \eta \psi v\)
ธ35 \(\chi \eta\) ка入 \(\eta\) ка८ \(\gamma \in \nu \nu \alpha l \alpha\)［ка८］єvфvє८ \(\pi \alpha\) \(\nu v \delta \eta \alpha \sigma \pi \alpha \oint \epsilon \tau \alpha[l]\) то \(\xi v \nu \alpha \nu \phi о \tau \epsilon \rho \bar{o}\)
 Ous \(\epsilon v \pi[0 \rho] \in[l \lambda\) \(\pi \epsilon \rho \iota \quad 0 \iota[0 \nu \quad \chi \rho \eta] \epsilon \iota \nu \alpha \iota \tau 0 \nu \alpha \nu \delta \rho \alpha \tau 0 \nu\)
540 araOov к \(\alpha \iota[\alpha \in \pi \iota \tau] \eta \delta \epsilon v \epsilon \iota \nu\) к \(\alpha \iota \epsilon \pi \iota\rangle\) \(\chi \in \iota \rho \in \iota \pi \alpha \iota \delta \in \nu[\epsilon \iota \nu] \quad \alpha \pi \tau 0 \mu \epsilon[\nu] o s \quad \gamma \alpha \rho\rangle\) o七 \(\mu \alpha \ell\) тоv калоv ка८ о \(\mu \epsilon \iota \lambda \omega \nu \quad \alpha[v \tau \omega\) \(\alpha \pi \alpha \lambda \alpha \iota \quad \epsilon \kappa v \epsilon \iota \quad \tau[l] \kappa \tau \epsilon \iota\) каl \(\gamma \epsilon \nu \nu[\alpha\) к \(\alpha \iota\) \(\pi \alpha \rho[[o \nu \tau]] \omega \nu \quad \kappa \alpha t \quad \alpha \pi \omega \nu \quad \mu \epsilon \mu \nu \eta \mu \epsilon \nu[\) os
545 ка८ то \(\gamma \epsilon \nu \nu \eta \theta \epsilon \nu \quad \sigma \nu \nu \epsilon \kappa \tau \rho \epsilon \phi \epsilon \iota\) ко८ \(\nu \eta \mu \epsilon \tau\) єкєเขov \(\omega \sigma \tau \epsilon \pi \sigma \lambda \nu \quad \mu \epsilon \iota \zeta \omega\rangle\) \(\kappa о \iota \nu \omega \nu \iota \alpha \nu \quad \tau \eta s \quad \tau \omega \nu \pi \alpha \iota \delta \omega \nu \pi \rho o s\)
 \(\phi \iota \lambda \iota \alpha \nu \quad \beta \epsilon \beta \alpha \iota \circ \tau \epsilon \rho \alpha \nu \quad \alpha \tau \epsilon\) к \(\alpha \lambda \lambda \epsilon \iota 0\rangle\)
\(550 \nu \omega \nu\) каı \(\alpha \theta \alpha \nu \alpha \tau \omega \tau \epsilon \rho \omega \nu \pi \alpha[\iota \delta] \omega \nu\) \(\kappa \epsilon к о \iota \nu \omega \nu \eta к о \tau \epsilon s\) ка८ \(\pi \alpha s\) а́̀ \(\delta \epsilon \xi \alpha \iota\) то єаvт \(\omega\) tolovtous \(\pi \alpha l \delta \alpha s ~ \mu \alpha \lambda \lambda \bar{o}\) \(\gamma \in \gamma o \nu \in \nu \alpha l ~ \eta\) tous av \(\theta \rho \omega \pi \iota \nu\) ous \(\kappa \alpha \iota\)

555 кац Tous \(\alpha \lambda\) 入ous mo८ \(\eta \tau \alpha\) s tous \(\alpha \gamma \alpha\rangle\) Oous \(\zeta \eta \lambda \omega \nu\) o८a \(\epsilon \gamma \gamma \circ \nu \alpha[\epsilon] \alpha \nu \tau \omega \nu \kappa \alpha\) \(\tau \alpha \lambda \epsilon \iota \pi o v \sigma \iota \nu\) a \(\epsilon \kappa \epsilon \iota \nu \circ \iota[s]\) a \(\alpha \alpha \nu \alpha \tau \bar{o}\) \(\kappa \lambda \epsilon 0 s \kappa \alpha \iota \mu \nu \eta \mu \eta \nu \pi \alpha[\rho] \epsilon \mathrm{X} \in \tau \alpha \iota \quad \alpha \nu\)

560 olous Mukoupyos \(\pi \alpha \iota \delta \alpha s\) кат \(\epsilon \lambda \iota \pi \epsilon\) то \(\epsilon \nu \Lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о[\nu]!\quad \sigma \omega \tau \eta \rho \alpha s \quad \tau \eta s\)
 \(\tau \eta s\) Eג入a \(\delta\) os \(\tau \iota \mu \iota o s ~ \delta \epsilon \pi \alpha[\rho]\) ．\(\eta \mu \iota \nu\)［к \(\alpha \iota\)
- \(\Sigma \circ \lambda \omega \nu \quad \delta \iota \alpha\) т \(\left.\eta \nu \tau \omega \nu \quad \nu \circ \mu \omega \nu^{\prime} \gamma \in \nu^{\prime}\right\rangle\) \(565 \nu \eta \sigma \iota \nu\) ка८ \(\alpha \lambda \lambda o \iota\) a \(1 \lambda 0 \theta_{\iota} \pi о \lambda \lambda \alpha \chi \circ v\)
 \(\left.\pi о \lambda \lambda \alpha \quad \kappa \alpha \iota \quad \alpha \lambda \lambda \alpha \quad \alpha \pi \circ \phi\left[\eta l^{\prime}\right] \alpha \mu \in \nu^{\prime} \circ \iota\right\rangle\)

\section*{Col. xiii.}

```

    \rho\epsilonт\eta\nu \omega\nu}\kappa\alpha\iota \ddot{\epsilon\rho\alpha mо\lambda\lambda\alpha \eta\delta\eta \gamma\epsilon\gammaо\mp@subsup{v}{}{\prime}\epsilon>
    j70 \deltaı\alpha tous toוovtous \pia\iota\deltaas \delta\iota\alpha \delta\epsilon tous
\alpha\nu0\rho\omega\piivovs ov\delta\elll'os \pi\omega* \tau\alphav\tau\alpha }\mu\overline{\epsilon

```

```

    \sigmav \muv\eta0\epsilon\iota\etas \tau\alpha \delta\epsilon \tau\epsilon\lambda\epsilon\alpha к\alpha\iota є\piо\pi\tau\iotaк\alpha
    \omega\nu \epsilon\nu\epsilonк\alpha К\alpha\iota т\alphaU\tau\alpha \epsilon\sigma\tau\iota\nu \epsilon\alpha\nu \tauוS ор>
    575. O\omegas \mu\epsilon\tau\iota\eta ovk c\iota\delta \epsilonl olos T a\nu \epsilonl\eta\mp@subsup{S}{}{\circ}\epsilon\rho\omega
\mu\nu\nu ovv \epsilon\phi\eta\nu \epsilon\gamma\omega k\alpha\iota \pi\rhoo0v\mu\iota\alphas ov
\delta\epsilon\nu \alpha\pio\lambda\epsilon\iota\psi\omega \pi\epsilon\iota\rho\omega \delta\epsilon к\alpha\iota \sigmav \epsilon\pi\epsilon\sigma0\alpha\iota
\epsilon\alpha\nu}\mathrm{ olos Tє }\etas: \delta\in\ell \gamma\alpha\rho \epsilon\phi\eta \tauо\nu o\rho0\omega
i[0]\nu\tau\alpha є\pi\iota тоито то \pi\rho\alpha\gamma\mu\alpha \alpha\rho\chi\in\sigma0\alpha[l]
5So \mu\epsilon\nu l'єO\nu ov\tau\alpha \ddot{\epsilon}\inl'\alpha\iota \epsilon\pi\iota \tau\alpha к\alpha\lambda\alpha \sigma\omega)
\muат\alpha\cdot ка\iota \pi\rho\omegaто\nu \mu\epsilon\nu є\alpha\nu о\rho0\omegas \eta>
\gamma\eta\tau\alphal o \eta\gammaсv\mu\epsilon\nuOS \epsilonvos avtov \sigma\omega\mu\alpha
\tauos \epsilon\rho\alpha\nu к\alpha\iota \epsilon\nu\tau\alpha|0\alpha \gamma\epsilon\nu\nu\alpha\nu \lambdao\gammaovs
ка\lambdaovs \epsilon\pi\epsilon\iota\tau\alpha \delta\epsilon \alphavто\nu като\nuо\eta>
585 \sigma\alpha\iota от\iota то ка\lambda\lambdaоs то є\pi\iota от\omegaоv\nu \sigma\omega\mu\&
210 B
\tau\iota \tau\omega \epsilon\pi\iota \epsilon\tau\epsilon\rho\omega \sigma\omega\mu\alpha\tau\iota a\delta\epsilon\lambda\phio\nu \epsilon\sigma\tau\iota
к\alphal \epsilonl \delta\epsilon\epsilonl \delta\iota\omegaк\epsilon\iota\nu \tauо \epsilon\pi \epsilonl\delta\epsilonl ка\lambdaо\nu>
\pio\lambda\lambda\eta \alphavol\alpha }\mu\eta\mathrm{ ovX єv Tє каl Tаvтоl'
\eta\gamma\epsilon\iota\sigma0\alpha\iota \tauо \epsilon\pi[l] \pi\alpha\sigma\iota \tauols \sigma\omega\mu\alpha\sigma\iota к\alpha\lambda
590 \lambdaоs. тоито \delta \epsilonl'וо\eta\sigmaа\nuта ката\sigmaт\eta
v\alpha\iota \pi\alphav'т\omegav' \tau\omegav к\alpha\lambda\omega\nu \sigma\omega\mu\alpha\tau\overline{\omega}
\epsilon\rho\alpha\sigmaт\eta\nu \epsilon\nuоS \delta\epsilon то \sigmaфо\delta\rho\alpha то\nuто \chi\alpha
\lambda\alpha\sigma\alpha\iota кат\alphaфро\nu\eta\sigma\alpha\nu\tau\alpha ка\iota \sigma\mu\iotaк\rho\overline{о}
\eta\gamma\eta\sigma\alpha\mu\epsilon\mp@subsup{v}{}{\prime}о\mp@subsup{\nu}{}{*}}\mu\epsilon\tau\alpha \delta\epsilon\tau\alphav\tau\alpha то \epsilon
595 т\alpha\iotas \psiv\chi\alpha\iotas к\alpha\lambda\lambdaоs т!\mu\iota\omegaт\epsilon\rhoои' }\eta\mathrm{ >
```
```

    \gamma\eta\sigma\alpha\sigma0\alpha\iota \tauov \epsilon\nu \tau\omega \sigma\omega\mu\alpha\tau\iota \omega\sigma\tau\epsilon к\alpha\iota
    \epsilon\alpha\nu \epsilon\pi\iota\epsilonlк\etaS \omega\nu \tau\eta\nu \psiv\chi\eta\nu \tau\iotas к\alpha\iota
    \epsilon\alpha\nu \sigma\mulк\rhoо\nu \alpha\nu0os \epsilonX\eta \epsilon\xi\alpha\rhoк\epsilonl\nu>
    \alphav\tau\omega[\nu\nu] к\alpha\iota \epsilon\rho\alpha\nu к\alpha\iota к\eta\delta\epsilon\sigma0\alpha\iota к\alpha\iota \tau\iota
    G00 к\tau\epsilonl\nu \lambdaoyovs toloutous к\alphal \zeta\eta\tau\epsilonl\nu
ol\taulv\epsilons \piol\eta\sigmaov\sigma\iota \beta\in\lambda\tau\epsilonlovs \tauovs>
\nu\epsilonovs \ddot{v \alpha \alpha\nu\alpha\gammaк\alpha0\eta \alphav 0\epsilon\alpha\sigma\alpha\sigma0\alphal}
\tauо \epsilon\nu \tauols \epsilon\pi\iota\tau\eta\delta\epsilonv\mu\alpha\sigma\iota к\alphal \tauols>
vo\muols ка\lambdaov к\alpha\iota тоvто їठ\epsilont\nu oт\iota>
60Ј \pi\alpha\nu\nu \alphav\tau0 \alphav\tau\omega \xi{v\gamma\gamma\epsilon\nu\epsilonS \epsilon\sigma\tau\iota\nu>
̈\nu\alpha \tauо \pi[\epsilon\rho]!, то \sigma\omega\mu\alpha к\alpha\lambdaо\nu \sigma\mu<к\rhoо\nu
\tau\iota \eta\gamma\eta\sigma\eta[\tau]\alpha\iota \epsilon![\nu\alpha]\iota }\mu\in\tau\alpha,\delta\epsilon\tau\alpha \epsilon\pi\iota
\tau\eta\delta\epsilonv\mu\alpha\tau\alpha \epsilon\pi! \tau\alphas \epsilon\pi\iota\sigma\tau\eta\mu\alphas>
\alpha\gamma\alpha\gamma\epsilon\iota\nu \iota\nu\alpha \epsilon\iota\delta\eta \alphav \epsilon\pi\iota\sigma\tau\eta\mu\omegaि\nu>

```

 \tauо к\alpha\lambdaо\nu \mu\etaкєт\iota \tauо \pi\alpha\rho \epsilon\nul \omega\sigma\pi\epsilon\epsilon\rho
 o\iotaк\in\tau\etaS а\gamma\alpha\pi\omega\omega\nu \pi\alphal\delta\alpha\rhotov к\alpha\lambda\lambdaоS
 [\eta] \alpha\nu0\rho\omega\piov \tauivos \eta \epsilon\pii\tau\eta\delta\epsilonv\mu\alpha
 [\tauo]s [T\tau]\epsilonvos \deltaov\lambda\epsilonv\omega\nu ф\alphav\lambdaos \eta к\alpha\iota
615 [\sigma\mul]к\rhoо\lambdao\gammaos a\lambda\lambda \epsilon\pi\iota \tauо [\pi0\lambda]v \pi\epsilon\lambda\alpha>
```

Col. xiv.
रos $\tau[\epsilon \tau \rho \alpha] \mu \mu[\epsilon \nu 0 s$ тov $\kappa \alpha \lambda o v] \kappa \alpha[\iota] \theta \epsilon \omega \rho[\bar{\omega}$

 $\sigma \circ \phi[\iota \alpha \alpha \phi \theta o v \omega$ $\epsilon \omega S$ a $\epsilon \nu \tau] \alpha v \theta \alpha$ p $\omega \sigma \theta \epsilon l s$ $620 \kappa \alpha \iota \alpha \nu \xi \eta \theta[\epsilon \iota S$ катוס $\eta \tau \iota \nu] \alpha \in \pi \iota \sigma \tau \eta \mu \eta \nu$ $\mu \iota \alpha \underline{\varphi}[\tau 0 \iota \alpha v \tau \eta \nu \quad \eta \quad \epsilon \sigma \tau] \iota \nu$ ка入ov $\tau 0 \iota 0 \hat{\delta} \delta \epsilon$ $\pi \epsilon \iota \rho \omega \delta \epsilon \mu[0 \iota \epsilon \phi \eta$ Tov] vouv $\pi \rho 0 \sigma \epsilon \chi \epsilon \iota \nu$
ws otov $\tau \epsilon \mu[\alpha \lambda i \sigma \tau] \alpha$ os $\gamma \alpha \rho \alpha \nu \mu \epsilon \chi \rho \iota \epsilon \nu$ $\tau \alpha \nu \theta \alpha \pi \rho \rho[s] \tau \alpha \in \rho \omega \tau[\iota k] \alpha \pi \alpha \iota \delta \alpha \gamma \omega \gamma \eta\rangle$
$6{ }_{2} 5 \theta \eta[\theta \epsilon] \omega \mu \epsilon \nu[o s] \epsilon \phi \epsilon[\xi \eta s] \tau \epsilon \kappa \alpha \iota$ op $\left.\theta \omega s\right\rangle$
$\tau \alpha \kappa \alpha \lambda \alpha \pi \rho o s \quad \tau \epsilon \lambda o s \quad \eta[\delta \eta] \quad \ddot{\omega} \omega \nu \tau \omega \nu \in \rho \omega$
$\tau!\kappa[\omega] \nu \quad \epsilon \xi \alpha \iota \phi \nu \eta S$ к $\alpha \tau c[\psi \epsilon] \tau \alpha \iota \tau \iota$ $\theta \alpha v\rangle$


630 ol $\epsilon \mu \pi \rho \circ \sigma \theta \epsilon \nu$ т $\pi \nu \tau \epsilon[S$ \＃ovol $\eta \sigma \alpha] \nu\rangle$
$\pi \rho \omega \tau 0 \nu \quad \mu \epsilon \nu \quad \alpha \in \ell$ oV $\kappa[\alpha l$ ovt $\epsilon \quad \gamma l \gamma \nu o$
$\mu \epsilon \nu O \nu$ ovt $\alpha \pi o \lambda \lambda \nu\left[\mu \epsilon \nu^{\prime} O \nu\right.$ ovit $\alpha v$
$\xi \alpha \nu^{\prime} \rho \mu \epsilon v^{\prime}$
$\tau \eta \mu \in \nu$ кa $\lambda] \rho \nu$ ？$\eta$［［ $\delta$ alo $\chi \rho o \nu$ ov $\delta \epsilon \tau$ то ovs［ $\epsilon$
 $\pi \rho o s \delta \epsilon$ то $\alpha \iota \sigma \chi \rho \circ \nu$ ov $\delta[\epsilon \nu] \theta \alpha[\mu \in \nu \quad \kappa] \alpha$ Nov $\epsilon \nu \theta a \delta \epsilon \delta \epsilon \alpha \iota \sigma \chi \rho \circ \geqslant$ ws $\tau \iota \sigma \iota \mu \epsilon \nu \bar{o}$
ка入ov $\tau \iota \sigma \iota \nu \quad \delta \in \alpha!\sigma[X \rho O \nu]$ ou $\delta$ av $\phi a[\nu \tau \alpha$
$\sigma \theta \eta \sigma \in \tau \alpha \iota$ аvт由 т！$\kappa \alpha]$ र̣ov olov $\pi[\rho o$
${ }^{6}+\circ \sigma \omega \pi 0 \nu \tau \iota$ ov $\delta \epsilon \chi \in!\rho \epsilon S$ ov $\delta \epsilon \alpha \lambda \lambda[0]$ ov
$\delta \epsilon \in \nu \quad \sigma \omega \mu \alpha \quad \mu \epsilon \tau \epsilon \chi \in l$ ov $\delta \epsilon$ TIS $\lambda 0 \gamma o[s$
ov $\delta \epsilon \pi / S \epsilon \pi \iota \sigma \tau \eta \mu \eta$ ov $\delta \epsilon \pi[0 v$ ov $\epsilon \nu \epsilon$
$\omega$
$\tau \in \rho[[0 \nu]$ Tivt olov［ $\epsilon \nu]$ § $\alpha \omega \quad \eta \in \nu \quad \gamma \eta \quad \eta \in \nu$
ovpave $\eta$ є́ $\nu \tau \omega[\alpha \lambda \lambda \omega] \alpha[\lambda \lambda$ аvто $\kappa \alpha$
$6+5 \theta$ avto $\mu \epsilon \tau$ avtov $\mu$ оо＇ $0[\epsilon \ell \delta \in S$ $\alpha \in \iota$ ov
$\tau \alpha$ $\delta \epsilon \quad \alpha \lambda \lambda \alpha \pi \alpha \nu \tau \alpha \quad \kappa \alpha \lambda \alpha \quad \epsilon \kappa[\epsilon \epsilon \nu 0 \nu \mu \epsilon$

ov $\gamma เ \gamma \nu \circ \mu \in \nu \omega \nu \quad \tau \epsilon \tau \omega \nu \quad \alpha \lambda \lambda \omega \nu[\kappa \alpha \iota$
$\alpha \pi o \lambda \lambda \nu \mu \epsilon \nu \omega \nu \quad \mu \eta \delta \epsilon \nu \quad \epsilon \kappa \epsilon \iota \nu O[\mu \eta$
$\sigma_{5} 0 \quad \tau \epsilon \pi \lambda \epsilon \circ \nu \mu \eta \tau \epsilon \in \lambda \alpha \tau \tau 0 \nu \gamma \iota \gamma v[\epsilon \sigma$
Өal $\mu \eta \delta \epsilon \pi \alpha \sigma \chi \epsilon \iota \nu \mu \eta \delta \epsilon \nu$ от $\alpha \nu$［ $\delta \eta$
TוS $\alpha \pi 0 ~ \tau \omega \nu \delta \epsilon \epsilon \downarrow \alpha$ то op $\theta \omega s \pi \alpha[\iota \delta \epsilon$
$\rho \alpha \sigma \tau \epsilon \iota \nu \quad \epsilon \pi \alpha \nu t \omega \nu \quad \epsilon \kappa \epsilon \omega \prime 0 \quad \tau[0] \quad \kappa[\alpha \lambda 0 \nu$
$\alpha \rho \chi \eta \tau \alpha \iota$ каӨораע $\sigma \chi \epsilon \delta[0 \nu$ a $\quad \tau \iota \alpha$

$\sigma \tau \iota$ то $o \rho \theta \omega s \in \pi \iota \tau \alpha \in \rho \omega \tau \iota \kappa\left[\alpha \quad \iota \in \nu^{\prime} \alpha \iota\right.$
$\eta \ddot{v} \pi \alpha \lambda \lambda o v \quad \alpha \gamma \epsilon \sigma \theta \alpha \iota \quad \alpha \rho \chi^{\prime} \mu \epsilon l \circ \nu \quad \alpha$
$\pi о \quad \tau \omega \nu \delta \epsilon \tau \omega \nu \quad \kappa \alpha \lambda \omega \nu \quad \epsilon \kappa[\epsilon \epsilon \nu 0 \nu \quad \epsilon \nu \epsilon$
$\kappa \alpha$ тov ка入ov $\alpha \in \iota \in \pi \alpha \nu i \notin v[\alpha \iota \omega \sigma \pi \epsilon \rho$
$660 \epsilon \pi \alpha \nu \alpha \beta \alpha \sigma \mu o l s \quad \chi \rho \omega \mu \epsilon \nu[0 \nu \alpha \pi 0 \in$ vos $\epsilon \pi \iota$ ठvo каl $\alpha \pi о$ रvol［ $\nu \epsilon \pi \iota \pi \alpha \nu$ $\tau \alpha \tau \alpha \kappa \alpha \lambda \alpha \sigma \omega \mu \alpha \tau \alpha \kappa \alpha \iota[\alpha \pi о \quad \tau \omega \nu$

Col．xv．
$[\kappa \alpha] \lambda[\omega] \nu \quad \sigma \omega \mu \alpha \tau \omega \nu \quad \epsilon \pi \iota \tau \alpha \kappa \alpha \lambda \alpha \in \pi \iota \tau \eta$
$\delta \epsilon \nu \mu \alpha \tau \alpha \kappa \alpha \iota \alpha \pi о \quad \tau \omega \nu \quad \epsilon \pi \iota \tau \eta \delta \epsilon \nu \mu \alpha$
$665 \tau \omega[\nu] \epsilon \pi \iota \tau \alpha \kappa \alpha \lambda \alpha \mu \alpha \theta \eta \mu \alpha \tau \alpha$ к $\alpha \iota \alpha>$
$\pi о[\tau] \omega \nu \quad \mu \alpha \theta \eta \mu \alpha \tau \omega \nu \quad \epsilon \pi \iota \quad \epsilon \kappa \epsilon \iota \nu о$ то
$\mu \alpha[\theta] \eta \mu[\alpha] \quad \tau \epsilon \lambda \epsilon v \tau \eta \sigma[\eta]$ o $\epsilon \sigma \tau \iota \nu$ ovk $\alpha \lambda$

$\left.\theta \eta \mu\left[\begin{array}{ll}\alpha & \kappa\end{array}\right] \alpha \iota \quad \gamma \nu \omega \quad \alpha v \tau \omega \quad \tau \epsilon \lambda \epsilon v \tau \omega \nu[\llbracket \bar{\omega}]\right]$
670 о $\epsilon \sigma \tau \iota \nu$ к $\alpha \lambda o \nu$ $\epsilon \nu[\tau] \alpha v \theta \alpha$ тov ßıov $\omega$ ）
$\phi \iota \lambda \epsilon \sum^{\prime} \omega \kappa \rho \alpha \tau \epsilon s$ є $\dagger \eta$ $\eta$ Mavтıvıк $\left.\eta\right\rangle$
$\xi \in \nu \eta \quad \epsilon \iota \pi \epsilon \rho$ mov $\alpha \lambda \lambda 0 \theta_{\iota}$ ßı由тov av
$\theta \rho[\omega] \pi \omega \quad \theta \epsilon \omega \mu \epsilon \nu \omega$ avто то ка入оv о $\epsilon>$
av $\pi$ тотє $̈$ ï $\eta s$ ov ката Xpvбov $\tau[\epsilon]\rangle$
${ }^{6} 75$ к $\alpha \iota[\epsilon \sigma \theta] \eta \tau \alpha$ кац rous ка入ous $\pi \alpha \iota \delta \alpha[s$
$\tau \epsilon[\kappa \alpha]!\nu \epsilon \alpha \nu \iota \sigma \kappa o u s$ रo $\delta \epsilon \iota$ $\sigma o l$ є $\epsilon \nu \alpha \iota$
ovs $\nu v \nu$ ор $\omega \nu \epsilon \kappa \pi \epsilon \pi \lambda \eta \xi=\iota$ к $\kappa \iota$ єто८
$\mu \circ[s \in l \kappa \alpha[l]$ $\sigma v \kappa[\alpha] \iota \quad \alpha \lambda \lambda o l \pi o \lambda[\lambda] o l$ op $\omega \nu \tau \epsilon s$

 ［ $\pi \iota], \nu \epsilon \iota \nu \quad \alpha \lambda \lambda \alpha$ मovov $\theta \epsilon \alpha \sigma \alpha \sigma \theta \alpha \iota$ к $\alpha \iota\rangle$
 $\gamma \in \nu \circ \iota \tau[0]$ аvто то ка入о［ $\nu \quad \iota \in \epsilon \iota \nu \in \iota \lambda \iota \kappa \rho \iota$
$\nu \in S$ каӨapov $\alpha \mu \iota \kappa \tau о \nu \quad \alpha[\lambda \lambda \alpha \mu \eta \quad \alpha \nu \alpha$
$68_{5} \quad \pi \lambda \epsilon \omega \quad \sigma \alpha \rho \kappa \omega \nu \quad \tau \epsilon \alpha \nu \theta \rho \omega \pi[t \nu \omega \nu \quad \kappa \alpha \iota$
$[\chi] \rho \omega[\mu] \alpha \tau \omega \nu \kappa \alpha \iota \alpha \lambda \lambda \eta s \pi o \lambda[\lambda \eta s \quad \phi \lambda v$


［ $\rho$ ］olє८ $\epsilon \phi \eta$ ф $\alpha v \lambda o \nu$ ßıov $\gamma \iota \gamma[\nu] \epsilon \sigma \theta[\alpha \iota \quad \epsilon \kappa \epsilon \iota$
212 A
${ }_{9} \circ[\sigma \epsilon \beta] \lambda \epsilon \pi o \nu \tau o s ~ a \nu \theta \rho \omega \pi o v ~ к \alpha \iota ~ \epsilon \kappa[\epsilon \iota \nu O \omega$

$\left[\begin{array}{lll}{[0 v \kappa} & \epsilon \nu \theta v] \mu \epsilon \iota & \epsilon \phi \eta \text { ọ }[\tau \iota \epsilon] \nu \tau \alpha v \theta \alpha[\alpha v \tau \omega\end{array}\right.$ $\left[\begin{array}{lll}\mu o \nu \alpha X o v & \gamma\end{array}\right] \epsilon \nu \eta \sigma[\epsilon \tau \alpha \iota \quad$ о] $] \omega \nu \tau \iota \quad \omega \quad$ ! $[\rho \alpha \tau о \nu$

69 [atє ouk $\epsilon i \delta \omega \lambda o v$ $\epsilon \phi \alpha \pi \tau о \mu \epsilon \nu] \omega$ $\alpha \lambda \lambda \alpha$, [ $\overline{\lambda \eta \theta \eta} \quad \alpha \tau \epsilon \tau 0 v] \quad \alpha \lambda \eta \theta o v[S \quad \epsilon \phi \alpha] \pi \tau \sigma \mu \epsilon \nu[\omega$ $\left[\begin{array}{lll}\alpha \lambda \lambda & \alpha \lambda \eta \theta \eta & \alpha\end{array}\right] \tau \epsilon \tau 0\left[\begin{array}{lll}v & \alpha \lambda\end{array}\right] \eta \theta o u s \in \phi \alpha \pi \tau[0$ $\left[\begin{array}{ll}\mu \epsilon \nu \omega & \tau \epsilon \kappa о] \nu \tau \iota \\ \delta \epsilon & \alpha \rho \epsilon \tau \eta \nu \quad \alpha \lambda \eta \theta[\eta \quad \text { к } \alpha \iota\end{array}\right.$ $[\theta \rho \epsilon \psi \alpha] \mu \in!\omega \ddot{\nu} \pi \alpha \rho \chi \in l \quad \theta \in о \phi l \lambda \in l \quad \gamma \epsilon[\nu \in \sigma$

 $[\tau] \epsilon \kappa[\alpha] \iota[o l] \alpha \lambda \lambda o \iota \quad \epsilon \phi \eta \quad \mu \in \nu \quad \Delta \iota о \tau \iota \mu \alpha \pi \epsilon\rangle$
$\pi \epsilon \iota \sigma[\mu \alpha \iota] \delta \epsilon \gamma \omega \pi \epsilon \pi \epsilon \iota \sigma \mu \epsilon \nu 0 \bigcirc \delta \epsilon \pi \epsilon \iota \rho[\omega$ $\mu[\alpha] \iota$ ка८ tovs $\alpha \lambda \lambda$ ous $\pi \epsilon \iota \theta \epsilon \iota \nu$ от८ тov
 $[\phi \nu \sigma \epsilon \iota \quad \xi] \cup \cup \nu \epsilon \rho \gamma \sigma \nu \quad \alpha \mu \epsilon \iota \nu \omega \quad \epsilon \rho \omega \tau[0$ S
 $\gamma \epsilon \phi \eta \mu \iota$ Х $\left.\rho \eta \nu \alpha \iota \pi[\alpha] \nu \tau^{\prime} \alpha \nu \delta \rho a \quad \tau 0 \nu\right\rangle$ $[\epsilon] \rho \omega \tau \alpha$ тıرа⿱ ка८ avtos $\tau \iota \mu \omega \tau \alpha$
$710[\epsilon] \rho \omega \tau \iota \kappa \alpha$ [ $\kappa] \alpha \iota \delta \iota \alpha \phi \epsilon \rho 0 \nu \tau \omega s$ $\alpha \sigma \kappa \omega\rangle$

Col. xvi.
$\kappa \alpha \iota$ [Tols $\alpha \lambda \lambda$ ]ols $\pi \alpha \rho \alpha \kappa \epsilon \lambda \in v о \mu \alpha \iota$ к $\alpha l\rangle$
$\nu v \nu \quad \tau \epsilon \kappa[\alpha l \alpha] \iota \epsilon \iota \quad \epsilon \gamma \kappa \omega \mu \iota \alpha \zeta \omega$ $\tau 0 \nu \quad \epsilon \rho \omega\rangle$
$\tau \alpha \quad \tau \eta \nu \quad \delta[v] \nu \alpha \mu \iota \nu \kappa \alpha \iota \quad \alpha \nu \delta \rho \epsilon \iota \alpha \nu$ тov єрштos $\kappa[\alpha \theta$ oбov $]$ olos $\tau$ єє $\mu \iota$ тоитоע

 $\mu \iota \sigma o \nu \quad \epsilon \iota \rho \eta \sigma \theta \alpha[l]$ єl $\delta \epsilon$ отt каl от $\eta \chi^{\alpha l}$

 Tous $\mu \epsilon \nu$ єTalvєเv $\tau 0 \nu \delta_{\epsilon}$ A $\rho \iota \sigma \tau o$ $\phi \alpha \nu \eta \quad \epsilon \pi \iota \chi \epsilon \iota \rho[\epsilon] \iota \nu \quad \lambda \epsilon \gamma \epsilon \iota \nu \quad \tau \iota$ oт $\epsilon \in$
$\mu \nu \eta \sigma \theta \eta$ avtov $\lambda \epsilon \gamma \omega \nu$ o $\Sigma \omega \kappa \rho \alpha \tau \eta s$
$\pi \epsilon \rho \iota$ тov $\lambda$ रoyou кає $\epsilon \xi \alpha \iota \phi \nu \eta s$ т $\eta \nu\rangle$
$\alpha v \lambda \epsilon l o \nu$ Өupav кроvo $\mu \epsilon \nu \eta \nu \pi 0 \lambda \bar{\nu}$
$725 \psi \circ \phi \circ \nu \pi \alpha \rho \alpha \sigma \chi \epsilon \iota \nu$ $\omega$ К $\kappa \omega \mu \alpha \sigma \tau \bar{\omega}$
$\kappa \alpha \iota \alpha \nu \lambda \eta \tau \rho \iota \delta o s \quad \phi \omega \nu \eta \nu$ акоvє $\nu$
тov ouv $A \gamma \alpha[\theta] \omega \nu \alpha \pi \alpha \iota \delta \epsilon s$ ф $\alpha \nu \alpha \iota\rangle$
ov $\kappa \in \psi \epsilon \sigma \theta \epsilon \kappa \alpha \iota \quad \alpha \nu \mu \epsilon \nu \quad \tau \iota s \tau \omega \nu \in\rangle$
$\pi \iota \tau \eta \delta \epsilon \iota \omega \nu \quad \eta \quad \kappa \alpha \lambda[\epsilon] / \tau \epsilon \quad \epsilon \iota \delta \epsilon \mu \eta \quad \lambda \epsilon$
$730 \gamma \epsilon \tau \epsilon$ oтt ov $\pi \epsilon \iota \nu 0 \mu \epsilon \nu \quad a \lambda \lambda \alpha \pi \alpha v o\rangle$
$\left[\begin{array}{ll}\mu \epsilon \theta \alpha & \eta\end{array}\right] \delta \eta$ к $\alpha \iota$ ov $\pi 0 \lambda \nu \ddot{v} \sigma \tau \epsilon \rho \circ \nu \quad A \lambda$
$\kappa \iota[\beta \iota \alpha \delta] o v$ т $\eta \nu \quad \phi \omega \nu \eta \nu$ акоvєוע $\epsilon \nu$
$\left[\begin{array}{llll}\tau \eta & \alpha v\end{array}\right] \lambda \eta \quad \sigma \phi 0 \delta \rho \alpha \quad \mu \epsilon[\theta]$ vovtos $\left.\kappa \alpha \iota\right\rangle$
[ $\mu \in \gamma \alpha]$ ß
735 A $\boldsymbol{\gamma}[\alpha \theta] \omega \nu$ кає $\kappa \in \lambda \epsilon v 0 \nu \tau[0] s \quad \alpha \gamma \epsilon \iota \nu\rangle$
$\pi \alpha \rho \alpha$ A $\alpha \alpha \theta \omega \nu \alpha^{\cdot} \alpha \gamma \epsilon \iota$ ovv avтov $\pi \alpha$
$\rho \alpha \sigma \phi \alpha s[\tau] \eta \nu \quad \tau \epsilon \alpha \nu \lambda \eta \tau \rho \stackrel{\delta}{ } \quad \ddot{v} \pi 0\rangle$
$\lambda \alpha \beta o v \sigma \alpha \nu$ к $\alpha \iota$ а入入ovs $\tau \iota \nu \alpha s \tau \omega \nu$
$\alpha \kappa o \lambda o v[\theta] \omega \nu \quad[\kappa] \alpha \iota \in \pi \iota \sigma \tau \eta \nu \alpha \iota \in \pi \iota\rangle$
$740 \tau[\alpha] s$ Өvpas $\epsilon \sigma \tau \epsilon \phi \alpha \nu \omega \mu \epsilon \nu 0 \nu$ аvтō
$\kappa \iota \tau[\tau 0] v \quad \tau \in \overline{\nu \iota} \sigma \tau \epsilon \phi \alpha \nu \omega \mu \epsilon \nu 0 \nu \alpha v$
$\left.\left[\begin{array}{cc}\tau 0 \nu & \kappa l\end{array}\right] \tau \tau 0 \nu \quad \tau \epsilon \tau \iota \nu l \sigma \tau \epsilon \phi \alpha \nu \omega\right\rangle$
$[\mu \epsilon \nu] o \nu \quad \delta \alpha \sigma \iota$ к $\alpha \iota ~ \ddot{\omega} \omega \nu$ каl таıvı $\alpha s$
$\left.\left[\epsilon \chi{ }^{\circ} \nu \tau\right] \alpha \quad \epsilon \pi \iota \quad \tau \eta S \quad \kappa \epsilon \phi \alpha \lambda \eta S \quad \pi \alpha \nu v\right\rangle$
$745[\pi 0 \lambda \lambda] \alpha s$ к $\alpha \iota \quad \epsilon \iota \pi \epsilon \iota \nu \cdot \alpha \nu \delta \rho[\epsilon] s \quad \chi \alpha \iota \rho \epsilon$
$[\tau \epsilon \mu \epsilon] \theta v o \nu \tau \alpha \alpha \nu \delta \rho \alpha \pi \alpha \nu[v] \sigma \phi o \delta \rho \alpha$
$[\delta \epsilon] \xi \in \sigma \theta \llbracket \alpha] \epsilon \epsilon \varepsilon \mu \pi \pi o \tau \eta \nu \quad \eta \quad \alpha \pi[\iota \omega] \mu \epsilon \nu\rangle$


$75 \circ \chi^{\theta \epsilon s} \mu \epsilon \nu$ ov ${ }^{\theta}$ oı[os] $\left.\tau \epsilon \gamma \epsilon \nu \circ \mu \eta \nu \quad \alpha \phi \iota\right\rangle$
$\kappa[\epsilon \sigma \theta] \alpha[\iota] \quad \nu v \nu \quad \delta \in \quad \eta \kappa \omega \quad \in \pi \iota \quad \tau \eta \quad \kappa \epsilon \phi \alpha \lambda \eta\rangle$

$\mu \eta S$ кєф $\alpha \lambda \eta S \tau[\eta \nu]$ тov $\sigma \circ \phi \omega \tau \alpha \tau[0]$ !
$\kappa \alpha \iota \kappa \alpha[\lambda \lambda] \iota \sigma \tau \circ v[\kappa \epsilon] \phi \alpha \lambda \eta[\nu \quad \epsilon \alpha \nu \quad \epsilon \iota \pi \omega$

755 ovt $\omega \sigma i$ a $\alpha{ }^{\prime} \alpha \delta[\eta] \sigma \omega \quad \alpha \rho[\alpha$ кат $\alpha \gamma \epsilon \lambda \alpha \sigma \epsilon$ $\sigma \theta \epsilon \mu o v$ as $\mu \epsilon \theta$ vovtos $[\epsilon \gamma \omega$ $\delta \epsilon \kappa \alpha \nu$ $\ddot{v} \mu \epsilon \iota s \quad \gamma \epsilon \lambda \alpha \tau \epsilon \quad 0 \mu \omega[s \in \nu$ ol 0 ctl $\alpha \lambda \eta$

Col. xvii.
$\theta \eta \quad \lambda \epsilon \gamma \omega \quad \alpha \lambda \lambda \alpha[\mu 0 \iota \quad \lambda \epsilon \gamma \epsilon T \epsilon \alpha v T o \theta \epsilon \nu \in \pi \iota$
$\rho \eta$ Tols $\epsilon \iota \sigma \iota \omega \quad \eta \quad \mu \eta[\sigma v \mu \pi l \epsilon \sigma \theta \epsilon \eta$ ov $\pi \alpha \nu$ 760 т $\alpha$ s ouv $\alpha \nu \alpha \theta \circ \rho \nu \beta \eta \sigma[\alpha \iota$ K $\alpha \iota \quad k \in \lambda \in \nu \in \iota \nu$ є८ $\sigma$ єlєval ка८ $\kappa[\alpha] \tau \alpha \kappa \lambda \epsilon[\iota \nu \epsilon \sigma \theta \alpha \iota \quad \kappa \alpha \iota$ тоv $A \gamma \alpha$ $\theta \omega \nu \alpha$ ka入є $\epsilon \nu$ avto[ $\nu$ kal Tov leval ayo $\mu \in \nu 0 \nu \quad \ddot{v} \pi о \quad \tau \omega \nu \quad \alpha \nu[\theta \rho \omega \pi \omega \nu$ к $\alpha \iota \pi \epsilon$ pıalpov $\mu \in \nu 0 \nu$ $\alpha \mu \alpha$ [ Tas тalvias $\omega s$ ${ }_{7} 65 \alpha \nu \alpha \delta \eta \sigma o \nu \tau \alpha \in \pi \iota \pi \rho[0 \sigma \theta \epsilon \tau \omega \nu \quad \circ \phi \theta \alpha \lambda$
 $\tau \eta \quad \alpha \lambda \lambda \alpha \quad \kappa \alpha \theta \iota \zeta \epsilon \sigma \theta[\alpha \iota \pi \alpha \rho \alpha$ тоv $A \gamma \alpha$
$\theta \omega v \alpha \in \nu \quad \mu \epsilon \sigma \omega \quad \sum \omega \kappa \rho \alpha[$ Tous $\tau \epsilon \kappa \alpha \iota \in \kappa \in \iota$ $\nu o v \cdot \pi \alpha \rho \alpha \chi \omega \rho \eta \sigma \alpha!\left[\gamma \alpha \rho\right.$ тоע $\sum \omega \kappa \rho \alpha \tau \eta$

$\mu \epsilon \nu 0 \nu \delta \epsilon \alpha \cup \tau 0 \nu \quad \alpha\left[\sigma \pi \alpha \zeta^{\prime} \epsilon \sigma \theta \alpha \iota \quad \tau \epsilon \tau 0 \nu\right.$ $A \gamma \alpha \theta \omega \nu \alpha$ к $\alpha \iota \quad \alpha \nu[\alpha \delta \epsilon \iota \nu \quad \epsilon \iota \pi \epsilon \iota \nu$ ovv тоע $A \gamma \alpha \theta \omega \nu \alpha v[\pi 0 \lambda v \epsilon \tau \epsilon \pi \alpha / \delta \epsilon \varsigma \quad A \lambda$ $\kappa \iota \beta \iota \alpha \delta \eta \nu \quad \ddot{\nu} \alpha \alpha \in \kappa \quad \tau \rho \iota \tau[\omega \nu \quad \kappa \alpha \tau \alpha \kappa \in \eta$ $775 \tau \alpha \iota: \pi \alpha \nu v \gamma \in \iota \pi \epsilon \iota \nu \tau 0[\nu A \lambda \kappa \iota \beta \iota \alpha \delta \eta \nu$ $\alpha \lambda \lambda \alpha$ TוS $\eta \mu \epsilon \iota \nu$ o $\delta \epsilon$ т $\rho i[$ Tos $\xi v \mu \pi о \tau \eta S$ $\kappa \alpha \iota \alpha \mu \alpha \quad \mu \in \tau \alpha \sigma \tau \rho \in \phi о \mu \in \nu O \nu$ avt $[o \nu$ ора $\nu$ тор $\sum \omega к \rho \alpha \tau \eta$ ї $\delta о \nu \tau \alpha ~ \delta \epsilon ~ \alpha \nu[\alpha$
$\pi \eta \delta \eta \sigma \alpha \iota$ ка८ $\epsilon \iota \pi \epsilon \iota \nu$ : $\omega$ НраклєוS тov
880 T $\tau \iota \quad \eta \nu \cdot \Sigma \omega \kappa \rho \alpha[\tau \eta s$ outos $\epsilon \lambda \lambda o \chi \omega \nu$
$\alpha v \mu \epsilon \epsilon \nu \tau \alpha \nu \theta \alpha[\kappa \alpha \tau \epsilon \kappa \epsilon \iota \sigma O \quad \omega \sigma \pi \epsilon \rho \in \iota$
$\omega \theta \epsilon \iota S \epsilon \xi \alpha \iota \phi \nu \eta s[\alpha \nu \alpha \phi \alpha \omega \nu \epsilon \sigma \theta \alpha \iota$
катєкє८бo $\omega \sigma \pi \epsilon \rho[\epsilon \epsilon \omega \theta \epsilon \iota S \epsilon \xi \alpha \iota \phi \nu \eta$,
$\overline{\alpha \nu \alpha \phi \alpha \iota \nu \epsilon \sigma \theta \alpha \iota}$ oTov $\epsilon \gamma \omega[\omega \mu \eta \nu \quad \eta \kappa \iota$
${ }_{7} 85 \quad \sigma \tau \alpha \quad \sigma \epsilon \in \sigma[\epsilon] \sigma \theta \alpha \iota \quad \kappa \alpha \iota \nu v \nu$ т $\eta \kappa[\epsilon \iota S$ к $\alpha \iota$ Tl $\alpha v \in \nu \tau \alpha \nu \theta \alpha \kappa \alpha \tau \epsilon[\kappa \lambda \iota \nu \eta S$ $\omega s$ ov
 $[\gamma] \in \lambda o \iota o[s \quad \epsilon \sigma] \tau \iota[\tau] \epsilon \kappa \alpha \iota \beta o v \lambda \epsilon \epsilon\left[\begin{array}{ll}\tau \iota \iota & \alpha \lambda \lambda \alpha\end{array}\right.$
$\tau[\iota] \quad \epsilon \mu \eta \chi \underset{.}{ } \nu \eta \sigma \omega[o \pi] \omega \varsigma \quad \pi \alpha[\rho \alpha \quad \tau \omega \quad \kappa \alpha \lambda$ $790 \lambda \iota \sigma \tau \omega \tau[\omega \nu \epsilon] \nu \delta 0\left[\begin{array}{lll}\nu & \kappa \alpha \tau \alpha \kappa \epsilon \iota \sigma \eta & \kappa \alpha \iota\end{array}\right.$

 $\alpha[\nu \theta \rho \omega] \pi[0] v$ o[v $\phi \alpha v \lambda_{0} \nu \quad \pi \rho \alpha \gamma \mu \alpha \quad \gamma \in \gamma o$ $\nu[\epsilon \nu] \alpha \pi$ єкєเขov $[\gamma] \alpha \rho \tau[o v$ X $\quad$ oovov $\alpha$ $795 \phi$ ov тovtov $\eta \rho \alpha \sigma \theta[\eta \nu$ ovкєт८ $\epsilon \xi \epsilon$
$\sigma \tau \iota \mu \circ \iota$ ovt $\pi \rho o \sigma \beta \lambda \epsilon \psi[\alpha \iota$ ovт $\delta \iota \alpha$ $\lambda \epsilon \chi \theta \eta \nu \alpha \iota$ к $\alpha \lambda \omega$ оv $\delta[\epsilon \nu \iota \quad \eta$ оитоб८ $\zeta \eta \lambda o \tau v \pi[\omega] \nu \quad \mu \epsilon$ каl $\phi[\theta o \nu \omega \nu \quad \theta \alpha \nu$

 ovv $\mu \eta \tau \iota$ к $\alpha \iota \nu v y[\epsilon \rho \gamma \alpha \sigma \eta \tau \alpha \iota \alpha \lambda \lambda \alpha$ $\delta \iota \alpha \lambda \lambda \alpha \xi[0 \nu] \quad \eta \mu[\alpha s \quad \eta \in \alpha \nu \in \pi \iota \chi \in \iota \rho \eta$ $\beta[\iota] \alpha \xi \epsilon \sigma \theta \alpha \iota \quad \epsilon \pi \alpha[\mu \nu \nu \epsilon \omega S \in \gamma \omega \tau \eta \nu$ тоутоv $\mu \alpha \nu[\iota \alpha \nu \quad \tau \epsilon \kappa \alpha \iota \phi \iota \lambda \epsilon \rho \alpha \sigma \tau \iota$ $80_{5} \alpha \nu \pi \alpha \nu v$ o[ $\rho \rho \omega \delta \omega$ a $\alpha \lambda$ ovk $\epsilon \sigma \tau \iota$

## Col. xviii.

[ф $\alpha \nu \alpha \iota]$ Tov $A \lambda_{\kappa}[\iota] \beta \iota[\alpha \delta \eta \nu \quad \in \mu о \iota \kappa \alpha \iota \sigma o \iota$ $[\delta \iota \alpha \lambda \lambda] \alpha \gamma \eta^{\cdot} \alpha \lambda \lambda \alpha \operatorname{\tau ov\tau }[\omega \nu \quad \mu \in \nu \in \iota S \quad \alpha v \theta \iota S$ $[\sigma \epsilon \tau \epsilon \iota \mu \omega] \rho \eta \sigma o \mu \alpha l \cdot \nu v \nu \delta \epsilon[\mu \circ \iota A \gamma \alpha \theta \omega \nu$
[ $\phi \alpha \nu \alpha \iota] \quad \mu \epsilon \tau \alpha \delta o s \tau \omega \nu \tau \alpha \iota[\iota \omega \nu \quad \iota \nu \alpha$
$810[\alpha \nu \alpha \delta \eta \sigma \omega]$ каь $\tau \eta \nu$ тоv[тоv таvт $\eta \nu \iota$
$\left[\begin{array}{lllllllllll}\tau \eta \nu & \theta \alpha \nu \mu] \alpha \sigma \tau \eta \nu & \kappa \epsilon[\phi \alpha \lambda \eta \nu & \kappa \alpha \iota & \mu \eta\end{array}\right.$
$[\mu o \iota \quad \mu \epsilon \mu \phi \eta] \tau \alpha \iota[0] \tau \iota[\sigma \epsilon \mu \epsilon \nu \quad \alpha \nu \in \delta \eta \sigma \alpha$

## Col. xxiii.

[ $\mu \alpha \omega \sum^{\sum} \omega \kappa$ ] $\left.\rho \alpha \tau \epsilon S \quad \epsilon \xi \in \lambda \epsilon \gamma[X \epsilon] \quad \sigma v \nu \epsilon \gamma \iota \nu 0\right\rangle$
217 B
$\left[\begin{array}{lll}\mu \eta \nu & \gamma \alpha \rho & \omega\end{array}\right] \alpha \nu \delta \rho \epsilon S \quad \mu o \nu[o s] \mu o \nu \omega$ к $\alpha \iota \omega \mu \bar{\eta}$
$\left.\left.8_{5}[\alpha \cup \tau \iota \kappa \alpha \delta \iota] \alpha \lambda \epsilon \xi \llbracket \alpha\right] \epsilon \sigma \theta \alpha \iota[\alpha] v \tau 0 \nu \mu 0 \iota \alpha \pi \epsilon \rho\right\rangle$

 $[\gamma \iota \gamma \nu \epsilon \tau 0$ ov $\delta \epsilon \dot{\nu} \quad \alpha \lambda \lambda \quad \omega \sigma] \pi[\epsilon] \rho \quad \epsilon \epsilon \omega \theta \epsilon \iota \delta \iota \alpha \lambda \epsilon$ $[X \theta \epsilon \iota S$ av $\mu 0 \iota$ ка८ $\sigma \nu \nu\rceil \eta[\mu] \in \rho \in \cup \sigma \alpha S$ $\omega \chi \in \tau 0\rangle$
$820[\alpha \pi \iota \omega \nu \quad \mu \epsilon \tau \alpha$ таv $\alpha \sigma] v \nu \gamma \nu \mu \nu \alpha \zeta \epsilon \sigma \alpha \iota$ [ $\pi \rho о v \kappa \alpha \lambda o v \mu \eta \nu]$ avtov ка८ $\sigma \nu \nu \in \gamma \nu \mu \nu \alpha$ $\left.\left[\begin{array}{lll}\zeta O \mu \eta \nu & \omega S\end{array}\right] \tau \iota \epsilon_{\varrho} \nu \tau \alpha \nu \theta[\alpha \pi \epsilon] \rho \alpha \nu \omega \nu \quad \sigma v \nu\right\rangle$

$[\pi о \lambda \lambda \alpha \kappa \iota S$ ou $\delta \in \nu 0 s \pi] \alpha \rho o[\nu \tau 0 S$ к]a! [ $[\tau \iota \delta \in \iota$

$\left[\begin{array}{lll}\delta \eta & \delta \epsilon & o v\end{array}\right] \delta \alpha \mu \eta \tau \alpha v \tau \quad \eta \nu v \tau\left[\begin{array}{lll}{[o \nu} & \epsilon\end{array}\right] \delta[0 \xi \epsilon$
[ $\mu 0 \iota \epsilon \pi \iota \theta \epsilon \tau \epsilon 0] \nu$ є $\iota \nu \alpha \iota \tau \omega \quad \alpha \nu \delta \rho \iota$ к $\alpha \tau \alpha$
$\left[\begin{array}{ll}\tau 0 & \kappa \alpha \rho \tau \epsilon \rho] o \nu\end{array} \kappa \alpha \iota\right.$ оик $\left.\left.\alpha \nu \in \tau[\llbracket]\right] \epsilon 0 \nu \quad \epsilon \pi \epsilon \iota\right\rangle$
$\rho \eta$

$830[\eta \delta \eta \tau l] \epsilon \sigma \tau \iota$ то $\pi \rho \alpha \gamma \mu \alpha$ $\pi \rho о к \alpha \lambda o v\rangle$
$\left[\begin{array}{lll}\mu \alpha \iota & \delta\end{array}\right] \eta$ avtov $\pi \rho o s ~ \tau\left[\begin{array}{ll}0 & \sigma\end{array}\right] v \nu \delta \epsilon \iota \pi \nu \epsilon i$
$[\alpha \tau \epsilon \chi \nu] \omega S$ $\omega \sigma \pi \epsilon \rho$ є $\rho \alpha \sigma \tau \eta S$ $\pi \alpha \iota \delta \iota \kappa \circ \iota S$ $[\epsilon \pi \iota \beta o v \lambda] \epsilon \nu \omega \nu$ ка८ $\mu \circ \iota$ ov $\delta \epsilon \operatorname{\tau ov\tau o}[[\nu]]\rangle$
$\left[\tau \alpha \chi^{v} v \pi\right] \eta \kappa o v \sigma \epsilon \nu^{*}$ op $\omega s$ ठ ov X $\left.\chi \rho \circ \nu \omega\right\rangle$
$835[\epsilon \pi \epsilon \iota \sigma \theta \eta \quad \epsilon] \pi \epsilon \iota \delta \eta \delta \epsilon \quad \alpha ф \iota \kappa \epsilon \tau о$ то $\pi \rho \omega \tau \bar{o}$ $[\delta \epsilon \iota \pi \nu \eta] \sigma \alpha s$ a $\pi \iota \epsilon \nu \alpha \iota \quad \epsilon \beta 0 \nu \lambda \epsilon \tau 0^{\circ}$ каı〉 $\left[\begin{array}{lll}\tau о \tau \epsilon & \mu \epsilon\end{array}\right] \nu \quad \alpha \iota \sigma \chi \nu \nu о \mu \epsilon \nu 0 s \quad \underset{\sim}{[ } \phi \eta \kappa \alpha$ $[\alpha \cup \pi o v \quad \alpha] u \theta \iota s \quad \delta \quad \epsilon \pi \iota[\beta o] v \lambda \epsilon[v \sigma \alpha \Omega \quad \epsilon \pi \epsilon \iota$ $\left[\begin{array}{ll}\delta \eta & \epsilon \delta \epsilon \delta \epsilon \epsilon] \pi \nu[\eta] \kappa \in \iota \\ \delta \iota \epsilon \lambda \epsilon \gamma о \mu \eta \nu \\ \pi o \rho\end{array}\right.$
$8 \not \subset 0[\rho \omega \tau \omega \nu \nu v] \kappa \tau \omega \nu \kappa \alpha \iota \in \pi \epsilon \iota \delta \eta \quad \gamma \epsilon \epsilon \beta о \nu$
$[\lambda \epsilon \tau 0 \quad \alpha \pi \iota \epsilon \nu] \alpha \iota \quad \sigma \kappa[\eta] \pi \tau 0 \mu \epsilon \nu 0$ os ot o廿 $\alpha l$
$[\epsilon \iota \eta \pi \rho о \sigma] \eta \nu \alpha \gamma \kappa[\alpha] \sigma \alpha$ avtov $\mu \in \nu \in \nu$
$[\alpha \nu \epsilon \pi \alpha \nu \epsilon] \tau 0$ ov $[\epsilon] \nu \quad \tau \eta \quad \epsilon \chi \circ \mu \epsilon \nu \eta \quad \epsilon\rangle$
$\kappa$
$\left[\begin{array}{ll}\mu 0 \nu & \kappa \lambda \epsilon\end{array}\right] \iota \nu \eta \quad \epsilon \nu \quad \eta[\pi \epsilon \rho \quad \epsilon \delta \epsilon \iota] \pi \nu \epsilon \iota \quad \alpha l$ ov
$8_{45}[\delta \epsilon \iota \varsigma \epsilon \nu] \tau \omega$ оьк $\eta[\mu \alpha \tau \iota \alpha \lambda \lambda$ os ка $\kappa \eta v$
[ $\delta \epsilon \nu] \quad \eta \quad \eta \mu \epsilon \iota \varsigma^{\circ} \quad \mu[\epsilon \chi \rho \iota \quad \mu \epsilon \nu$ ouv $\delta \eta \quad \delta \epsilon v$
217 E

$[\tau \iota \nu]$ ]ovv $\lambda \epsilon \gamma \epsilon \iota \nu\left[\begin{array}{lll}\tau 0 & \delta & \epsilon] \nu \tau \epsilon \nu \theta \epsilon \nu \text { ovk } \bar{\alpha}\end{array}\right.$ $[\mu 0] \cup \quad \eta \kappa o v \sigma \alpha \tau \epsilon \lambda \epsilon[\gamma o \nu] \tau[0]!\subseteq!\quad \mu \eta \pi \rho \omega$ $8_{5} \circ\left[\begin{array}{ll}{[\tau 0 \nu} & \mu] \epsilon \nu\end{array}\right.$ то $\lambda \epsilon[\gamma \circ] \mu[\epsilon \nu] 0 \nu$ olvos $\alpha \nu[\epsilon] \cup$ $\tau \epsilon \pi \alpha \iota \delta \omega \nu$ к $\alpha \iota \mu \epsilon \tau[\alpha] \pi \alpha \iota \delta \omega \nu \quad \eta \nu$ $\left.[\alpha] \lambda \eta \theta \eta \varsigma^{*} \quad \epsilon \pi \epsilon \iota \tau \alpha[\alpha \phi \alpha] \nu \iota \sigma \alpha \quad \Sigma^{\prime} \omega \kappa \rho \alpha\right\rangle$ [ $\tau$ ]ous $\epsilon \rho \gamma \circ \nu$ ü $\pi \epsilon \rho \eta[\phi \alpha \nu] 0 \nu$ єıS $\epsilon \pi \alpha\left[{ }^{l}\right.$ $[\nu 0] \nu \in \lambda \theta o \nu \tau \alpha \alpha \delta \iota \kappa[0 \nu] \mu 0 \iota \quad \phi \alpha \iota \nu \epsilon[\tau \alpha \iota$
$8_{55}[\epsilon \tau \iota] \delta \epsilon$ то тоv $\delta \eta \chi[\theta \epsilon] \nu \tau 0$ ӥто $\tau[0 v$ [ $\epsilon \chi \epsilon \omega \varsigma] \pi \alpha \theta$ os $\kappa \alpha \mu \epsilon[\epsilon \chi] \epsilon \iota \quad \phi \alpha \sigma[\iota \quad \gamma \alpha \rho$


Col. xxiv.
ouk $\epsilon \theta \in \lambda \epsilon \iota \nu \quad \lambda \epsilon \gamma \epsilon \iota \nu$ oto[ $\nu \quad \eta \nu \pi \lambda \eta \nu$ tots $\delta \epsilon$ $\delta \eta \gamma \mu \in \nu o l s$ ws $\mu \circ \nu[0 \iota s \quad \gamma \nu \omega \sigma o \mu \in \nu o l s$ ка८ $\xi v \gamma$
S60 $\gamma \nu \omega \sigma о \mu \epsilon \nu 0 \iota S$ є $\pi \alpha \nu[\epsilon \tau о \lambda \mu \alpha \delta \rho \alpha \nu \tau \epsilon \kappa \alpha \iota$ $\lambda \epsilon \gamma \epsilon \iota \nu$ üто $\tau \eta S$ o $\delta v[\nu \eta S \quad \epsilon \gamma \omega]$ ovv $\delta[\epsilon \delta \eta \gamma$
 $\nu 0 \tau \alpha \tau о \nu \quad \omega \nu \alpha \nu \tau \iota S \quad \delta \eta \chi \theta \epsilon \iota \eta \cdot \tau \eta[\nu] \kappa \alpha \rho$ סıav $\gamma \alpha \rho \quad \eta \quad \psi v \chi \eta \nu \quad \eta$ оть $\delta \epsilon \iota$ avto o $[\nu 0]\rangle$
$865 \mu \alpha \sigma \alpha \iota \pi \lambda \eta \gamma \epsilon \iota \varsigma \tau \epsilon \kappa \alpha \iota \delta \eta \chi \theta \epsilon \iota \varsigma \quad \ddot{\pi} \pi\left[\begin{array}{ll}0 & \tau] \bar{\omega}\end{array}\right.$ $[\epsilon] \nu \quad \phi i \lambda о \sigma \circ \phi \iota \alpha$ 入oy $\omega \nu$ ol $\left.\epsilon \chi 0 \nu \tau\left[\begin{array}{ll}\alpha \iota & \epsilon \backslash\end{array}\right]\right\rangle$
 $\phi[v o v] s$ от $\nu \nu \lambda \alpha \beta \omega \nu \tau \alpha \iota$ каl $\pi \circ \iota o v[\sigma \iota \delta \rho \bar{\alpha}$ $\tau \epsilon \kappa \alpha \iota \quad \lambda \epsilon \gamma \epsilon \iota[\nu$ or $\quad$ ] $0 v \nu[\kappa \alpha] \iota$ op $\omega \nu$ $\alpha v \quad \Phi \alpha[\iota$
$87 \circ$ סpous $[A \gamma] \alpha \theta[\omega \nu] \alpha s \quad E \rho[v \xi \iota \mu] \alpha \chi$ ous $\Pi[\alpha \nu$ 218 B
[баvlas A $1 \sigma \tau \tau о \delta \eta \mu \circ]$ us $\tau \epsilon$ каı $A[\rho \iota \sigma \tau о$ $\phi\left[\alpha \nu \alpha s \quad \sum \omega k \rho \alpha \tau\right] \eta[\delta] \epsilon$ avtov $\tau \iota \quad \delta[\epsilon \iota \lambda \epsilon$
 $\nu \omega \nu \eta к \alpha \tau \epsilon \tau \eta s$ фі入oбoфov $\llbracket \stackrel{\mu}{[\phi}] \alpha_{\alpha}[\nu l a s$
 $\sigma \epsilon \sigma \theta[\epsilon] \sigma \nu \nu \gamma \nu \omega \sigma \epsilon \sigma \theta \epsilon \quad \gamma \alpha \rho$ тols $\tau[\epsilon \tau 0 \tau \epsilon$ $[\pi \rho \alpha \chi] \theta \epsilon \iota \sigma[l]$ каl $\tau 0 \iota s ~ \nu v v \lambda \epsilon \gamma \circ \mu \epsilon[\nu 0 \iota s$

$\beta[\eta \lambda]$ ]os $\tau \epsilon$ каl $\alpha \gamma \rho[$ oıkos $] \pi v \lambda \alpha s \pi[\alpha] \nu[v$ $880[\mu \epsilon \gamma \alpha \lambda] \alpha s$ тoıs $\omega \sigma \iota \nu[\epsilon \pi \iota \theta] \epsilon \sigma \theta\left[[\alpha] \epsilon^{*} \quad[\epsilon] \pi \epsilon \iota\right\rangle$
$\delta \eta[\gamma] \alpha[\rho]$ ov $\omega$ $\alpha \nu \delta \rho \in S$ o $\tau \epsilon \lambda \nu \chi[\nu 0 S a] \pi \epsilon$ $\sigma \beta[\eta \kappa \in \iota \quad \kappa \alpha \iota \quad$ o $] \iota \quad \pi[\alpha \iota \delta] \epsilon \varsigma \quad \epsilon \xi \omega \quad \eta \sigma \alpha \nu[\epsilon \delta 0$
$\left[\begin{array}{llll}\xi \epsilon & \mu \circ \iota & \text { Х } \rho \eta \nu \alpha \iota & \mu\end{array}\right] \eta \delta[\epsilon] \nu$ поıкı $\lambda \lambda[\epsilon \iota \nu$


$\operatorname{av\tau }\left[0 \nu \sum \omega \kappa \rho \alpha \tau \epsilon S\right.$ к $\left.\kappa\right] \theta \in v \delta \epsilon \iota \varsigma:$ ov $\delta \eta$

$\tau \iota \mu \alpha[\lambda \iota \sigma \tau \alpha \in \phi \eta \quad \sigma v \in \mu o] \iota$ סокєıs $\eta v\rangle$
$\delta \quad \epsilon \gamma \omega[\epsilon \mu 0]$ v $\epsilon \rho a[\sigma \tau \eta S \quad a] \xi[l] 0 s \quad \gamma \in \gamma o v[\epsilon] \nu a l$
$890 \mu 0 \nu$ o[s каl] $\mu 0 \iota \phi \alpha[\iota \nu] \epsilon \iota$ ок $\nu \epsilon \iota \nu \mu \nu \eta\rangle$
$\sigma \theta \eta \nu[\alpha \iota \pi \rho] o s \mu^{*} \quad \epsilon \gamma \omega \delta \epsilon$ out $\omega \sigma \ddot{i}[\epsilon \chi] \omega^{*}$
$\pi \alpha \nu v[\alpha \nu 0] \eta \tau[0] \nu \quad \eta \gamma o v \mu \alpha \iota \in \iota \nu \alpha \iota$ $\sigma 0 \iota \mu \eta$

入о $\eta \tau \eta[s]$ ovolas $\tau \eta[s] \epsilon \mu \eta s$ $\delta є o \iota 0 ~ \eta \tau \bar{\omega}$
895 [ $\phi \iota] \lambda \omega \nu \tau[\omega] \nu \quad \epsilon \mu \omega \nu[\cdot] \quad \epsilon \mu \rho[l] \quad \mu \in \nu \quad \gamma \alpha \rho$ ov
$\delta[\epsilon \nu \quad \epsilon \sigma \tau \iota] \pi \rho \epsilon \sigma \beta \nu \tau \epsilon \rho[0 \nu \quad \tau] 0 v$ $\omega s$ o $\sigma \iota\rangle$
$[\beta] \epsilon \lambda \tau \iota \sigma \tau[0] \nu \quad \epsilon \mu \epsilon \quad \gamma \epsilon \nu[\epsilon \sigma \theta \alpha \iota]$. тоито[ $v$
$\delta \epsilon \quad 0[\iota] \mu a\left[l \mu_{0}\right\}$ \} $\iota \sigma v \lambda \lambda \eta \pi[\tau 0 \rho \alpha$ o $] v \delta \epsilon[\nu \alpha$
кvрเ $\omega \tau \epsilon \rho \circ \nu \in[l] \nu \alpha \iota \sigma \circ[v \in \gamma \omega \delta \eta$ тоl
900 ovt $\omega \alpha \nu \delta \rho \iota \pi 0 \lambda \nu \quad \mu \alpha[\lambda \lambda o \nu \alpha] \nu \mu \eta$
$\chi^{\alpha \rho \iota} \delta \rho \mu \in \nu 0 s$ alб $\chi[v \nu o \iota \mu \eta \nu]$ tovs


Col. xxv.
$\tau \epsilon[\pi о \lambda \lambda$ ous кає $\alpha \phi] \rho o v a s$ к $\alpha \iota$ [outos $\alpha$ $[\kappa o v \sigma \alpha S ~ \mu \alpha \lambda \alpha ~ \epsilon \iota \rho \omega] \nu \iota \kappa \omega s$ к $\alpha \iota \sigma \phi[0 \delta \rho] \alpha$ $\phi \lambda \epsilon$
$90_{5}[\epsilon \alpha v] \tau 0 v[\tau \epsilon \kappa \alpha \iota \epsilon \iota \omega$ ] $\quad \tau \tau \omega s \in \lambda \epsilon \xi \epsilon: \omega A \lambda$
$[\kappa l] \beta \iota a \delta \eta \quad \kappa \iota[\nu \delta] \cup \cup[\nu] \in v \epsilon \iota S \quad \tau \omega$ ovtı ov $\rangle$
$\phi \alpha \nu \lambda o s \in \iota[\nu \alpha \iota \quad \epsilon] \iota[\pi] \in \rho[\alpha] \lambda \eta \theta \eta \tau v \gamma \chi^{\alpha \nu}[\iota$
ov[ $\tau \alpha]$ a $\lambda \epsilon \gamma \epsilon \iota S \pi \epsilon \rho \iota \epsilon \mu \circ v \kappa \alpha \iota \tau \iota S \in \sigma \tau^{\prime} \epsilon$
218 E
$\nu[\epsilon \mu o l \delta] v \nu \alpha \mu l s \delta^{\prime} \eta s \quad a \nu[\sigma] v \quad \gamma \in \nu 0 l o \quad a$
$910 \mu \epsilon \iota \nu \omega \nu \alpha[\mu \eta] \chi^{\alpha} \alpha \nu \nu[\tau] 0 \iota$ ка入入os ор $\omega$
 $\phi[l] \alpha s \quad \pi \alpha[\mu] \pi o \lambda v \quad \delta \iota[\alpha] \phi[\epsilon \rho] o \nu \quad \epsilon \iota \quad \delta \eta \quad \kappa \alpha \theta o$ [ $\rho \omega \nu$ av $\sigma 0] \kappa[0 \iota \nu] \omega \sigma \alpha \sigma \theta \alpha \iota \tau \epsilon \mu \circ \iota \in \pi \iota\rangle$ $[\chi]!\rho \in \iota \varsigma$ к $\alpha \iota ~ \alpha \lambda[\lambda] \alpha \xi \alpha \sigma \theta \alpha \iota$ к $\alpha \lambda \lambda$ оऽ $\alpha \nu \tau \iota$
 $\delta \iota \alpha \nu 0 \epsilon \iota \alpha \lambda \lambda \alpha \nu \tau \iota[\delta] 0 \xi \eta S \quad \alpha \lambda \eta \theta \epsilon \iota \alpha \nu\rangle$
$\kappa \alpha \lambda[[\stackrel{\omega}{0}] \nu \nu \quad \kappa \tau \alpha \sigma \theta \alpha \iota \quad \epsilon \pi \iota \chi \in \iota \rho \epsilon \iota \varsigma \quad \kappa \alpha!!\tau \omega\rangle$
${ }_{0 \nu \tau \iota} \chi^{\rho} \nu \sigma \iota \iota \chi^{\alpha \lambda \kappa \epsilon!\omega \nu}[\delta \iota \alpha \mu \epsilon \iota \beta \epsilon \sigma \theta \alpha \iota$
 $920 \pi \epsilon \iota \mu \eta \quad \sigma \epsilon \lambda \alpha \nu \theta \alpha \nu \omega[o v \delta] \epsilon \nu \omega \nu \quad \eta$ тol

$\pi \epsilon l \nu$ o $\tau \alpha \nu \stackrel{\vdash}{\eta} \tau \omega \nu \quad o \mu \mu \alpha \tau \omega \nu \quad \tau \eta S\rangle$
$\alpha \kappa \mu \eta s \quad \lambda \eta \gamma \epsilon!\varphi, \varphi \pi!\chi \epsilon \iota \rho \eta \quad \sigma v[\delta \epsilon] \tau 0 v\rangle$
$\tau \omega \nu \quad \epsilon \tau![\pi] 0 \rho \rho \omega^{*} \kappa \alpha \iota \in \gamma \omega$ акоvб $\left.\alpha s:\right\rangle$

$\omega \nu$ ov $\delta[\epsilon] \nu \quad \alpha \lambda \lambda \omega s \quad \epsilon \iota \rho \eta \tau \alpha \iota \quad \eta \quad \omega[s] \quad \delta \iota \alpha[ \rangle]$
$\nu[00 v \mu] \alpha!\sigma![\delta \epsilon \quad \alpha v \tau 0 s$ o $] v \tau[\omega]$ ßoviє $v$
219 B
$\left[\begin{array}{lll}0 v & \sigma o l & \tau \epsilon\end{array}\right]$ oт८ $\alpha[\rho \iota \sigma \tau o \nu \quad \kappa \alpha \iota ~ \epsilon \mu] o l ~ \eta \gamma \in[\iota:]$
$\alpha \lambda \lambda[\epsilon \phi \eta$ тоvтo $\gamma \epsilon \nu \lambda \epsilon \gamma \epsilon \iota \varsigma \epsilon] \nu \quad \gamma \alpha \rho \tau \omega$
$930 \epsilon \pi \iota \circ \nu[\tau \iota$ X $\rho \circ \nu \omega$ ßov $\boldsymbol{\epsilon} \epsilon \nu \circ \mu \epsilon \nu 0 \iota] \pi \rho \alpha$
$\xi \circ \mu \epsilon[\nu \quad 0 \quad \alpha \nu] \quad \phi \alpha \iota \nu \eta \tau \alpha[\iota \quad \nu \omega \nu \quad \pi \epsilon \rho \iota$
$\tau \epsilon \operatorname{\tau ov} \tau \omega \nu \kappa \alpha \iota \pi \epsilon \rho \iota[\tau \omega \nu \alpha \lambda \lambda \omega \nu$
$\alpha \rho \iota \sigma \tau o \nu[:] \quad \epsilon[\gamma \omega] \mu \epsilon \nu \delta[\eta \tau \alpha \nu \tau \alpha$ акоv
$\sigma \alpha \llbracket \nu\rceil] \tau \epsilon<[\alpha \iota \quad \epsilon \iota \pi] \omega \nu \quad \kappa \alpha[\iota] \quad \alpha \phi \epsilon \iota S \quad \omega[\sigma \pi \epsilon \rho$
$935 \beta \in \lambda \epsilon \iota \quad \tau \epsilon \tau[\rho \omega] \sigma \theta \alpha \iota$ avtov $\omega \mu[\eta \nu$ к $\alpha \iota$
$\alpha \nu \alpha \sigma \tau \alpha\left[\begin{array}{ll}s & \gamma \epsilon]\end{array}\right.$ ov $\delta \epsilon \pi \iota \tau \rho \epsilon \psi \alpha s \quad \tau[0 u \tau \omega$
$\epsilon \iota \pi \epsilon \iota \nu$ ov $\delta[\epsilon \nu \quad \epsilon \tau \iota] \quad \alpha \mu \phi \iota \epsilon[\sigma] \alpha[s$ то $\iota \mu \alpha$
т८้ то $\epsilon \mu \alpha[v \tau 0] v \tau[0 v \tau 0] \nu \kappa \alpha \iota[\gamma \alpha \rho$
$\eta \nu \quad \chi \epsilon \iota \mu \omega \nu \quad \ddot{\nu}[0$ тоע $\tau \rho \iota \beta \omega] \nu \alpha \kappa \alpha[ \rangle$

$\tau \omega \chi \in \iota \rho \epsilon \tau \circ[v \tau \omega \quad \tau \omega \quad \delta \alpha \iota] \mu 0 \nu \iota \omega \omega s$
219 C
$\alpha \lambda \eta \theta \omega \varsigma$ к $\alpha[\iota$ $\theta \alpha v \mu \alpha \sigma \tau] \omega$ катєкє८ $\rangle$


$945 \delta \circ \mu[\alpha \iota$ тоı $\eta \sigma \alpha \nu \tau 0 s \delta \epsilon \delta \eta$ таvта
$\epsilon \mu$ оv [ovtos тобоито⿱ $\pi \epsilon \rho \iota \epsilon \gamma \epsilon] \nu \epsilon$
то $\tau[\epsilon]{ }_{k}^{[ }[\alpha \iota$ кат $\epsilon \phi \rho 0 \nu \eta \sigma \epsilon \nu$ кає к] $] \tau \epsilon$

Col. xxvi.
 $\pi \epsilon \rho \iota \quad \epsilon \kappa \in \iota \nu 0 \quad \gamma \epsilon \omega \mu \eta \nu \quad \tau \ell \in t \nu \alpha l \omega \alpha v[\delta \rho \epsilon s]\rangle$
$95^{\circ}$ Sıкабтаl $\delta_{ı к} \alpha \sigma \tau \alpha l$ $\gamma \alpha \rho$ єтє $\tau \eta s ~ \sum[\omega \kappa \rho \alpha$ [Tovs] $\ddot{u} \pi \epsilon \rho \eta \phi \alpha \nu[\iota \alpha] s: \epsilon v \quad \gamma[\alpha \rho \quad l] \sigma \tau[\epsilon \mu \alpha \quad \theta \epsilon o v s$ $\left[\begin{array}{lll}\mu \alpha & \theta \in \alpha S & o\end{array}\right] v[\delta \epsilon \nu] \pi \epsilon \rho \iota \tau \tau[0 \tau \epsilon \rho 0] \nu \quad \kappa[\alpha \tau \alpha \delta \epsilon$ $\delta \alpha[\rho \theta] \eta \kappa[\omega] \leqslant, \alpha \nu \epsilon\left[\begin{array}{lll}\sigma \tau \eta \nu & \mu \epsilon] \tau \alpha & \sum \omega \kappa \rho \alpha[\tau o v s]\end{array}\right.$ $\eta \in \iota \mu \epsilon \tau \alpha$ татр[os ка $\theta \eta v] \delta o \nu \quad \eta$ $\alpha \delta \in \lambda \phi о v$ $\tau \alpha$
 $0 \iota \epsilon \sigma \theta \epsilon \mu \epsilon \quad \delta \iota \alpha \nu[0<\alpha] \nu \quad \in X \epsilon^{\top}(\nu] \quad \eta \gamma o v \mu \in \nu \bar{o}$ $\mu \in \nu \quad \eta \tau \iota \mu \alpha \sigma \theta\left[\alpha \iota\right.$ a] $\gamma \alpha \mu \in \nu\left[\begin{array}{ll}0 \nu & \delta \epsilon\end{array}\right] \tau \eta \nu$ тov Tov $\left.\phi \cup \sigma \iota \nu \tau_{[ }^{\top} \epsilon \kappa \alpha \iota \quad \sigma \omega\right] \phi \rho \circ \sigma \nu \nu \eta \nu \quad \kappa \alpha[\iota \alpha \nu$ $\delta \rho \epsilon \iota \alpha \nu \in \nu \tau[\epsilon] \tau v \chi \eta \kappa о \tau \alpha \quad \alpha \nu \theta \rho[\omega] \pi \omega\rangle$

960 тolovt 0 ot $\omega \in[\gamma] \omega[0$ 'vk a $\nu \omega \mu \eta \nu \pi[0] \tau \epsilon\rangle$

$\kappa \rho \alpha \tau \epsilon \iota \alpha \nu \quad \omega \sigma \tau\left[\begin{array}{ll}\epsilon & 0\end{array}\right][\llbracket \theta]$ oT $\left[\begin{array}{lll}{[S]}\end{array}\right.$ ouv opy $\langle 0 \iota\rangle$
$\mu \eta \nu \quad \epsilon \iota X O \nu \quad \epsilon \iota \kappa\left[\begin{array}{ll}\alpha l & \alpha] \pi \circ \sigma \tau \epsilon \rho \eta \theta \epsilon \iota \eta \nu\rangle\end{array}\right.$


[ $\epsilon] v \quad \gamma \alpha \rho \quad \eta \delta \epsilon!\nu$ oтl $\chi \rho \eta \mu \alpha \sigma \iota \quad \gamma \epsilon \pi 0 \lambda v\rangle$
$\mu \alpha \lambda \lambda o \nu \alpha \tau \rho \omega \tau o s ~ \eta \nu \pi \alpha \nu \tau \alpha \chi \eta \quad \eta$
$\sigma \iota \delta \eta \rho \omega$ o Alas. $\omega \tau \epsilon \omega \mu \eta \nu$ avtov $\mu \circ$
$\nu \omega \alpha \lambda \omega \sigma \epsilon \theta \alpha \iota \quad \delta \iota \epsilon \pi \epsilon \phi \epsilon v \gamma \epsilon \iota \quad \mu \epsilon \quad \eta \pi 0\rangle$
$9_{7}^{7}$ pouv $\delta \eta$ ката $[\delta] \epsilon \delta o u \lambda \omega \mu \in \nu 0$ S $\tau \in \ddot{v}$


```
 \delta\epsilonvos \alpha\lambda\lambdaov \pi\epsilon\rhoı\eta\!¢\ï\alpha \tau\alphav\tau\alpha T\epsilon [\gamma]\alpha\rho
 \mu0! \alpha\pi\alpha\nu\tau\alpha \pi\rhoоv\gamma\epsilon\gammaov\epsilon! к\alphal }\mu\epsilon
 \tau\alpha \tau[\alpha]u\tau\alpha \sigma\tau\rho\alpha\tauL\alpha \eta\mu\epsilon\iota\nu [\epsilon]/s По>
975 [r][![]\delta\alphaLa\nu є\gamma\epsilon\nu\epsilon\tauо ко\iota\nu\eta к\alphal \sigma[v]v
 \epsilon\sigma\epsilon\iota\tauо\nu\mu\epsilon\nu \epsilonк\epsilon\iota \pi\rho\omegaто\nu \mu\epsilon\nu ou
 Tols \piovols ov \muovov \epsilon\mu%v \pi\epsilon[\rho]![\overline{\eta}]
 [\alpha]\lambda\lambda\alpha к\alphal \tau\omega\nu \alpha\lambda\lambda\omega\nu \alpha\pi\alpha\nu\tau\omega[\nu
 [о\pio]T\alpha\nu \alpha\nu\alpha\gammaк\alpha\sigma0\epsilon\imath\eta\mu\epsilon\nu \alpha\piо>
980 [\lambda\epsilon\iota\phi0]\epsilon\nu\tau\epsilonS \piov o\alpha \delta\eta \epsilon\pi\iota \sigma\tau \sigma\alpha\tau\epsilon\iota
 [\alphas a\sigma\epsilonl]T\epsilonl\nu ov\delta\epsilon\nu \eta\sigma\alpha\nu ol \alpha\lambda\lambdaol \pi\rhoos
```



```
 a
 \muovos amo\lambda\lambdav\epsilonl\nu olos \tau \eta\nu \tau\alpha \tau a\lambda
 \lambda\alpha к\alpha\iota \pi\iota\nu\epsilon\iota\nu ovк \epsilon0\epsilon\lambda\omega\nu о\piот\epsilon \alpha>
985 \nu[\alpha]\gammaк\alpha\sigma0\epsilon\iota\eta \pi\alpha\nu\tau\alphas \epsilonкрат\epsilon! ка\iota
 [o] \pi[\alpha\nu]\tau\omega\nu ө\nu\mu\alpha\sigma!\omega\tau\alphaто\nu \sum\omegaк\rho\alpha
 [\tau]\eta \mu\epsilonӨvov\tau\alpha ov\delta\epsilon!s \pi\omega\piот\epsilon \epsilon\omega>
 \rho[\alpha]K\epsilon\nu \alpha\nu0\rho\omega\pi\omega\nu \tauоvтоv }\mu\in\nu o\overline{\nu
 \mu[0]l \deltaок\epsilont к\alphal аvт\iotaка о є\lambda\epsilon\gammaXOS \epsilon)
990 [\sigma\epsilon\sigma0]a! \pi\rhoos \delta\epsilon av \tauas \tauov X\epsilon!\mu\omega
 [vos к\alpha\rho]\tau\epsilon\rho\eta\sigma\llbracketa\s \delta[\epsilon]|\nuO[l] \gamma\alpha\rho аu\tauо
 [0\iota X\epsilon\ell\mu\omega\nu]}S 0\alphav\mu[a]\sigma\iota\alpha \epsilonl\rho\gamma\alphaS\epsilon
 [\begin{array}{lllllll}{\tau0}&{\tau\epsilon}&{\alpha\lambda]\lambda\alpha[[\kappa\alphal]}\end{array}]0\tau\epsilon ov\tauos \llbracketü\rrbracket]\pi\alpha
 yov olov \delta[\epsilont\nu0]T\alpha\tauov к\alpha\iota \pi\alphav\tau\omega\nu
```

Col. xxvii.
$995 \eta$ ovk $\epsilon \xi \leftarrow 0 \nu \tau \omega \nu[\epsilon] \nu \delta 0 \theta \epsilon \nu \quad \eta \in \iota[\tau] /<\in \epsilon$ $\xi เ 0 \ell ~ \eta \mu \phi \iota \in \sigma \mu \epsilon \nu \omega \nu \llbracket \delta \rrbracket \tau \in \theta \alpha \nu \mu \alpha \sigma \tau \boldsymbol{\alpha}$. $\eta$ oба каl $\ddot{u} \pi \sigma \delta \delta \delta \epsilon \mu \epsilon \nu \omega \nu$ кац $\epsilon \nu[\epsilon l] \lambda \iota \gamma$
 аруакıías ovtos $[\epsilon] \nu \tau[0 v \tau o l] s \in\{[\eta \epsilon L$


```
 \pi\epsilon\rho к\alphal \pi\rhoот\epsilon\rhoо\nu \epsilon\iota\omega0\epsilonl фо\rho\epsilon[l\nu] \alpha\nu
 v\pio\delta\eta[\tau]os \delta\epsilon \delta\iotaa \tauov к\rhov\sigma\sigma\tau\alpha[\lambda]\lambdaov
 \rho\alpha[0`\nu \epsilon\piор\epsilonv\epsilon\tauо \eta ol \alpha\lambda\lambdao\iota ü\pio\delta\epsilon
 \deltai\epsilon\mu]\epsilon\nu[0]l ol \delta\epsilon \sigma\tauра\tauו\omega\tau\alpha[l] \ddot{l [\pi\epsilon\beta]\lambda\epsilon}
1005 \pi
 220 C
 220 D
1020 \epsilon\xi[\epsilon]\nu\epsilon\gammaк\alpha\mu\epsilon[\nuOl] \alpha\mu\alpha }\mu\epsilon\nu\in\nu\tau\omega \psiv\chi\chi\epsilon
 \kappa[\alpha0\eta]\cup\deltaO\nu a[\mu\alpha \delta \epsilon]\phiu\lambda\alpha\tau\tauо\nu \alphav\tauо\nu>
 [\epsilonl каl \tau\eta\nu \nuvк\tau\alpha] \epsilon\sigma\tau\eta\xi%\iota o \delta\epsilon \epsilon\iota\sigma\tau\eta
 \kappa\epsilon\iota [}\mu\in\chi\rho\iota \epsilon\omegaS \epsilon\gamma\epsilon\nu]\epsilon\tauо к\alpha\iota \eta\lambda\iotao[s] a\nu\epsilon>
 \sigmaX\epsilon\nu \epsilon[\pi\epsilonl\tau\alpha \omegaX }\\epsilon\tau]0 a\pit\omega\nu \pi\rho\rho\sigma\sigma\epsilonv\xi
```



```
 \tau\alpha\iotas \mu\alpha[X\alphals \tauov\tau]o \gamma\alpha\rho \delta\eta \delta\iotaк\alphalov \gamma\epsilon
 \alphav\tau\omega [\alpha\pio\deltaovv]\alpha\iota от\epsilon \gamma[\alpha]\rho \eta \mu\alpha}\\eta\quad\overline{\eta
 \epsilon\xi \etaS \epsilon\muO\iota [к\alphal \tau]\alpha \alpha\rho!l]\sigma\tau[\epsilonl]\alpha \epsilon\deltaO\sigma\alpha\nu\nu ol
 \sigma\tau\rho\alpha\tau\eta[\gamma0\iota ov\delta]\epsilon\iotas [a]\lambda\lambdaos \epsilon\mu\epsilon \epsilon\sigma\omega\sigma\sigma\epsilon\nu
1०з० a[\nu0]\rho\omega\pi\omega\nu\nu [\eta ov\tau0S] \tau\epsilon\tau\rho\omega\mu\epsilon\nu०\nu\rangle
 220 E
 [ovk \epsilon0]\epsilon\lambda\omega\nu a[\pio\lambda\iotat\pi\epsilonl]\nu a\lambda\lambda\alpha \sigmav\nu\delta\\epsilon
 \sigma[\omega\sigma\epsilon к\alphal] \tau\alpha о\pi\lambda\alpha [к\alphal \alphav]\tauov \epsilon\mu\epsilon к\alphal \epsilon\gamma\omega
 \mu[\epsilon\nu] \omega \Sigma\omegaк\rho\alpha\alpha\tau\epsilonS к[\alpha\iota \tau0]T\epsilon \epsilonк\epsilon\lambda\epsilon\cupо\nu>
 \sigmao[l \delta}]\\delta0v\alpha\iota \tau\alpha a\rho!\sigma[\tau\epsilon\iota\alpha] \tauovs \sigma\tau\rho\alpha\tau\eta
```

```
1035 \gamma[0vs] к\alphal \tauоv\tau0 \gamma\epsilon \mu[0l] ov\tau\epsilon }\mu\in[|v]]\psi\epsilon\ell \mathrm{ ovTє € >
 \rho[\epsilon\iotas] o\tau\iota \psi\epsilonv\delta[o\mu\alphal] \alpha[\lambda\lambda]\alpha \gamma\alpha\rho \tau\omega\nu \sigma\tau\rho\alpha>
 [\tau\eta\gamma\omega\nu] \pi\rho[os \tauo \epsilon\muo`\nu a\xi[l]\omega\mu\alpha \alpha\pio\beta\lambda\epsilon
 [\pio\nu\tau\omega\nu] к[\alpha\iota \betaov\lambda]o\mu\epsilon\nu\omega\nu \epsilon\muol \delta\iota\deltao>
 [\nu\alpha\iota \tau\alpha \alphaр\iota\sigma\tau\epsilon\iota\alpha] \alphavтo[s] \pi\rhoоөv\muо\tau\epsilon\rhoоs
10.40[\epsilon\gamma\epsilon\nu0v
```



## Col. xxviii.

    \([\eta \nu \quad \theta \epsilon \alpha \sigma] \alpha \sigma \theta \alpha \iota \quad \sum \omega \kappa \rho \alpha \tau \eta \nu\) oтє \(\alpha \pi 0 \quad \Delta \eta \lambda \iota o v\)
    \(\left[\begin{array}{ll}\phi \nu \gamma \eta & \alpha\end{array}\right] \nu \epsilon \chi \omega \rho \epsilon \iota\) то \(\sigma \tau \rho \alpha \tau о \pi \epsilon \delta \circ \nu \cdot \epsilon \tau v \chi \bar{o}\)
    $1045 \delta[\epsilon \quad$ oा $\lambda \alpha] \cdot \alpha \nu \epsilon \chi \omega \rho \epsilon \iota$ ouv $\epsilon \sigma \kappa[\epsilon \delta \alpha \sigma \mu \epsilon] \nu[\omega]$,
$\eta[\delta \eta] \tau \omega \nu \quad \alpha \nu \theta \rho \omega \pi \omega \nu$ ovtos $\tau \epsilon \alpha \mu \alpha \kappa[\alpha \iota$
$[\boldsymbol{\Lambda}] \alpha \chi \eta S \quad \kappa \alpha \iota \quad \epsilon \gamma \omega \pi \epsilon \rho \iota \tau v \gamma \alpha \nu \omega[\cdot \kappa] \alpha \iota$ ї $\delta \bar{\omega}$
$\epsilon v \theta v s \pi \alpha \rho \alpha \kappa \epsilon \lambda \epsilon v \circ \mu \alpha l$ тє avтolv $\theta \alpha \rho$
$\rho \iota \nu$ каl $\epsilon \lambda \epsilon \gamma 0 \nu$ oтl ovk $\alpha \pi о \lambda \epsilon \iota \psi \omega$ avt $\omega$
$105 \bar{\circ} \mathrm{\epsilon}[\nu \tau] \alpha \nu \theta \alpha$ ठ $\eta$ к $\alpha \iota$ к $\alpha \lambda \lambda \epsilon \iota \circ \nu \in \theta \epsilon \alpha \sigma \alpha \mu \bar{\eta}$
$[\Sigma] \omega \kappa \rho \alpha \tau \eta \quad \eta[\epsilon \nu]$ Пov[ $\epsilon i] \delta \alpha \iota \alpha \cdot \alpha v \tau o s ~ \gamma \alpha \rho\rangle$
$\eta \tau \tau 0 \nu \in \nu \quad \phi[0 \beta] \omega \quad \eta \quad \delta[\imath] \alpha$ то $\epsilon \phi \quad \iota \pi \pi 0 v \in \iota \nu \alpha \iota$
$\pi \rho \omega[\tau 0] \nu \quad \mu \epsilon \nu \quad \circ[\sigma 0 \nu] \pi \epsilon \rho \iota \eta \nu \quad \Lambda \alpha \chi \eta \tau \circ s \tau \omega$
$\epsilon \nu \phi \rho[\omega] \nu \quad \epsilon \iota \nu \alpha \iota \in \pi \epsilon \iota \tau \alpha \in \mu[0 \iota] \gamma \epsilon \epsilon \delta о \kappa \epsilon \iota \omega A$

$\delta \iota \alpha \pi o \rho \epsilon \nu \epsilon[\sigma \theta] \alpha \iota \quad \omega \sigma \pi \epsilon \rho$ ка८ $\epsilon \nu \theta \alpha \delta \epsilon \beta \rho \epsilon \nu$
$\theta v o \mu \epsilon \nu 0 s \quad \tau \epsilon \kappa \alpha \iota[\tau] \omega$ оф $\alpha \lambda \mu \omega[\pi \alpha] \rho \alpha \beta \alpha \lambda$
$\lambda \omega \nu \quad \eta \rho \epsilon \mu \alpha \pi \alpha \rho[\alpha] \sigma \kappa о \pi \omega \nu \quad \kappa[\alpha l]$ Tous $\phi \iota$
入ous каl tous $\pi o \lambda \epsilon \mu l o u s ~ \delta \eta[\lambda] o s ~ \omega \nu\rangle$
$1060 \pi \alpha \nu \tau \iota$ ка८ $\pi \alpha \nu v \pi о \rho p \omega \theta[\epsilon] \nu$ oтl $\epsilon \iota \tau \iota S$

$\epsilon \rho \rho \omega \mu \epsilon \nu[\omega s \quad \alpha] \mu \nu \nu \epsilon \iota \tau \alpha \iota$. Sıo каl $\alpha \sigma \phi \alpha$
$\lambda \omega\left[\begin{array}{ll}s & \alpha] \pi \eta \epsilon \iota\end{array} \kappa \alpha \iota\right.$ avtos ка८ о $\left.\epsilon \tau \epsilon \rho \circ \rho \sigma \chi \bar{\epsilon}\right\rangle$
$\delta o[\nu] \gamma \alpha \rho \quad \tau \iota \tau \omega \nu[0] v \tau \omega S \quad \delta \iota \alpha \kappa \epsilon \iota \mu \epsilon \nu \bar{\omega}$
$10 \sigma_{5} \epsilon \nu \tau \omega \pi 0 \lambda \epsilon \mu \omega$ ov $\delta \epsilon \alpha \pi \tau 0 \nu \tau \alpha \iota \quad \alpha[\lambda \lambda] \alpha$
iTo］us $\pi \rho о \tau \rho о \pi \alpha \delta \eta \nu$ фєuyọva［s $\delta_{l} \quad 221 \mathrm{C}$

$\alpha \lambda[\lambda] \alpha \in X \circ{ }^{\circ} \omega \kappa \rho \alpha \tau \eta \nu \quad \epsilon \pi \alpha \iota \nu \epsilon \sigma \alpha l$ к $\left.\alpha l\right\rangle$
$\theta \alpha \nu \mu \alpha \sigma \iota \alpha \quad \alpha[\lambda \lambda \alpha \quad \tau \omega \nu \alpha \lambda] \lambda \omega \nu \quad[\epsilon] \pi \iota \iota \eta \delta \epsilon \nu$
$1070 \mu \alpha \tau \omega \nu \tau \alpha \chi$ а $\tau[\iota s] \kappa \alpha[\iota] \pi \epsilon \rho \iota \alpha[\lambda] \lambda o v \tau 0 \iota\rangle$
$\alpha \nu \tau \alpha$ єاтоレ то $\delta \epsilon \delta \eta \mu \eta \delta \epsilon \nu\left[\begin{array}{ll}l & \alpha\end{array}\right] \nu \theta \rho \omega \nu$
o $\left.\mu \circ \iota \circ \nu \in \iota \nu[\alpha l] \mu \eta \tau \epsilon \tau \omega_{l}{ }^{\prime} \nu\right] \pi \alpha \lambda[\alpha l] \omega \nu \mu \eta$
$\tau \epsilon \tau \omega \nu[\nu v \nu \quad o \nu] \tau \omega \nu\left[\right.$［тоvто $\left.\alpha \xi \epsilon_{j}\right) \nu \nu \pi \nu$
ros $\theta \alpha \nu \mu[\alpha \tau 0] s$ olos $\gamma \alpha \rho[A X \backslash \lambda] \lambda \in U s$ єyєVє


$\sigma \tau о \rho a$ ка८ $A \nu \tau \eta \nu[0] \rho a$ ．$\epsilon \iota \sigma \iota \delta \epsilon[\kappa] \alpha \iota \quad \epsilon \tau \epsilon[\rho] 0 \iota$ кal tous
a入入ovs кта тavта $\alpha \nu \tau[\iota s] \overline{\kappa \alpha \iota \text { Tous } \alpha \lambda \lambda o v[s} \alpha]\rangle$
$\pi \epsilon \iota K a \zeta 0 l$ olos $\delta[\epsilon$ о］uтобï $\gamma \in \operatorname{yov\epsilon \nu } \tau[\eta], \nu$

yol avtou ou $\epsilon \gamma \gamma v s$ av єupol $\tau \iota \varsigma \zeta \eta \tau \omega \nu$ оut $\epsilon \tau \omega \nu \nu v \nu$ ovt $\tau \omega \nu \pi \alpha \lambda \alpha \iota \omega \nu^{\bullet} \epsilon \iota$
$\mu \eta$ apa ols $\epsilon \gamma \omega[\lambda \in \gamma] \omega$ artılka\}ol $\tau \iota S \alpha v$ $\tau 0 \nu$ a $\nu \theta \rho \omega \pi[\omega \nu \quad \mu \epsilon \nu] \mu \eta \delta \epsilon \nu l$ $\tau 0 \iota s[\delta] \epsilon\rangle$




Col．xxix．

тols $\delta l o l \gamma o \mu[\epsilon \nu 0 l s] \in \iota \quad \gamma \alpha \rho \in \theta \in \lambda[0 l \tau l] s \tau \bar{\omega}$
221 E

$\pi[\alpha] \nu v \quad \gamma \in \lambda 0 \iota 0[l] \quad \tau[0] \quad \pi[\rho] \omega \tau 0 \nu$ тоьаvт $\alpha$ к $\alpha[\ell$
оขо $\mu \tau \alpha \kappa \alpha[\iota] \rho \eta \mu \alpha \tau \alpha \in \xi \omega \theta \epsilon \nu \pi \epsilon \rho \iota\rangle$

סo［ $\rho a] \nu^{\bullet}$ ovous $\gamma \alpha \rho$ ка $\nu \eta \eta \lambda \iota \nu 0 u s \quad \lambda \epsilon \gamma \epsilon \iota$
1095 каı $[X] \alpha \lambda \kappa \epsilon \alpha s$ тเvas каı бкитотоноиs
$\kappa \alpha \iota \beta \nu \rho \sigma o \delta[\epsilon \psi] \alpha s$ каı $\alpha \in \iota$ $\delta \iota \alpha$ $\tau \omega \nu$ $\alpha v \tau \bar{\omega}$

```
 \tau\alphav\tau\alpha ф\alpha<l\nu\epsilon\tau\alpha\iota \lambda\epsilon\gamma\epsilonl\nu \omega\sigma\tau\epsilon \alpha\pi\epsilonl\rhoоS
 к\alpha\iota \alpha\nuо\eta\tauos \alpha\nu0\rho\omega\piо[\}v]]\pi\alphas \alpha\nu \tau\omega\nu
 \lambdao\gamma[\omega]\nu кат\alpha\gamma\epsilon[\lambda]\alpha\sigma\inl\epsilon\nu \delta\iotaol\gammao\mu\in\nu0us
```



```
 \mu\in\nuOS \piр\omegaто\nu }\mu\in\nu\nu[ov\nu] €Xо\nu\tau\alphas \epsilon\nu>
 \deltao\nu \muovous \epsilonv\rho\eta\sigma\inl \tau\omega\nu \lambdaо\gamma\omega\nu \epsilon\pi\epsilon\ell
 \tau\alpha 0\epsilon\iotaот\alpha\tauоvs к\alpha\iota \pi\lambda\in\iota\sigma\tau\alpha [\alpha]\gamma\alpha\lambda\mu\alpha
 \tau\alpha \alpha\rho\inT\etas \epsilon\nu \alphav\tauols \epsilon\chiO\nuT\alphas к\alphal \epsilon>
I105 \pi\iota \pi\lambda\epsilon\iota\sigma\tauo\nu \tau\iota\nuo\nu\tau\alphas \mua\lambda\lambdao\nu \delta \epsilon\pi\iota\iota
 \pi\alpha\nu о\sigmao\nu \pi\rhoо\sigma\etaк[\epsilonl \sigma}]<\kappaо\pi\epsilon\iota\nu \tau\omega \mu\epsilon
 \lambdaо\nu\tau\iota ка\lambda\omega кауа0\omega \epsilon\sigma\epsilon\sigma0\alpha\iota. \overline{\tau\alphav\tau\alpha}
 \tau\alphav\tau\alpha \epsilon\sigma\tau\iota\nu \omega \alpha\nu\delta\rho\epsilons а \epsilon\gamma\omega \sum\omegaкр\alpha
 \tau\eta\epsilon\pi\alpha\iota\nu\omega к\alpha\iota \alphav а \mu\epsilon\muфо\mu\alpha\iota \sigmav\mu
 i
IIIO }\mu\epsilonl\xi\alpha\Omega \eta\mu\epsilonl[\nu] \epsilonl\pi<\nu\nu \alpha \mu\epsilon \ddot{v}\beta\rho\iota\sigma\epsilon\nu
 к\alphal \mu\epsilon\nu\tauol ovk \epsilon\mu\epsilon \muо\nuо\nu \tau\alphav\tau[\alpha]>
 \pi\epsilon\pi[0]\iota\etaк\in\nu \alpha\lambda\lambda\alpha, к\alpha\iota X 人р\mu\iota\delta\eta\nu \tau[\overline{o}
 \Gamma\lambda\alphavк[\omega]\nuos ка\iota Ev0[v]\delta\eta\muо\nu то\nu [\Delta\iota]
 oк\lambda\epsilonous к\alpha\iota a\lambda\lambdaous mo\lambda\lambdaous. ovs ov
III5 \tau[o]s \epsilon\xi{\alpha\pi\alpha\tau\omega\nu \omegas \epsilonp\alpha\sigma\tau\etas \pi\alpha\iota\delta\iotaк\alpha
 \mu\alpha\lambda\lambdaо\nu \alphav\tauоs к\alpha0\iota\sigma\tau\alpha\tau\alpha\iota \alpha\nu\tau \epsilon\rho\alpha>
 \sigma\tauov` a \delta\eta ка\iota \sigmao\iota \lambda\epsilon\gamma\omega A\gamma\alpha0\omega\nu \mu\eta \epsilon>
```



```
 \eta\mu\epsilon\tau\epsilon\rho\omega\nu \pi}\alpha0\eta[\mu\alpha\tau\omega]\nu \gamma\nuо\nu\tau\alpha
 II2O \epsilonv\lambda\alpha\beta\eta}\mp@subsup{|}{\eta\nu\alpha\iota к\alpha\iota }{\mu}[\eta|\mp@code{|}<]\tau\alpha \tau\eta\nu \pi\alpha\alpha
 \rhoо\iota\mu\iota\alpha\nu \omega\sigma\pi\epsilon\rho \nu\eta[\pi\iotaO]\nu \pi\alpha0о\nu\tau\alpha>
~
 A\lambda\kappa\iota\beta\iota\alpha\deltaov \gamma\epsilon\lambda\omega\tau\alpha \gamma\epsilon\nu\epsilon\sigma0\alpha\iota[\epsilon]\pi\iota
 \tau\eta\pi\alpha\rho\eta\sigma\iota\alpha аv\tauоv оть \epsilon\deltaокє! \tau[l] \epsilon
 II25 \rho\omega\tau\iotaк\omegaS €X\epsilon\iota\nu \tauov \Sigma\omegaкр\alpha\tauous>
 \tauо\nu ouv \sum\omegaкрат\eta[:] \nu\eta\phi\epsilon\iota\nu \muо\iota
 a at
 \deltaок\epsilon\iotaS [[\epsilon]]\phivv \omega A\lambdaк\iota\beta\iota\alpha\delta\eta [o]v \gamma\alpha\rho
```

av тотє оутш ко $\mu \psi \omega s$ кикл $\omega$＞
$\pi \epsilon \rho \iota \beta a \lambda \lambda о \mu \epsilon \nu[0]$＇s aфaviбat $\epsilon\left[\nu_{j}^{\prime} \epsilon\right.$



Col．xxx．
ws ov $\pi \alpha \nu \tau \alpha$ тоvтоv єvєка єєрךкшs＞
тоv $\epsilon \mu \epsilon \kappa \alpha \iota[A] \gamma \alpha \theta \omega \nu \alpha$ $\delta \iota \alpha \beta \alpha \lambda \lambda \epsilon \iota \nu$ or

 $\kappa \alpha \iota \mu \eta \delta$ vф［ $\epsilon \cdot v o s ~ \alpha \lambda \lambda o v$ a $\alpha \lambda$ ovk $\epsilon \lambda \alpha \theta \epsilon s\rangle$ ал入а то батvpıкоу боv סрана тоуто $\kappa[\alpha]$ ］$\sigma \epsilon \lambda \eta \nu \iota \kappa \circ \nu \kappa a \tau \alpha \delta \eta \lambda o \nu \quad \epsilon \gamma \epsilon \nu \epsilon$ 1140 то．à入 $\omega$ фi入є $A \gamma a \theta \omega \nu \mu \eta \delta \epsilon \nu \quad \pi \lambda \epsilon \rho \nu$ аvт $\omega$ रєขๆтає $\alpha \lambda \lambda \alpha$ парабкєva§ov
от $\omega s$ $\epsilon \mu \epsilon \kappa \alpha \iota \sigma \epsilon \mu \eta \delta \epsilon \iota S \delta \iota \alpha \beta a \lambda \epsilon \iota$ тои ［0］${ }^{\circ} \nu \quad A \gamma \alpha \theta \omega \nu \alpha$ є $\epsilon \pi \epsilon \iota \nu$ каı $\left.\mu \eta \nu \omega \Sigma^{\prime} \omega\right\rangle$ кратєs кıvסvvevets $\alpha \lambda \eta \theta \eta \quad \lambda \epsilon \gamma[\epsilon] \omega \nu \quad 222 \mathrm{E}$

 $\eta \mu a s$ $\delta(a \lambda \alpha \beta \eta$ ．ov $\delta \epsilon \nu$ ov $\pi \lambda \epsilon \circ \nu\rangle$
$\alpha \nu \tau \omega \in \sigma \tau \alpha \iota \quad \alpha \lambda \lambda \quad \epsilon \gamma \omega \pi \alpha \rho \in \lambda \theta \llbracket \epsilon \mathbb{} \mid \nu \alpha \tau \alpha$ $\kappa \lambda \iota \nu \eta \sigma \circ \mu \alpha[l]: \pi \alpha \nu v \quad \gamma \in \phi \alpha \nu \alpha \iota$ Tov
 $\tau \alpha \kappa \lambda \epsilon \iota \nu 0 v: \omega Z_{\epsilon \nu} \epsilon \iota \pi \epsilon \iota \nu$ тоข $A \lambda_{\kappa \iota}$ $\beta_{\iota \alpha} \delta \eta \nu$ oıa av $\pi \alpha \sigma \chi \omega$ üпо тov $\alpha \nu \theta \rho \omega$


$$
a \lambda \lambda 0
$$

$i \epsilon \epsilon \alpha \iota \cdot \alpha \lambda \lambda \epsilon \iota \mu \eta \tau \iota \omega \theta \alpha \nu \mu \alpha \sigma \iota \in \nu \llbracket \mu \epsilon \rrbracket$


$\sum \omega \kappa \rho \alpha \tau \eta \sigma v \mu^{[ }[\epsilon] \nu \quad \gamma \alpha \rho \in \mu \epsilon \epsilon \pi \eta \nu \epsilon \sigma \alpha s$
$\delta \epsilon \iota \quad \delta \epsilon \epsilon \mu \epsilon \alpha \nu \quad \tau 0 \nu \quad \epsilon \pi \iota \quad \delta \epsilon \xi \iota \in \pi \alpha \nu \epsilon i$
$\epsilon \alpha \nu$ ouv थ̈то $\sigma 0 \iota \kappa \alpha \tau \alpha \kappa \lambda \iota \theta \eta$ $A \gamma \alpha \theta \bar{\omega}$ 1160 ov $\delta \eta \pi 0 v \in \mu \epsilon \pi \alpha \lambda \iota \nu \epsilon \pi \alpha \nu \epsilon \sigma \epsilon \tau \alpha \pi \rho \bar{\imath}$
$\ddot{v} \pi \epsilon \mu \circ v \quad \mu \alpha \lambda[\lambda] o \nu \in \pi \alpha \iota \nu \epsilon \theta \eta \nu \alpha \iota\rangle$
$\alpha \lambda \lambda \epsilon \alpha \sigma \circ \nu \omega \delta[\alpha \iota] \mu \circ \nu \iota \epsilon \kappa \alpha \iota \mu \eta \phi \theta \circ \nu \eta$
$\sigma \eta S \quad \tau \omega \quad \mu \epsilon \iota \rho \alpha[\kappa]!\omega \ddot{v} \pi \quad \epsilon \mu о v \quad \epsilon \pi \alpha \nu \epsilon \theta \eta$ $\nu \alpha \iota$ кає $\gamma \alpha \rho \pi \alpha \nu v \in \pi \iota \theta \nu \mu \omega$ аvтор〉
 $\theta \omega v \alpha A \lambda \kappa \iota \beta \iota \alpha \delta \eta$ оик $\epsilon \sigma \theta$ от $\omega s$ a $\nu$
$\epsilon \nu \theta \alpha \delta \epsilon \quad \mu \epsilon \iota \nu \alpha \iota \mu \iota \quad \alpha \lambda \lambda \alpha \pi \alpha \nu \tau 0 \sigma\left[\left[\frac{\alpha}{\epsilon}\right] \mu \alpha \lambda\right.$
$\lambda o \nu \quad \mu \in \tau \alpha \nu \alpha \sigma \tau \eta[\sigma] 0 \mu \alpha \iota$ ï $\alpha$ iँ $\pi \circ \Sigma \omega$


$\left.\sum \omega \kappa \rho \alpha \tau o v s \pi \alpha \rho о \nu \tau o s ~ \tau \omega \nu \kappa \alpha \lambda \omega \nu\right\rangle$ $\mu \epsilon \tau \alpha \lambda \alpha[\beta]{ }^{[ }[\iota \nu] \alpha \delta u \nu \alpha \tau o \nu \alpha \lambda!\lambda[\omega] \kappa \alpha \iota \nu \bar{v}$
 $\omega \sigma \tau \epsilon \pi \alpha \rho \alpha v[\tau] \omega$ тоитоvє ка［ $\tau \alpha \kappa \epsilon] \iota \sigma \theta \alpha \iota$

$\left.[\sigma o] \mu \in \nu o \nu \quad \pi[\alpha \rho] \alpha \quad \tau \omega \quad \sum_{i} \omega \kappa \rho \alpha \tau[\epsilon l] \quad \alpha \nu[\bar{l}] \sigma \tau \alpha\right\rangle$
$[\sigma \theta] \alpha \iota \epsilon \xi \alpha \iota \phi \nu \eta S$ $\delta \epsilon \kappa \omega \mu \alpha \sigma \tau \alpha S \quad \eta \kappa \epsilon \iota \nu$

Col．xxxi．
$\pi \alpha \mu \pi$ о入入ous $\epsilon \pi \iota \tau \alpha s$ Oupas ка८ $\epsilon \pi \iota$
$\tau v \chi o \nu \tau \alpha s \quad \alpha \nu \llbracket \alpha] \epsilon \epsilon \gamma \mu \epsilon \nu \alpha \iota s \in \xi \iota \circ \nu\rangle$

$\pi \alpha[\rho \alpha \quad \sigma] \phi \alpha s$ ка८ катак入 $\epsilon \iota \nu \epsilon \sigma \theta \alpha \iota$ кац
$\theta_{0 \rho v \beta o v} \mu \epsilon \sigma \tau \alpha \pi \alpha \nu \tau \alpha$ єเขal каl ov
$\kappa \epsilon \tau \iota \in \nu \quad \kappa о \sigma \mu \omega$ ov $\delta \epsilon \nu l$ а $\alpha \alpha \gamma \kappa \alpha \zeta \epsilon$
$\sigma \theta \alpha \iota \pi \epsilon \iota \nu \epsilon \iota \nu \pi \alpha \mu \pi 0 \lambda \nu \nu$ olvov $\pi 0 \nu$
$1185 \mu \epsilon \nu$ ouv $E \rho \nu \xi \iota \mu \alpha \chi 0 \nu$ каı $\tau 0 \nu \Phi \alpha \iota\rangle$

Apıбтoठ $\eta \mu \circ$ os ol $\chi \epsilon \sigma \theta \alpha \iota \quad \alpha \pi \iota o \nu \tau \alpha s \in\rangle$
$\alpha \nu \tau о \nu \delta \epsilon \ddot{̈} \pi \nu 0 \nu \lambda \alpha \beta \epsilon \iota \nu$ кає ката＞
Plate VI．

223 C
$\delta \alpha \rho \theta \epsilon \iota \nu \quad \alpha v[\epsilon]] \pi 0 \lambda[v \quad \alpha] \tau \epsilon[\mu] \alpha \kappa \rho \omega \nu \quad \tau \bar{\omega}$ ${ }_{1} 90 \nu v \kappa \tau \omega \nu$ ov $\sigma \omega \nu \in \xi \in \gamma \rho \epsilon \sigma \theta \alpha l$ $\delta \epsilon \pi \rho \circ S$
$\eta \mu \epsilon \rho \alpha \nu \quad \eta \delta \eta \quad \alpha \lambda \epsilon \kappa \tau \rho v[0] \nu \omega \nu$ aı $\delta \circ \nu$
$\tau \omega \nu \quad \epsilon \xi \in \gamma \rho \circ \mu \epsilon \nu \sigma[s] \delta[\epsilon]$ i $\delta \epsilon \iota \nu$ rous $\rangle$ $\epsilon$

$\mu \epsilon \nu$ ous $A \gamma \alpha \theta \omega \nu \alpha$ бє каו $\Sigma \omega \kappa \rho \alpha \tau \eta$

$\rho \in \nu \alpha l$ к $\alpha \iota \pi \iota \nu \epsilon \iota \nu \quad \epsilon \gamma \quad \mu \epsilon \gamma \alpha \lambda \eta S \quad \phi \iota \lambda \alpha\rangle$
$\lambda \eta S \in \pi \iota \delta \in \xi \iota \alpha$ rov ouv $\sum \omega \kappa \rho a \tau \eta$
avtols $\delta \iota a \lambda \epsilon \gamma \epsilon \sigma \theta a l$ kal $\tau \alpha \mu \in \nu \quad \alpha \lambda$
$\lambda \alpha$ o Apıбтоס $\eta \mu$ os ouk $\epsilon \phi \eta \mu \epsilon \mu \nu \eta$
$1200 \sigma \theta a l \tau \omega \nu \lambda 0 \gamma \omega \nu$ out $\left.\epsilon \gamma^{\gamma} \rho \epsilon \xi a \rho \chi \eta S\right\rangle$
$\pi \alpha \rho \alpha \gamma \epsilon \nu \epsilon \sigma \theta \alpha \iota$ ن̈ $\pi 0 \nu v \sigma \tau \alpha \zeta \epsilon \iota \nu \quad \tau \epsilon$
то
то $\mu \in \nu \quad k \in \phi \alpha \lambda \alpha \iota o \nu \epsilon \phi \eta \pi \rho о \sigma \alpha \nu a \gamma$
каऽєєข rov $\Sigma \omega \kappa \rho \alpha \tau \eta$ о $\mu о \lambda о \gamma \epsilon \iota \nu$
avtous tov avtov avסpos єival>
$120_{5} \kappa \omega \mu \omega \delta \iota \alpha \nu$ каı $\tau \rho \alpha \gamma \omega \delta \iota \alpha \nu \quad \epsilon \pi \iota \sigma \tau \alpha$
$\sigma \theta a \iota$ тоtєıv кає тоע $\tau \epsilon \chi \nu \eta$ т $\rho \alpha \gamma \omega$ )
סотоtov ovta кळر $\omega \delta$ omolov $\epsilon \iota v \alpha l$
таขта $\delta \eta$ а $\nu \alpha \gamma к а\} о \mu \in \nu o u s ~ a v \tau o v[s] ~$
кає ov $\sigma \phi 0 \delta \rho \alpha$ є $\pi о \mu \epsilon \nu$ ous $\nu v \sigma \tau \alpha \zeta \epsilon i$
${ }^{\delta}$
1210 к $\alpha \iota \pi \rho о \tau \epsilon \rho \circ \nu \quad \mu \epsilon \nu \kappa \alpha \tau \alpha \llbracket \theta] \alpha \rho \theta \epsilon \iota \nu \tau \overline{0}$
A $\rho \iota \sigma \tau 0 \phi \alpha \nu[$ ovs $\rrbracket] \eta \delta \eta \delta \in \quad \eta \mu \epsilon \rho a s \quad \gamma \iota\rangle$
$\gamma \nu о \mu \epsilon \nu \eta$ s тоv $A \gamma \alpha \theta \omega \nu \alpha$ тоv ov

avaøtavta
vous a $\pi \iota \epsilon \nu a l$ kal $\omega \sigma \pi \epsilon \rho \in \iota \omega \theta \epsilon l \in \pi \epsilon$

$\nu[l] \psi \alpha \mu \epsilon \nu 0 \nu \omega \sigma \pi \epsilon \rho$ a入入oт $\tau \eta \nu\rangle$
$\alpha \lambda \lambda \eta \nu \quad \eta \mu \epsilon \rho a \nu \quad \delta[l] a \tau \rho \iota \beta \in \iota \nu \quad \kappa \alpha l\rangle$
${ }_{[ }^{\kappa}[\alpha] \iota$ ov $\omega$ ( $\delta \iota \alpha \tau[\rho] \epsilon![\psi] \alpha \nu \tau \alpha$ $\epsilon \iota S \epsilon \sigma \pi \epsilon$
$\int_{-\tau}^{1} \quad \rho \alpha \nu$ оькоו $\alpha[\nu \alpha \pi \alpha \nu \epsilon \sigma \theta] \alpha!$ :

Col. xxxii.

Plate VI.
$1220 \bar{\Pi} \lambda \alpha \tau \omega \nu \overline{o s}$

## Unidentified Fragments.

(a)
(b)
(c)
(d)
] $\delta_{0}$ [ ] $\omega$ [ ] $]$ [
] • $\rho \omega[$
] $\boldsymbol{\gamma} \boldsymbol{\gamma}[$
$] \times[$ ]к. 0 [ $] \cdot[\cdot] \kappa[$ J! $\kappa \alpha$
(e)
(f)
(g)
(h)
$\cdot$
$] \times \kappa \alpha[$
$] \cdot[$
$\cdot$
(i)
(j)
(k)

## ]a! <br> ] ${ }^{\circ} \iota$ <br> 1)

] $\alpha$ เop $[$ ] $\sigma \kappa[$

$$
\begin{aligned}
& ] \delta \cdot[ \\
& ] \cdot \alpha \iota \alpha[
\end{aligned}
$$

$$
] a \underset{[ }{[ }
$$

$$
] 0 \cdot[
$$

(m)
(n)
(o)
(p)
] $c: \kappa[$

$$
] \omega \kappa[
$$

$$
] \kappa \lambda[
$$

$$
\text { ] } \alpha k \omega[
$$

(q)
(r)
(s)
( $t$ )
(u)

$$
\text { [ } 1 \rho \in[
$$

] $\alpha \cdot[$
48. $\pi a \rho \eta \nu: ~ 1 . \pi a \rho \eta$.
54. єрштa has been corrected (by the first liand ?) from apotos.
59. $a \lambda \lambda_{o} \tau \iota$ : so BTW, Burn(et); the corrector's reading $a \lambda \lambda_{o} \tau \iota \eta$ is found in Ven. 184 , Vind. 21 . The letter at the end of the line has been so effectually deleted that its identity is doubtful ; the repetition of the article would be a natural blunder.
62. -тои was omitted owing to ópototé $\lambda \in u \tau$ v.
66. The final s of $\lambda$ eveis has entirely disappeared, although the surface of the papyrus does not show signs of damage.

71. єוтas: so Vat. 227 ; eimes other MSS.

84. The original scribe blundered over the name $\Delta$ torthas, writing a $\nu$ (or perhaps $\pi$ ) for $\mu$ and separating the finals. W has $\mu a \nu \tau \iota \kappa \bar{\eta} s$ for Mavtıvı $\bar{s}$ s and similarly $\mu a \nu \tau \iota \kappa \dot{\eta}$ at l. 671.
85. $\eta$ of $\eta \nu$ is altered from $\epsilon \iota$, i. e. $\epsilon \iota \nu a \iota$ was first written; the correction may be by the first hand.

89. The addition of the rough breathing on ov is due to the second hand.

92. $\epsilon \pi$ : so Burn. who attributes this reading to W , but wrongly, W having a a ${ }^{\prime}$ like BT. $\dot{e} \pi$ ' is found as a correction in the Cod. Coisl. and Paris. 1642.
93. $\delta \in \iota \delta \eta$ : so TW ; $\delta \in i \lambda \eta$ B.
94. $\delta \iota \eta[\gamma \eta \sigma] \omega$ : so MSS. ; $\delta \dot{\eta} \eta \dot{\eta} \eta \sigma \omega$ Burn. with Schanz.
96. oтоos: motos MSS. The second $\epsilon$ in eлєєтa was inserted after the , had been written.

98-9. The word $\xi \epsilon \nu \eta$ was originally wrongly divided. The scribe also began to write

99. $\delta \in:$ rap MSS. There is an apparently accidental diagonal mark below the line after $\delta$ inte.

107. $\epsilon \phi \eta \nu$ was originally written for $\epsilon \phi \eta \eta$ : the correction is probably by the second hand, which at the same time accented oit.

avev: каï ävev MSS. Schanz omits каi with Stallbaum.
117. тоноито: тоєồto MSS.
125. The double dots and paragraphus marking a change of speaker are misplaced; they should have come at the next line.
126. тоитои єф $\boldsymbol{\text { : " " } \phi \eta \text { тои́т. MSS. }}$
131. The first o of oцолоуotro has been corrected from $\omega$, perhaps by the second hand.
135. The papyrus omits $\epsilon \phi \eta \nu$, which the MSS. read before $\lambda_{\epsilon}$ ets.
141. та ка入a: so B; om. та Burn. with TW, Stobaeus. W inserts dayatoùs кai after тovs.

142-3. The dittography is marked by a line drawn above the superfluous letters.
Cf. ll. 195, 333, 695-6, 7 12, \&c.
147. $\pi \omega \mathrm{s}$ av: so B, Stobaeus ; $\pi \omega \hat{s} \delta^{\circ}{ }^{\mu \nu}$ TIV, Burn.
$\gamma \epsilon \tau \omega \nu$ : so Burn. with TW, Stobaeus ; $\gamma^{\prime} \omega_{\nu}$ B.
148. $a$ of auopos seems to have been converted from an o.
153. єфף: so TW ; $\epsilon \phi \eta \nu$ B, Stobaeus, Burn.
156. re : so BT, Burn. ; om. W, Stobaeus.
158. $\delta a \pi \rho \rho \theta \mu \in v o \nu$ : the common Egyptian spelling at this period.
163. o of ov corrected from $\omega$.
167. tas $[\tau] \epsilon(\lambda \epsilon$ ras : so B, Stobaeus; om. tas TW, Burn.
168. $\mu$ ]av ${ }^{2} \tau \in \omega \nu$ : so MSS. ; $\mu a \gamma \epsilon \epsilon \nu$ Badham, Burn.
173. 1. $\epsilon$ рр $\eta \gamma$ opoot ; the interchange of $\lambda$ and $\rho$ is common. The deletion of the superfluous $\sigma$ was probably by the second hand.
175. Stobaeus omits $\omega$.
${ }^{1} 76-7$. $\pi \epsilon \rho \iota \chi \epsilon \iota \rho o v \rho \gamma t a s:$ so Stobaeus; om. $\pi \epsilon \rho \iota$ BTW, Burn.
rıvas: the reading is not certain. $a$ has been corrected (by the second hand!) apparently from o, and above the spot where $\beta$ of $\beta$ avavoovs would be is the top of a rounded letter, which is probably $\beta$ or $\sigma$. Perhaps $\tau$ tvos was first written, and the correction of o obscured the $s$ which was rewritten above the line; but the remains suit a $\beta$ rather better.

Bavavoous is a mistake for ßavavoos.
1 78 8. $\pi$ о $\lambda \lambda$ ot $\tau \epsilon$ : so Stobaeus; om. $\tau \in$ BTW, Burn.
179. There is a dot between $\nu$ and $\epsilon$, and the two letters are rather farther apart than usual ; but no pause here is possible. Stobaeus omits $\epsilon \sigma \tau$.


189. $\epsilon \xi \epsilon \bar{\xi} \lambda \theta \omega \nu$ : $\epsilon i \sigma \epsilon \lambda \theta \dot{\omega} \nu$ MSS.
190. $\epsilon v \delta \epsilon \nu$ : so some MSS.; $\eta \dot{\delta} \delta \in \nu$ Burn. with BTW.
194. kat: so BT, Burn. ; om. W.
195. ка入ךs . . . IIo[pov came in here from l. 200, the error being caused by the repetition of Aфpoíetт
202. $\pi \in \nu \eta s$ : so TW ; $\pi \in \nu i n s$ B.
203. The second $a$ in $a \pi a \lambda$ os has been corrected from $o$.
207. atet: but aet in 11. 203 and 209.
208. vatatpoos: so Burn. with BW, Origen; -ots T.
211. [кa入oเs] кaı aүäöts: тoîs к. каì toîs ả $\gamma$. MSS.

213 . a $\mu \boldsymbol{1} \beta$ as was apparently originally written, vas having been converted from $\mu 0 t$; $\mu \eta_{\chi}$ avás MSS.

215 . $\pi$ opı $\mu$ os is a correction from $\phi \rho o \nu \mu 0$, perhaps due to the original hand. $\pi о \rho \iota \sigma \mu$ ós (B) and фортıб ós $^{\prime}$ are also found.
216. фардакеиs: 1. каi $\phi$. with MSS.

218-9. $\tau \eta s, \eta \mu \epsilon \rho a s: \tau \hat{\eta} s$ ai $\tau \hat{\eta} s \dot{\eta} \mu$. MSS.; the omission is to be accounted for by the о́дооте́лєитои.
219. каı: so B; тє каi TIV, Origen, Burn.
220. The corrector took the first $\pi a \lambda_{\iota \nu}$ with $a \pi \circ \theta_{\nu \eta \sigma \kappa \epsilon \iota}$, but there is little to be said for his reading, which has no other support.

агаßьобктаи: 1. араßıшок. The deletion of $t$ is probably due to the corrector. There is a small dot between at and $\delta$, but it may well be accidental.
224. av кає: $\tau \epsilon$ av̉ каi T, Burn., $\delta{ }^{\prime}$ ай каі Origen, $\tau \epsilon$ каí B.
229. oopois: 1. ซoфot. $\in$ was apparently written originally in place of the first $\sigma$.
230. $\chi^{a \lambda \epsilon \pi \eta: ~} \chi^{a \lambda \epsilon \pi o ́ \nu}$ MSS.
232. autw: so T (aỉr.), Wb (ait.) ; aìтó B .
${ }^{237}$. $\delta \eta$ : so TW, Burn. ; öтı B.
239. av eוך: äv BTW, omitting cil. av Burn., who wrongly attributes this reading to W ; it is found in Ven. 184, Vind. 21 . The papyrus is probably right.
243. $\mu \epsilon \tau \sigma \xi v$ is a common spelling.
248. $\omega \theta \eta s: 1 . \omega \eta \theta \eta s$.
${ }_{2} 5^{1}$. $\epsilon \lambda \epsilon \gamma \epsilon s: \lambda \epsilon ́ \gamma \epsilon \epsilon s$ MSS.
єєvat єршта: ёршта єivat MSS.
${ }^{252}$. otopat: so some late MSS.; oipat Burn. The o of $\tau o$ is corrected from $\omega$.
${ }^{2} 54$. $a \beta \rho o \nu$ is a correction by the second hand from a $a a^{2} \theta o v$.
25.5. tedelon: teiteon MISS.
262. The addition of kat outw brings the papyrus into accord with the MSS.
$20_{5}$. Tt : so B, Burn. ; om. TIW. The letters -s $\omega$ \& $\omega$ are corrected.
266. epa : so BTW and other MSS. (ép $\hat{a}$ ), $\dot{\epsilon} \rho \hat{\varphi} \mathrm{b}$; $\dot{\epsilon} \rho \hat{\omega}$ is necessary: Cf. 1. 276.
267. The accent on $\tau t$ is dubious. There are two short dashes visible above the line, meeting like a r :
268. The termination of aur $\omega$ and $u \lambda$ in $a \lambda \lambda$ have been altered, hut it is doubuful what was first written. Perhaps avtot $u \lambda \lambda$ should be read.

269. тotavort seems to be for totav 8 , though this form is not Platonic. touivore MSS. The $\tau$ has been corrected from a $\delta$. It is unlikely that ouv $\delta$ et was intended.
270. $\lambda$ of кала corrccted from $\kappa$.
272. $\chi$ of $\pi \rho о \chi \epsilon \rho \omega s$ corr.
273. $\theta$ of aтокрєtraन $\theta a t$ seems to have been altered, and the final ، was perhaps not originally written.
276. єрaı: so BTIV as in 1. 266 ; om. Ven. 184 and Schanz; 'fpê Burn. with the Aldine edition.
$281-2$. The second hand has made good the omission of the repeated evoaraoves. 8 in 1. 28 r is over $>$.
282. et $\epsilon \mathrm{p}$ blotted.
286. $\delta_{f}$ : so B ; $\delta \eta^{\eta}$ TW, Burn.
297. apa: so T, Burn.; om. BW. The supposed base of an $\epsilon$ above $1 \delta$ os may be the left-hand dot of a diaeresis on $\iota$.
 unintelligible.
308. ov is mistakenly omitted by W.
309. єХovaьv: so TW ; द̈ $\xi$ ovau B, Burn.

3II. $\mu$ opto $\nu$ : so BT, Burn.; $\mu \dot{v} \nu o \nu \mathrm{~W}$ with $\mu$ ópeov as a variant.
314. таuta: 1. тоитo with MISS.
316. єф $\eta^{\prime} \nu, \lambda \epsilon \gamma \epsilon \epsilon$ : $\lambda \epsilon ́ y \epsilon \epsilon s$ é $\phi \eta \nu$ MISS.
323. रрпцarı $\sigma \mu \omega$ was first written : the correction is likely to be by the second hand.

 having been originally written.
333. єivat, which was repeated by mistake, is cancelled by the line drawn over it ; cf. 1. 142 , note.
$34^{1}$. av $\theta_{\rho}{ }^{\prime} \omega \pi{ }^{\prime}$ ot : so BT ; oi ${ }^{\mu} \nu(\theta \rho \omega \pi)_{o t} \mathrm{~W}$; äv $\theta \rho \omega \pi o t$ Bekker, Burn.
342. The recurrence of tov ayatov led to the omission of $\eta$ $\sigma$ ot $\delta$ oкovat . . . ayatov, which has been supplied by the second hand in the upper margin. fov ayatov there is in agreement with BIV ; tảyatoù T.
344. $\pi \rho \circ \sigma \theta_{\epsilon}$ cato was written originally both here and in 1.346 .
345. ovv: so BT, Burn.; om. W.
348. avta : so TW ; aủtó B.
349. $\delta \varepsilon$ : so Paris. 1642 ; $\delta \dot{j}$ BTW, Burn.
touto : so MSS. ; toútou Bast, Burn.
350. т $\omega \nu$ : so $\mathrm{Tb}, \mathrm{Burn}$; тóv B , тóv with v.l. т $\bar{\omega} \nu \mathrm{W}$.

351 . of avto has been corrected from $\omega$. autóv T .

357 . The two dots marking the end of the speech are misplaced as at 1.125 . The a of $\mu a \theta \eta \sigma o \mu e v o s$ has been corrected.
361. $\delta \eta$ : $\boldsymbol{\eta} \delta \eta$ MSS., as regularly ; $\dot{\eta} \delta^{\circ} \eta$ Bekker, Burn.
363. кat: so TW, Burn. ; om. B.
364. $\tau \eta v$ : so BW, Burn.; om. T.
 with Ast.
370. touta is crossed through, probably by the corrector.
372. evєбтıv: so B, Burn. ; є́बтiv TW. $\theta$ in âavatov is corrected from $\nu$.
373. тa: so B, Burn. ; taĩa TIW. The second $v$ of $\gamma \in \nu \nu \eta \sigma t s$ is blotted.
376. $\theta \in \omega$ : so B ; $\theta \in i ́ \varphi \mathrm{~T}$ T (z.l. $\theta \in \hat{\varphi})$ W.




39 r . The marginal note is obscure. It seems to begin $\dot{c} \nu(\tau i \tau o \hat{u}) o z(\tau \omega s){ }_{\epsilon} \epsilon^{\prime}[\epsilon i$ and possibly refers to etev, though that word hardly required explanation. The letter after $\rho \omega$ may be $\gamma$ and the following doubtful s may be $\epsilon$ or perhaps o. For $\mathfrak{a v}(\tau i$ roî cf . e.g. 841. II. 79.
393. $\gamma \epsilon \nu \epsilon \sigma \epsilon \omega$ : $\gamma \epsilon \nu \nu \eta \sigma \sigma \omega s$ MSS. aєt $\gamma \in \nu \epsilon \sigma \iota$ : 1. aє九 $\gamma \in \nu \in s$ with MSS.
402. $\tau$ of $\tau t$ corr.

406. $\epsilon \pi \ell \nu \mu \eta \sigma \eta$ has been corrected from $-\mu \omega \sigma \iota$, probably by the second hand.
412. тоутшу кає : so BT, Burn.; om. каи W.
415. avт : aitá MSS. The final $a$ of $\pi a \rho a \tau e t \nu а \mu \epsilon \nu a$ has been corrected from $\omega$.

425. $\Delta \iota o t \iota a$ is perhaps intended, but $\Delta t a \tau$. was first written.
431. $a$ of $\omega \mu 0 \lambda о \gamma \eta \sigma a \mu \epsilon \nu$ is corrected from $o$.
432. There is a high dot between $\theta$ and $a$ of $\theta a v \mu a\}_{\xi}$, but it is presumably accidental.
435. $\tau \epsilon$ : the papyrus is rubbed, but the vestiges suggest $\tau \epsilon$ (so T, Burn.) rather than то (W). B has tò civau ảßávaros, omitting kaí.
436. $\tau \eta \gamma_{\epsilon \nu \in \sigma \epsilon t}$ is bracketed by Burn., following Vermehren. a of aєt corr.
438. The letters $\epsilon \nu$ after кaь have dots over them, which may mean that $\epsilon \nu$ was to be cancelled ; but $\epsilon \nu$ cannot be spared, and they are possibly unintentional.
443. тav̌a $=$ đảvтá ; тà à̀tá MSS., Burn. ; similarly in l. 45 I.
449. тротот: то́тоь B.
452. The second $\gamma$ of $\gamma \iota \gamma \nu \epsilon \tau a t$ seems to have been altered from $\nu$, and $\lambda v$ in a $a 0 \lambda \lambda \nu \tau a t$ also shows signs of correction.

462. $\mu \nu \eta \mu \eta$ : so Paris. 1462, Vat. 229, Sauppe ; $\mu \nu \eta \eta^{\prime} \mu \eta \nu$ BTW, \&c., bracketed by Burn. with Baiter. Either $\mu \epsilon \lambda \dot{\epsilon} \tau \eta \ldots \mu \nu \dot{\eta} \mu \eta$ or $\mu \epsilon \lambda \dot{\epsilon} \tau \eta \ldots \mu \nu \dot{\eta} \mu \eta$ would give a sense.
465. The lectional marks added to ov $\tau \omega$ warn the reader against the reading oũt $\omega$ which is actually found in B.
466. avtov: so B (Bekker) and some other MSS.; 1. aıto.
469. $\epsilon \nu \kappa a \tau a \lambda \iota \pi \epsilon \iota$, the reading of the first hand, occurs in some inferior MSS.; 'ं $\gamma \kappa a \pi a-$ $\lambda \epsilon i \pi \epsilon \epsilon$ BTW, Burn.

47I. $\mu \epsilon \tau \epsilon \chi \epsilon \iota$ : the papyrus is the only authority for this reading, which was restored by Stephanus; $\mu \epsilon \tau \epsilon \chi \in \tau \nu$ MSS.
472. afavazov: so MSS. ; åóvuatov Burn. with Creuzer.
481. $\left[{ }_{\epsilon \phi}\right]_{\eta}$ : so BT, Burn.; om. W. The size of the lacuna indicates that the papyrus read $\epsilon \pi \epsilon \iota$ simply (B), not $\epsilon \pi \epsilon \iota \gamma \epsilon$ (TIV, Burn.).
487. ets: So TW ; єs B, Burn.
490. пautas: so B'T, Burn. ; mivetes $\mathbb{W}$. '1'. omits $\mu \mathrm{A} \lambda \lambda$ ov.

498. 1. Bagıлєias.
507. кита та: so Paris. 1812, \&̌c.; оm. та BTW, Burn.
517. кuncetat was first written, at and $\epsilon$ interchanging as commonly. Cf. 1. 747, \&:c. om. $\tau \epsilon$ MISS.
$\tau \epsilon \kappa \epsilon \iota \nu$ confirms a conjecture of Hug (tiktet Jahn) ; кveiv MISS., Burn.
523. tas: so MSS.; tá Burn. following Sommer.
526. av: so $\mathrm{B} ; \delta^{\prime}$ av̇ TW, Burn.
527. єккข $\mu \omega \nu$ : І. є $\gamma \kappa \nu \mu \omega \nu$.
$\theta$ etos: so MISS. ${ }^{2} \theta$ eos Burn. with Parmentier.
529. $\epsilon \pi i \theta v \mu \eta$ agrees with a conjecture of Stephanus, punctuating after $\omega \nu$. imitvpit MSS.
530. $\delta \eta$ : so BT, Burn.; $\delta \epsilon \in \mathrm{W}$. B has $\pi \epsilon \rho i{ }^{\omega} \nu \nu$ for $\pi \epsilon \rho t \omega \dot{\nu}$.
539. $\pi \epsilon \rho 1$ : so MSS. Burn. brackets with Stephanus.
544. $\pi a \rho \omega \nu$ кає $a \pi \omega \nu$ is the order of BW, Burn. di $\pi$, кaì $\pi$. T. The deletion of ovt is probably by the second hand.

55 I . The accent distinguishes $\pi a ̄ s \ddot{c}^{\prime \prime} \nu$ from $\pi$ â $\sigma a v$, and the mark of short quantity shows that äv is not equivalent to éáv. $\epsilon$ in the termination of $\kappa \in \kappa \circ \downarrow \nu \omega \nu \eta \kappa o t \in s$ is a correction
554. eis Hotoooy: om. ets MSS.
560. катєлıтєто: so b, Burn. ; катє́̀ıтєд . . . то́ B, катєлєітєто TIW.
563. The papyrus probably hadd $\eta \mu \nu \nu$, as B; $i_{\mu i \nu}$ TW, Burn.
564. o $\Sigma o \lambda \omega \nu$ : om. o MSS.
566. E $\lambda \lambda \eta \sigma t$ : ${ }^{\ell} \nu{ }^{\circ}{ }^{\text {E }} \lambda \lambda$. MSS.
567. a $\lambda \lambda a$ : 1. калa with MSS.
568. кат: om. MISS.

571 . The $\nu$ of $u \nu \theta \rho \omega \pi \iota v o u s$ has been corrected from some other letter, perhaps $\epsilon$.
576. єф $\epsilon$ : 1. єфף.
577. кає $\sigma v$ : om. MISS. ; the addition adds emphasis and may be right.
578. єav: av MSS., Burn. The double dots after $\eta s$ follow from the mistaken reading
e $\phi \eta \nu$ in 1. 576 .

584. ка in калоиs is corrected, perhaps from $\pi о \lambda$.
585. тo $\epsilon \pi \iota$ : so rightly BT ; т $\tau \hat{e}$ èi TV .
586. $\tau \omega$ : so TW rightly ; тó I . T omits $\epsilon \pi \iota$.
590. тоvто: so BW, Burn.; тои́т@ 'T.
592. There are small oblique dashes, which are presumably accidental, over the $\sigma$ of $\chi^{\wedge} \lambda a c a \iota$ and after $\epsilon a \nu$ in 1. 597.

597-8. кає єоу: so BT', киі̀ й̀ W ; кӥ» Hermann, Burn.
600. kat: so MSS.; Burn. brackets with Badham.

601 . W. has eï tuves.
609. $\epsilon \delta \eta$ is probably meant for ${ }^{\prime \prime} \delta \eta$ (TW' ; "w' $u \delta \eta \iota$ B).

61 . то $\pi a \rho$ : so MSS. ; т $\uparrow \pi a \beta^{\prime}$ Burn. with Schleiermacher.
614. tyos is a correction from tevos, perhaps by the first hand.
618. Tikte is the reading of the great majority of the MSS., but the papyrus may of course have had the right reading $\tau$ tкт $\eta$.
619. $\rho \omega \sigma \theta \epsilon t s: ~ \rho \omega \theta$ ess W .

631 . The final $\nu$ of $\gamma\left(\gamma^{\nu} \boldsymbol{\mu} \epsilon \boldsymbol{\nu} \nu\right.$ is corrected from $\sigma$, and the same alteration was perhaps made in the case of avgavouevov in the line below.
635. тode: 1. тотe. The omission of ovof was probably caused by the preceding ov.

637－8．ws ．．a arxpov is bracketed by Burn．with Voegelin．
639．avт ：so BT，Burn．；à̀тó W．
$640-\mathrm{I}$ ．ov $\delta \epsilon \epsilon \nu$ ：1．ov $\delta \epsilon \nu \nu \nu$ with MSS．or ov $\delta \epsilon \epsilon \nu \nu$ ．
645．$\mu \epsilon \tau$ ：so apparently the papyrus；1．$\mu \epsilon \theta$ ．
647．тротоу тıva：so B，Burn．；тıva т $\rho$ ．TW．
649．єкєєข ：so B，Burn．；єкєєіvю TIV．
$\mu \eta \tau \epsilon$ ：so Vind． 3 I，Paris． 1642 ，and others ；$\mu \dot{\eta} \tau \epsilon \tau$ BTW，Burn．
65 1．It is most unlikely，on account of the space，that the papyrus had $\delta \epsilon \delta \eta$ as TW； $\delta{ }^{\prime}{ }^{\prime}$ simply B，Burn．

652 ．There is an oblique mark like an accent above the o of ano，but it may be unintentional ；cf．note on l． 592 ．

665 ．каи：so MSS．；is Burn．with Schanz．
669．avt $\omega$ ：the $\omega$ is almost certain ；1．avzo．
670 ．There is a dot above the $\nu$ of $\epsilon \sigma \tau \iota \nu$ ，which may mean that the letter was to be cancelled ；but the practice of the writer as to the use of $\nu \in \phi \in \lambda \kappa v \sigma \tau \iota \kappa o \nu$ is quite inconsistent．

674 ．ions：so W，Burn．；ciòj̄s BT．
रpvoov：रpvaion MSS．
675 ．There is an（apparently accidental）curved mark above the $\pi$ of $\pi a \iota \delta a_{[ }{ }^{\prime} s$ ．
679．เ of avzois added later．

684．$\theta$ of ка $\theta a \rho o \nu$ has been altered from a $\tau$ ．1．avam $\lambda \epsilon \omega \nu$ ．
689．$\epsilon \phi \eta$ ：so BW，Burn．；om．T．The $\lambda$ of $\phi a v \lambda o \nu$ is rewritten；a high dot before the $\phi$ is probably meaningless．
$695-6$ ．The dittography was caused by the recurrence of $є \phi а \pi \tau о \mu \epsilon \nu \omega$ ．
699．$\theta_{\epsilon \circ \phi \iota \lambda \epsilon \iota: ~ s o ~}^{\mathrm{t}}$ ，Burn．；$\theta_{\epsilon} \neq \phi \iota \lambda \hat{\eta}$ BTW．

708．The final $a$ of $a v \delta \rho a$ is corrected from $\iota$ ．
712．тoע є $\rho \omega \tau a$ was written in careless anticipation of the sense．
718．The coronis，which is similar to those in the Pindar papyrus（841），marks the close of the section．Others occur at 1.1122 and at the end of the dialogue．

724．av入coov：so t，Burn．；av̉入ıov BT（？W）．The testimony of the papyrus on such a point is，however，of little value．

кроvо $\mu \nu \eta \nu$ ：so BW，Burn．；кротоу $\mu є ́ \nu \eta \nu ~ T . ~$
728．1．$\sigma \kappa \in \psi \in \sigma \theta \epsilon$ ．The scribe perhaps took the words for oíк（oí $) ~ \tilde{\epsilon} \psi \in \sigma \theta \epsilon$ ．
$a v:$ є $\frac{a}{u} \nu \mathrm{MSS}$ ．
730．таvонє $\theta_{a}$ ：а̀ ратаvо́цє $\theta$ MSS．
$7+1-3$ ．The scribe blundered badly here．The fact that he wrote $\nu u$（the termination of $\tau \omega v) \sigma \tau \epsilon \phi a \nu \omega \mu \epsilon \nu \nu \nu$ in 1.74 I is an indication that he also wrote $\sigma \tau \epsilon \phi u \nu \omega \mu \epsilon \nu \nu \nu$ in $11.742-3$ ， though the corrector may have deleted the superfluous $\mu \in \nu \nu \nu$ ．The line drawn above the letters should have extended to $\tau \epsilon$ either in 1． $74^{1}$ or $74^{2}$ ．

747．$[\delta \epsilon] \xi \in \sigma \theta \epsilon(\mathrm{B}$, Burn．$)$ is corrected from $\left.\delta_{\epsilon}\right] \xi \in \sigma \theta a u$ ．$\delta_{\epsilon} \xi a \sigma \theta \epsilon \mathrm{TW}$ ．
748．оп $[\epsilon] \rho$ ：so TW ；$\dot{\Phi} \pi \epsilon \rho$ B，Burn．
749．$\eta \lambda \theta_{o \mu \epsilon \nu}$ ：so TW，Burn．；${ }^{\eta} \chi \theta_{o \mu \epsilon \nu}$ B．
$\epsilon \chi \theta \epsilon s: \chi \theta^{\prime \prime} s$ MSS．
 Burn，with F．A．Wolf．

755．W has катаүє入ávaбӨat．
763．A low dot between $-v o \nu$ and $\imath \pi o$ is probably meaningless．

 caused by кart $\delta \epsilon \boldsymbol{\nu}$ in 1. 766. But it may also be interpreted as $\operatorname{ka\tau }(\epsilon) i \delta \delta \epsilon[\nu$, which would give a good sense : Socrates made room as soon as he saw Alcibiades.

778. opar: B has ópạ.

7i9-80. тоитı тє $\eta \nu$ : so TIW, Burn. ; тои̂т' єimeiv B and as a variant W.
783. o of катекєเซo is corrected from $\tau$. The dittography has been eliminated in the usual way.
786. $\omega$ s: we print the reading of the MSS.; kai Hermann, $\pi \hat{\omega} s$ Hug.
789. The first letter of the line was almost certainly $\tau$, i. e. the papyrus had $\tau \iota \epsilon \mu \eta \chi a \nu \eta \sigma \omega$ : $\delta_{\iota \epsilon \mu \eta \chi a \nu i j \sigma \omega}$ MSS. There is an oblique stroke, no doubt accidental, immediately below the $\mu$.
797. It is unlikely that anything stood in the papyrus after ovтoбt. óvoori ... T, ótori $\pi \omega s$ Coisl.
 certain.
810. [avaঠ̀ $\sigma \omega]_{\kappa a t}$ : so TW, Burn.; àvaঠ$\eta \sigma \omega ́ \mu \epsilon \theta a$ B.
815. $\left.\delta_{\iota}\right] a \lambda \epsilon \xi \epsilon \sigma \theta a u: \delta_{a} \lambda \epsilon \xi a \iota$ was first written.
$817 . \delta \eta$ : $\delta^{\circ}$ ou MISS. (oưv Angel. C. 1. 9).
820. 1. $\sigma v v \gamma \nu \mu v a \zeta \epsilon \sigma \theta a$; the $\theta$ does not seem to have been added above the line, but the papyrus is rubbed.
828. aveтanv was originally written ; the alteration may be by the first hand.
829. The reading of the first hand, whatever it was, does not appear to have made sense. There was probably some alteration also at the beginning of 1.830 . The accent on $\epsilon$ was added by the corrector.

$\delta_{\iota \epsilon \lambda \epsilon \gamma \circ \mu \eta \nu}$ : so NISS.; $\delta_{\iota \epsilon \lambda . ~ a ́ \in i ~ B u r n . ~ w i t h ~ B e k k e r, ~ A n e c d . ~ l . ~ c . ~}^{\text {. }}$
840. є $\pi \epsilon \ell \delta \eta \gamma$ : om. $\gamma \epsilon$ MISS.

84 I. o $\alpha a t$ is for o $\boldsymbol{o}$; cf. l. 828 , note, \&c.
842. $\mu \in \nu \in \omega$ : $\mu$ novov was originally written.
846. The papyrus probably agreed with B and T marg. in reading $\delta \eta$, the omission of which would make the line unnaturally short ; om. TW.
847. The supplement in the middle of the line is somewhat long, but not impossible. ${ }^{6} \chi^{\prime}{ }^{\prime}{ }^{8}$ cannot be read; perhaps av was omitted.
852. 1. aфavacat: there is no trace of the final $t$.
859. $\gamma \nu \omega \sigma$ онєvots: $\gamma \nu, \tau \in$ MSS., but the supplement is already somewhat long.
862. $\tau \epsilon$ : so BT, Burn. ; тє кai W.
$863 . \omega \nu$ is a correction from $\omega$. B has $\delta \epsilon \epsilon \chi \theta \bar{\eta}$ for $\delta \eta \chi \theta \epsilon \epsilon \eta$.
864. रap $\eta \psi v \chi \eta \nu$ : so TW ; $\eta \psi v x \grave{\eta} \nu$ रáp B. Burn., following Usener, brackets $\dot{\eta} \psi v \chi \dot{\eta} \nu$ as not read by Schol. B.
867. $\mu_{\eta}^{\eta}$ : so BW ; кaì $\mu \eta^{\prime}$ T, Burn. $\nu$ of $\nu \epsilon \cap v$ seems to have been corrected from $\mu$.
876. тє tore: so TW, Burn.; but $\tau$ ore (13) is just as likely to have been written. (According to Schanz, B has $\tau \in$ and T omits it.)
877. The letters $\nu v \nu \lambda$ are converted from $\sigma \nu \lambda \gamma$.
878. Tts: $\tau \boldsymbol{\pi}$ B.
880. The termination of $\left[\epsilon \pi, \theta \epsilon \sigma \theta \epsilon\right.$ is corrected from $\theta_{a u}$.

88 „. каи is superfluous: om. MSS.
891. $\epsilon \chi \omega$ : so B, Burn. ; ${ }^{\text {ex }} \chi \omega \nu$ TW.

$\epsilon_{\iota} \tau \iota$ ：so B，Burn．；${ }^{\text {є } \tau \iota}$ TW．
896．$\omega$ s o兀兀：so TW，Burn．；ö $\sigma \omega \tau$ B．
898．$\left.\mu_{0}\right]_{\iota}$ ：the vestige of the letter before $\sigma$ is too small for certainty，but suits $\iota$ con－ siderably better than $v$ ，$\mu o t$ Vind．2 I，Burn．；$\mu o u$ BTW．

905．$\omega$ ф $\iota \lambda_{\epsilon} \mathrm{A} \lambda_{\kappa}$ ．is the ordinary reading．
910．［rot：so BTW，Burn．；$\tau \iota$ other MSS．，Bekker．
913．$\tau \epsilon$ ：so BT，Burn．；om．W．
924．There may have been two dots after $\varphi$ ，the lower one of which is effaced．
$925 . ~ є \mu о v$ ：so TW，Burn．；द̇ноi B．
928．$\sigma o \iota \tau \epsilon$ ］oт兀：ö o七七 бoi $\tau \in$ MSS．The $o$ is quite doubtful，but the letter after $\tau$ is plainly $\imath$ ，not $\epsilon$ ．

935．$\beta \in \lambda \epsilon t$ ：so TW ；$\beta \in \lambda \eta$ B，Burn．
940．The size of the lacuna suits toviou（TW，Burn．）better than tovtou（B）．
944．B has $a v$ ，but tavza without $a v$（TW）is equally possible here．
 gives no sense，is doubtless a slip for $-\pi \epsilon \rho$ ．

954．$\eta \epsilon t$ ：so B，Burn．；om．єt TW．
955．$\epsilon$ of $\mu \epsilon$ is converted from $\eta$ ；to which hand the correction is due is doubtful．
960．The Attic form $\omega \mu \eta \nu$（so MSS．）required no alteration．

962．ove，which was first written，is the reading of BTW；ou $\delta^{\circ}$ Paris．1810，1642，

963．$\epsilon \iota \kappa[a t$ ：om．$\epsilon \iota$ MISS．rightly．
964．［ov］${ }^{2}$ ovatas：$\sigma v \nu \eta \theta$ tas was originally written．
966．$\eta \delta \epsilon \omega \nu$ ：so W ；$乡 i \delta \eta \mathrm{~B}, \mathrm{Burn}$ ．
$\gamma \epsilon$ ：so TW ；$\tau \in \mathrm{B}$ ，Burn．
969．The scribe first wrote adaбєтat．
970．$\delta \eta$ ：so BT，Burn．；$\tau \in \mathrm{W}$ ．

$\dot{d} \pi 0 \lambda \epsilon \iota \phi \theta^{\prime} \dot{\nu} \tau \epsilon s$ is the reading of the MSS．；a $\pi$ o $\lambda \eta \phi \theta$ ．Cornarius，Burn．
983．The erroneous $\lambda$ has not been struck out．
986．［o］$\pi[a \nu \tau \omega \nu$ ：so TW rightly ；олтóтà B．
Өavда⿱宀тьтатоу：so Vind． 21 ；Өavцабтótaтov BTW，Burn．
987．The slight vestiges suit $\epsilon \omega \rho^{\top} a^{\top} \kappa \epsilon \nu$（TW，Burn．）not $\epsilon \omega \rho_{[ }\left[a^{2} \kappa \epsilon \iota(\mathrm{~B})\right.$ ．
992． E in the termination of $[\chi \epsilon \mu \mu \omega\rangle$ दs is a correction from $o$ ．
993．$\pi$ ayov：so B，Burn．；тov̂ $\pi$ ．TW．
995．$\eta$ оик：so B，Burn．；om．$\eta$ TW．
996．$\delta \eta$ ：so TW，Burn．；$\eta$ B．The $\eta$ of $\eta \mu \phi \iota \sigma \mu \epsilon \nu \omega \nu$ was corrected from $\epsilon$ ，and $\tau \epsilon \theta$ from $\eta$ ，i．e．the scribe at first omitted $\tau \epsilon \theta a v \mu a \sigma \tau a$ ．

999．outos：so Vind． 2 I ；oitos $\delta^{\circ}$ BTW，Burn．
1000．［oto $\nu \pi \epsilon \rho$ ：so B，Burn．；oiov TW．
1003． of $a \lambda \lambda o \iota$ is corrected from $v$ ．
ro०5．The scribe misunderstood oфш ，connecting the $\sigma$ with катафророvขта；cf． l． 1015 ，note．

1007．［av］тоס ：so W，Burn．；aìró BT，B having also $\tilde{\epsilon}^{\rho} \rho \rho \epsilon \xi \epsilon$ ．
1008．Probably no significance is to be attached to the fact that whereas in 1.974 an $\epsilon$ has been added above the（of otpata，here there is no such insertion．Burn．reads oтрatıâs with Cobet；$\sigma \tau \rho a \tau \epsilon i ́ a s ~ M S S . ~$

1014．$\epsilon$ of $\operatorname{\theta av\mu [a]}$ Sovtes is corrected from o．

1or 5．$\omega$ ：om．MSS．The first scribe unintelligently divided the word $\epsilon \omega \theta_{t \nu} o^{\prime} v$ as $\epsilon \omega \theta \epsilon \iota \nu \mid$ ov．

1016．W adds кau before $\tau \epsilon \lambda \epsilon u t ~ \omega \nu$ tes．
Ior 7．I $\omega{ }^{2} \omega \nu$ is the traditional reading，in place of which various conjectures have been proposed．

1025．кat：om．MSS．
 is corrected，apparently from $\sigma$ ．

1042．ミ $\omega k \rho a 7 \eta \nu$ ：cf．l．1068，though $\Sigma \omega \kappa p a r \eta$ is rightly written in l． $105^{-1}$ ．
1048．o of $\pi а р а к є \lambda є v o д a t ~ i s ~ a l t e r e d ~ f r o m ~ \omega ~ a n d ~ a ~ o f ~ \theta a p p e є \nu ~ f r o m ~ \epsilon . ~$.
1058．фidous：so some MSS．，Stephanus；фidious BTW，Burn．
1061．а廿аєто：ä廿єтаи MSS．
1062．B has ípivqтa．
1063 ．avtos：oũros MSS．
єтєроs：so MSS．；єंтaipos Aristides，Burn．
1069．There is not room in the lacuna for $\mu \epsilon \nu$（so MSS．）after $\tau \omega \nu$ ．
$107 \mathrm{I} . \delta \eta$ ：om．MSS．$a^{\nu} \nu \theta \rho \omega$ is a slip for a $\nu \theta \rho \omega \pi \omega \nu$ ．
1072．$\epsilon \epsilon \nu$ ª $\mu \eta \tau \epsilon$ ：so TW，Burn．；єivai $\mu \epsilon$ B．
ro77－8．The transposition of кає ．．a a $\lambda$ ovs and ката ．．．тוs was necessary．W has тоиิт＇for таขт兀（тaйт＇）．

1080．тo of a atatav is converted from a $\nu$ ，and the first upright of $\pi$ was originally curved，i．e．the scribe began to write a $\alpha \theta \rho \omega \pi a s$ ．

1083．oıs：so TW，ci ois B，Burn．B has $\lambda$ é $\gamma \omega \nu$ for $\lambda \epsilon \epsilon{ }^{\top} \omega$（TW，Burn．）．

ro91．$\pi a \nu^{\prime} v$ ：so TW，Burn．；om．B．
1093．тıva ：so B ；ä̀ тıva T＇W，ớ тıva Burn．with Baiter．
1094．кav $\theta_{\eta} \lambda t v o u s: ~ к a \nu \theta_{\mathrm{r}} \lambda$ iovs MSS．
1099．B has סooryor
iroo．av：so MSS．；as̉ Bekker，Burn．
1102．т $\omega \nu \lambda$ 入oү $\omega \nu$ ：so TW，Burn．；тò $\lambda$ д́́oov B．

1106．A high point after orov is apparently meaningless；there is another between $\theta$ and $a$ of $\epsilon \sigma \epsilon \sigma \theta a \iota$ in the line below．

1108．The scribe began to write $a$ instead of $\rho$ after $\sigma \omega \kappa$ ．
1110．$\eta$ of $\eta \mu \epsilon t \nu$ ］has not been crossed out：cf．1． 983 ．

1117．$\epsilon \xi$ aтataб $\theta a \iota$ ：so TW，Burn．；$-\theta \in \mathrm{B}$ ．
1124．$\epsilon \delta 0 \kappa \epsilon \tau \in$ or $\tau \epsilon$ seems to have been first written；it is uncertain to which hand the correction is due．1，жарр $\quad$ гa．

1127．фuvat is a correction from $\epsilon \phi \eta$ ．
1130．оидєка：l．ov єขєка（TW，Burn．）．The $\nu$ is corrected from a $\delta$ ，and it is curious that B has ov $\delta^{\circ}$ instead of ov．

1142．$\delta a \beta a \lambda \epsilon \iota$ ：so Burn．following IIrschig．$\delta \iota a \beta a ́ \lambda y$ y BTW．
II 48．The first $\iota$ of катикль $\eta \eta \sigma о \mu a \iota$ is corrected from $\eta$ ．

${ }^{1157}{ }^{5}, \epsilon \mu \epsilon$ ：so B，Burn．；$\mu \epsilon$ TW．
1159．катакдı $\theta_{\eta}$ ：китак ${ }^{2} \nu_{\eta}$ MSS．
1160．$\pi$ of $\delta \eta \pi o v$ is corrected from $\mu$ ，and $\epsilon$ was twice written for at in єтauv $\sigma \epsilon \tau a \iota$ ．
1167．пavтoбє：MSS．$\pi$ avoós，which is unexceptionable，though $\pi$ avtore would also give a good sense．The $\delta$ of $\epsilon \vartheta \theta a \delta \varepsilon$ was converted from $\sigma$ ．
1173. єv
1179. aval $\omega \mu$ нvats was first written.
1180. єtб : єis тó MSS.
1186. tovs: om. MSS. rightly.


1191. Below the of ac $\delta o \nu \tau \omega \nu$ are some accidental marks.
 каì $\Sigma \omega \kappa$. BTW, Burn.
1196. $\mu \epsilon \gamma \pi \lambda \eta s \phi_{t}\{\lambda\} a \lambda \eta s:$ so Paris. 1642 , Vat. 229 ; $\phi . \mu \epsilon \gamma$. BTW, Burn.
1207. кш $\mu \boldsymbol{\omega о \pi о ь ь \nu ~ : ~ s o ~ B T W ; ~ к а і ~ к \omega \mu . ~ V i n d . ~} 2 \mathrm{I}$, Burn.

12II. l. Aptotoфap
1213. катакоцнбаута: so BW, Burn.; катакопйбаута T.
1214. кat $\omega \sigma \pi \epsilon \rho$ : so MSS.; Burn. inserts $\langle\vec{\epsilon}\rangle$ before $\omega \sigma \pi \epsilon \rho$ with Hermann.
1218. kat was apparently repeated by mistake, and overlooked by the corrector.
${ }^{1220-1}$. The title is placed opposite the middle of the preceding column.
Fr. (h). The letters after or have been altered or deleted. But it is possible that the fragment should be turned the other way up, when the reading would be $]$. $[\omega]$ !o $[$.

Fr. (i). This small fragment from the top of a column clearly comes from this papyrus, but cannot be certainly placed in any of the columns remaining. It might belong to Col. i, where $\delta o \kappa \varepsilon i$ probably stood in the first line, but there would be no $\omega$ underneath the $\delta$ unless there was a variation as to the position in the sentence of $\beta o v i \lambda o u \tau^{\prime}$ ' $1 \nu$.

Fr. ( $n$ ) is from the bottom of a column.
844. Isocrates, Panegyricus.

Height 3 I.I cm .
Plate VII (Cols. ix-x).
These considerable remains of a roll containing the Panegyricus of Isocrates extend from § I9 to § II6, though with some serious lacunae. Forty-seven columns were occupied by the ninety-six sections, and the total number would have been about eighty-six, for which it may be estimated that some 24 feet of papyrus would have been required. The manuscript was a handsome one written in a rather large calligraphic uncial hand very similar to that of the Rossal Demosthenes, of which a facsimile is given in Kenyon's Palacography, Pl. 16 ; cf. also the Hawara Homer (ibid., Pl. 20) and 20. Kenyon attributes the Demosthenes to the end of the first century, but it is perhaps more likely to belong to the earlier decades of the second, to which we should assign this Isocrates papyrus. There is often a marked decrease in the size of the letters at the ends of lines, and in order to save space T is lengthened so that the crossbar
comes above the tops of the letters adjoining. Short lines are filled up by the usual angular sign. A paragraphus is used to mark a pause, and is sometimes accompanied by a short blank space at the end of the sentence; the three varietics of stop, high, middle, and low, are also frcely added, though in a good many cases probably by the second hand, to which a number of corrections and alterations are due. No other lectional marks occur beyond a rare sign of elision or breathing inserted by the corrector. Iota adscript was originally not usually written, but has mostly been supplied later.

Like the British Muscum papyrus of the De Pace, the present text of the Pancgyricus is unfortunately of a distinctly poor quality, and does little beyond establishing still more clearly the superiority of the codex Urbinas ( I ). It is characterized by a number of additions, some of which are evident interpolations and none is convincing; the most flagrant example is at $11.3+4-50$, where a sentence founded on a subsequent passage is inserted without apparent reason; cf. $11.17,42,77,164-5,258,302,355,35^{6}, 421,55^{8}, 56 \mathrm{I}$. On the other hand the papyrus occasionally exhibits a shorter text, either on its own authority (ll. 449,562 ) or in agreement with $\Gamma$ against the vulgate (ll. 202, 264, 395, 480, $497,608,609,669$ ). Though on the whole the coincidences with $\Gamma$ predominate, agreements with MSS. representing an inferior tradition are frequent. Sometimes the corrector has changed a reading of $\Gamma$ into that of the vulgate or vice versa. Certain variants also appear which are otherwise only found in MSS. of the $\Pi \epsilon \rho i \quad$ 'Avti $\delta \dot{\sigma} \sigma \epsilon \omega s$, where a large section of the Panegyricus is repeated; cf. notes on 11. $230-1,400,449,55^{8}, 613-5$. In view of the general character of the papyrus its variations in the order of words carry little weight; and it may be doubted whether there are more than a couple of readings for which an independent value can be claimed, 1. $290 \epsilon \lambda a \tau \tau \omega \gamma \epsilon$ as conjectured by Cobet, and 1. $659 \sigma v \mu \pi \epsilon \nu \theta \eta \sigma o v \tau a s$, a variant recorded by Victorius but actually found in no MS. The archetype from which this text was derived appears to have been defective in places ; cf. 11. 33-5, 291, and 605.

In the collation given below we have made use of the Teubner edition of Blass, the apparatus of which is unfortunately very limited. Proofs of the text of the papyrus were sent to Prof. E. Drerup in order to be utilized for his forthcoming critical edition of Isocrates, and to him we owe some references to individual MSS. of the vulgate. Differences with regard to elision, insertion or absence of $v \dot{\epsilon} \phi \epsilon \lambda \kappa v \sigma \pi \iota \kappa o ́ v$, interchange of $\epsilon \iota$ and $\iota$, \&c., are not separately noticed.

## Col. i.



```
 \(\mu o \iota \delta\) ovv \(\alpha \mu \phi о \tau \epsilon \rho \omega \nu\) סagal
 \(\epsilon \nu \epsilon \kappa \alpha \pi \rho о \sigma \eta \kappa є \iota \pi \epsilon \rho \iota\)
 \(\tau \alpha \nu \tau \alpha\) тоь \(\eta \sigma \alpha \sigma \theta \alpha \iota ~ \tau \eta \nu\)
\(\left.{ }_{5} \pi \lambda \epsilon \iota \sigma \tau \eta \nu \quad \delta<\iota\right] \alpha \tau \rho \iota \beta \eta \nu\).
 \(\mu \alpha \lambda \iota \sigma \tau \alpha \mu \epsilon \nu \quad \iota \nu \pi \rho o v \rho\)
 रov \(\tau \iota\) үє \(\eta \eta \tau \alpha \iota\) каı \(\pi \alpha v\)
 \(\sigma \alpha \mu \in \nu 0 \iota \tau \eta s \pi \rho o s \eta\)
 \(\epsilon\)
 \(\mu a s\) avtous \(\phi\) i入ovikı
10 as кolv \(\eta\) Tols \(\beta \alpha \rho \beta a>\)
 pots \(\pi 0 \lambda \epsilon \mu \eta \sigma \omega \mu \epsilon \nu^{-}\)
 \(\left.\epsilon \iota \quad \delta \epsilon \operatorname{\tau ov\tau } \epsilon \sigma \tau^{\prime}[\alpha \angle\rceil\right] \alpha \delta v \nu \alpha \quad \oint 20\)
 \(\tau o \nu\). \(\iota \nu \alpha \delta \eta \lambda \omega \sigma \omega\) тous
 \(\epsilon \mu \pi o \delta \omega \nu\) ov \(\tau \alpha s \eta^{\iota}\)
\({ }^{1} 5[\tau] \omega \nu\) E \(\lambda \lambda \eta \nu \omega \nu \in v \delta \alpha \iota\)
 \(\mu o \nu \iota \alpha\) l. к \(\alpha \iota \pi \alpha \sigma \iota \quad \gamma \in \nu \eta \tau \alpha \iota\)
 \([\phi] \alpha \nu \in \rho \circ \nu \cdot\) оть кає то \(\pi \rho \circ\)
 \([\tau] \epsilon \rho o \nu \quad \eta \mu \omega \nu \quad \eta[\pi o\rangle \lambda \iota s\)
 \([\delta \iota] \kappa \alpha \iota \omega s \tau \eta s \quad \theta \alpha \lambda \alpha \tau] \tau \eta s\)
\(20[\eta] \rho \xi \in \nu \cdot \kappa \alpha \iota \nu v \nu \quad \circ[v \kappa] \alpha \delta \iota\)
 \([\kappa] \omega s \quad \alpha \mu \phi \iota \sigma \beta \eta \tau[\epsilon \iota \quad \dot{\pi}] \dot{\epsilon} \dot{\rho} \dot{i}\)
 [\(\tau, \eta s \quad \eta \gamma \in \mu 0 \nu l \alpha s \quad\left[\tau 0{ }^{\top} v\right.\)
 \(\oint 21\)
 \(\left.\left[\begin{array}{lll}\tau 0 & \mu \epsilon\end{array}\right] \nu\left[\begin{array}{llll}\gamma\end{array}\right] \alpha^{\prime} \rho \quad \epsilon \ell \quad \delta \epsilon\right]_{\iota}>\)
```

Col. ii.

аvtols $\pi \alpha \rho \alpha \mu \epsilon \nu \epsilon \iota \nu$ a
${ }^{2} 5 \xi \leqslant \iota \nu \sigma \iota \delta \epsilon \tau \eta \nu \quad \eta \gamma \epsilon \mu \circ \nu \iota$
$\alpha[\nu \in \chi \epsilon \iota \nu \omega \sigma \pi \epsilon \rho$ a $\lambda \lambda o$ $\tau \iota$
$\gamma \epsilon[\rho a s \quad \eta$ rous $\pi \rho \omega \tau 0 u s$ тv $\chi \circ \underline{0}[\tau \alpha s$
$\sigma \alpha \mu \epsilon \nu o l ~ \tau \eta s \quad \pi \rho o s ~ \eta$

## $\epsilon$

$\mu \alpha s$ avtous $\phi i \lambda$ оуlкı
10 as кoוv $\eta$ Tols $\beta \alpha \rho \beta a>$ pots $\pi 0 \lambda \epsilon \mu \eta \sigma \omega \mu \epsilon \nu^{\circ}$
$\epsilon \iota \quad \delta \epsilon \operatorname{\tau ov\tau } \epsilon \sigma \tau^{\prime}[$ al $]$ a $\delta v \nu \alpha \quad \oint 20$
$\tau \circ \nu$. $\iota \nu \alpha ~ \delta \eta \lambda \omega \sigma \omega$ тous
$\epsilon \mu \pi o \delta \omega \nu$ ov $\alpha \alpha$ s $\tau \eta^{\iota}$
${ }_{15}[\tau] \omega \nu E \lambda \lambda \eta \nu \omega \nu \in \nu \delta \alpha \iota$
$\mu o \nu \iota \alpha$ l. к $\alpha \iota \pi \alpha \sigma \iota \quad \gamma \in \nu \eta \tau \alpha \iota$
$[\phi] \alpha \nu \in \rho \circ \nu \cdot$ отє кає то $\pi \rho \circ$
$[\tau] \epsilon \rho o \nu \quad \eta \mu \omega \nu \quad \eta[\pi o\rangle \lambda \iota s$
$[\delta \iota] \kappa \alpha \iota \omega s \tau \eta s \quad \theta \alpha \lambda \alpha \tau] \tau \eta s$
$20[\eta] \rho \xi \epsilon \nu \cdot \kappa \alpha \iota \nu v \nu \quad[\nu \kappa] \alpha \delta \iota$
$[\kappa] \omega s \quad \alpha \mu \phi \iota \sigma \beta \eta \tau[\epsilon \iota \quad \dot{\pi}] \dot{\epsilon} \dot{\rho} \dot{i}$
$\left[\tau, \eta s \quad \eta \gamma \epsilon \mu o \nu l \alpha s\left[\tau o{ }^{\prime} v\right.\right.$ $\oint 2 I$
$\left.\left[\begin{array}{lll}\tau 0 & \mu \epsilon\end{array}\right] \nu\left[\begin{array}{llll}\gamma\end{array}\right] \alpha^{\prime} \rho \quad \epsilon \iota \quad \delta \epsilon\right]_{\iota} \gg$

Col. v.

$$
\begin{aligned}
& \oint 29 \\
& \tau] \alpha \varsigma .\{[\epsilon \\
& 3 \circ[\epsilon v \epsilon \rho \gamma \epsilon \sigma \iota \alpha s \text { kal } \tau] \alpha s \text { X } \rho \in \iota
\end{aligned}
$$

Col. vii.
you $\mu \in \boldsymbol{\imath}$ ous кац $\pi \rho \omega$ ]rous

 $\phi \cup \epsilon \sigma \tau[\alpha \tau]$ ous outas $k \alpha \iota$ $[\pi \rho o] s[\tau \alpha \quad \tau] \omega \nu \quad \theta \epsilon \omega \nu \in v$ $\sigma[\epsilon \beta \epsilon \sigma] \tau \alpha \tau \alpha \quad \delta \iota \alpha \kappa \epsilon \iota \mu \epsilon$ $\left.\nu^{\prime} o v s\right] \kappa \alpha \iota \mu \eta \nu$ об $\eta s$
$40[\pi \rho \circ] \sigma \eta \kappa \in l$ $\tau i \mu \eta s[\tau v \gamma] \chi^{\alpha}$ [ $\nu \epsilon i] \nu$ тous $\left.\tau \eta \lambda \iota \kappa o^{\prime} \nu \tau\right] \omega \nu$ $[\alpha \gamma \alpha] 0 \omega \nu$ altıovs $\gamma[\epsilon] \gamma \epsilon>$ [ $\nu \eta \eta^{\top} \mu \epsilon \nu 0 u s \pi \epsilon \rho \epsilon \epsilon \rho \gamma \sigma$
$[\delta l] \delta[\alpha \sigma] \kappa \epsilon[l] \nu$ ov $\delta \epsilon_{l} l{ }^{l}{ }^{\prime} s \quad \gamma \alpha \rho$
$45[\alpha] \nu \delta \nu \nu \alpha i[\tau 0 \quad \delta \omega \rho] \epsilon \alpha \nu$ то
$[\sigma \alpha] u \tau \eta \nu \quad \tau ; 0 \quad \mu_{,} \epsilon \gamma \epsilon \theta$ os $\epsilon v$ $\left.{ }^{〔} \rho \epsilon \iota\right\rangle \nu \quad \eta \tau \iota[s] \quad \iota \eta$ tols $\pi \epsilon$
$[\pi \rho \alpha] \gamma \mu \epsilon \nu \sigma[l] s \in \sigma \tau \iota \nu \cdot \pi \epsilon$
$[\rho \iota] \mu[\epsilon] \nu$ ov $\nu$ रov $\mu \epsilon \gamma \iota>$ 5० [ $\sigma \tau$ ]ov $\tau \omega \nu \quad \epsilon \nu \epsilon \rho \gamma \epsilon \tau \eta \mu \alpha$ $[\tau \omega]$ v кає $\pi \rho \omega \tau 0 v \quad \gamma \epsilon \nu \circ \mu \epsilon$ [ $\operatorname{\nu ov}$ каı $\pi \alpha] \sigma \iota$ коıขота [ $\tau 0 v \quad \tau \alpha v \tau \epsilon] X \not{ }^{\circ} \mu \epsilon \nu \quad \epsilon \iota \pi \epsilon \iota \nu$. [ $\pi \epsilon \rho \iota$ סє tovs] аvтóv's Xpo
 [ $\beta \alpha \rho \beta \alpha \rho o u s]$ ] $\eta \nu \pi_{\text {l }}^{r} \lambda \in \iota$ $\left[\begin{array}{lll}\sigma \tau \eta \nu & \tau \eta S & \chi\end{array}\right] \omega \rho \alpha[s \quad \kappa \alpha \tau \epsilon$ [Xovtas $\tau$ ]ous $\delta(E, \lambda \lambda \eta$ [vas eis $\mu$ ]iкроv тотоv $60[\kappa \alpha \tau \alpha \kappa \epsilon \kappa] \lambda \iota \mu \in \nu \rho[\nu]_{s}$. $\left[\begin{array}{lll}\kappa \alpha \iota & \delta \iota \alpha & \sigma\end{array}\right] \pi \alpha \nu \iota о \tau \eta \tau \alpha$ $\left[\begin{array}{llll}\tau \eta s & \gamma \eta s & \epsilon\end{array}\right] \pi \iota \beta o v \lambda \epsilon v o \nu$ $[\tau \alpha s \quad \tau \epsilon \sigma \phi l] \sigma \iota v$ avtols. $[\kappa \alpha \iota \quad \sigma \tau \rho \alpha \tau] \iota \alpha s \in \pi \alpha \lambda \lambda \eta$

Col. viii.
$\left[\begin{array}{lll}\mu \in \nu & \gamma \alpha \rho & i\end{array}\right] \kappa \alpha[\nu] \eta \nu \quad \tau \eta \nu$
 [Tols $\delta \epsilon \pi \lambda \epsilon l] \omega$ $\tau \eta S \quad v \pi \alpha \rho$ 90 X[ovoךs $\epsilon \pi o \rho \iota] \sigma \alpha \nu \quad \alpha$
$\pi \alpha[\nu \tau \alpha \quad \gamma \alpha \rho \quad \pi \epsilon \rho \iota] \epsilon \lambda \alpha \beta o \nu$

$\chi \alpha \nu^{\prime}[o \mu \epsilon \nu \quad \kappa \alpha \tau \epsilon \chi \neq \nu] \tau \epsilon s . \omega \sigma$
[ $\tau \in$ каl $\tau 0 \iota$ v vot $]$ pov ßov
$95[\lambda \eta \theta \epsilon \iota \sigma \iota \nu \alpha \pi 0 \iota] \kappa \iota \sigma \alpha \iota \tau \iota$
$\left.[\nu] \alpha s \quad \kappa \alpha \iota \quad \mu_{\iota} \iota \mu\right] \eta \sigma \alpha \sigma \theta \alpha \iota$
$[\tau] \eta \nu \pi 0 \lambda \iota \nu \quad \tau \eta \nu \quad \eta \mu \epsilon \tau \epsilon$
$\rho \alpha \nu . \pi o \lambda \lambda \eta \nu[\rho \alpha l] \sigma \tau \omega \iota$
$\nu \eta \nu \epsilon \pi o เ \eta \sigma \alpha \nu^{*}$ ov $\gamma \alpha \rho$
$100[\alpha v \tau 0 v] S$ $\delta \in \iota \quad \kappa[\tau, \omega \mu \epsilon \nu 0 v s$
$[\chi \omega \rho \alpha] \nu \delta \iota \alpha \kappa เ \nu \delta v \nu \epsilon v$

$[\mu \omega \nu]$ aфopı $\sigma[\theta] \epsilon \iota \sigma \alpha l^{\prime} .>$


$\tau \eta S \quad \eta \gamma \epsilon[\mu \nu \nu] \iota \kappa \omega \tau[\epsilon \rho] \alpha[\nu$
 $[\kappa \alpha l$ tovs $\mu] \epsilon \nu \quad \delta \iota \in \nu \delta \epsilon \iota$ $\left[\begin{array}{lll}\alpha \nu & \tau \omega \nu & \kappa \alpha\end{array}\right] \theta \quad \eta \mu \epsilon \rho \alpha \nu>$ [Tovs $\delta \in \delta(\alpha]$ тov $\pi 0 \lambda \epsilon \mu о \nu$ $[a \pi 0 \lambda \lambda v \mu] \epsilon \nu 0 u s$ ov $\delta \epsilon$
خ० [ $\tau \alpha v \theta$ ovz] $\omega$ s єXovтa [ $\pi \epsilon \rho \epsilon \epsilon \epsilon \delta \epsilon \nu]$. $\alpha \lambda \lambda \quad \eta \gamma \epsilon \mu 0$ [ $\nu$ as $\epsilon \iota s \tau \alpha s$ ] $\pi 0 \lambda \epsilon \iota S ~ \epsilon>$ $[\xi \in \pi \epsilon \mu \psi \epsilon \nu]$ of $\pi \alpha \rho \alpha \lambda \alpha>$

Col. ix. Plate VII.
[ $\beta$ ]apous avactãous $\pi$ ol


 $120[\nu v \nu] \in \pi \epsilon i \delta \eta \quad \tau \alpha \mu \epsilon \gamma[[\sigma] \tau \alpha$ $[\sigma \nu \nu] \delta \iota \epsilon \pi[\rho] \alpha \xi \epsilon \nu . \tau \omega \nu \quad \alpha \lambda$ $\lambda[\omega \nu] \omega \lambda_{2}^{\prime} \ell \gamma \omega \rho \eta \sigma \epsilon \nu \cdot a \lambda$
$\left.\overline{\lambda^{\prime} \alpha \rho[ } \chi \eta\right] \nu \quad \mu_{[ }[\epsilon\rangle \nu$ єтоו $\eta \sigma \alpha \pi о$ $\tau \alpha[\nu] \tau \eta \nu \quad \tau \omega \nu \quad \epsilon \nu \epsilon \rho \gamma \epsilon \sigma \iota$
${ }^{125} \omega \nu[\tau \rho о \phi] \eta \nu$ tots $\delta \epsilon \circ \mu \epsilon$ $\nu o l[s \in \nu \rho] \in[l] \nu \quad \eta \nu \pi \epsilon \rho \quad \chi \rho \eta$ тov[s $\mu \mathrm{\epsilon}] \lambda \lambda o \nu \tau \alpha s$ кац $\pi \epsilon$ $\rho l \tau[\omega \nu \alpha \lambda] \lambda \omega \nu \kappa \alpha \lambda \omega s$ $\delta \iota 0^{[ }[\kappa] \eta \sigma \epsilon \epsilon \nu \cdot \eta \gamma o \nu \mu \epsilon$
${ }^{130} \nu \eta$ [ $\left.\delta \epsilon\right]$ Tov $\beta \iota o \nu$ тov $\epsilon \pi \iota$ rov[ $\tau]$ ois $\mu$ ovov ov $\pi \omega$
 $\omega \mathrm{\epsilon} \in[X \epsilon \nu]$ ov $\omega \omega \mathrm{s} \epsilon[\epsilon]>$ $\mu \epsilon[\lambda \eta \theta \eta]$ к $\alpha \iota \tau \omega \nu \lambda o[\epsilon]>$
${ }^{135} \pi \omega \nu \cdot \omega[\sigma] \tau \epsilon \tau \omega \nu \pi \alpha[\rho o] \nu$ $\tau \omega \nu$ [ $\tau 01] s$ a $\nu \theta \rho \omega \pi о \iota s$ $\alpha \gamma \alpha \theta \omega \nu[0] \sigma \alpha \mu \eta \pi \alpha \rho \alpha$ $\theta \epsilon \omega \nu \in \chi \circ \mu \epsilon \nu \quad a \lambda \lambda \alpha$ dı
) $\epsilon \pi \iota \delta i \xi \in \in[\epsilon \epsilon \nu \eta] \pi a \tau \rho!\kappa \omega$ $\tau \in \rho \alpha \nu \tau \eta S[\pi \rho \rho] \tau \epsilon \rho o \nu \gamma[\epsilon$ $\nu о \mu \epsilon \nu \eta s$ [ $\pi \rho \iota \nu] \tau \alpha s{ }^{\pi \lambda \epsilon \iota}$
110 $\sigma \tau \alpha s$ оккь $\sigma[\theta \eta \nu \alpha l] \tau \omega \nu$
E $\lambda \lambda \eta \nu \nu \delta \omega\left[\nu \pi 0 \lambda \epsilon{ }^{\top} \omega \nu\right.$.
$\eta[\mu] \alpha \lambda \lambda o \nu \sigma[\nu \mu \phi \in \rho], v$ $\sigma_{[\alpha]}[\alpha \eta s \quad \tau o[v s \quad \mu \in \nu] \beta \alpha \rho$


Col. x. Plate VII.
${ }_{55} \rho \alpha \delta \epsilon \iota \gamma \mu \alpha \pi o[\eta] \sigma \alpha \sigma \alpha \pi \rho \omega$ $\tau \eta$ रap каl עouous $\epsilon \theta \epsilon$ то. каl то入ıтєlas катє $\sigma \tau \eta \sigma[a \tau] 0 . \delta \eta \lambda o \nu \quad \delta \epsilon>$
$160 \pi \epsilon \rho \iota \tau \omega \nu$ фоע $<\kappa \omega \nu>$ $\epsilon \gamma \kappa \alpha \lambda \epsilon[\sigma] \alpha \nu \tau \epsilon s$ к $\alpha t \beta o{ }^{[ } v$ $\lambda \eta \theta_{\epsilon \nu \tau \epsilon s} \mu \epsilon \tau \alpha$ 入oy[ov $\kappa \alpha \iota \mu \eta \mu \epsilon \tau \alpha$ Bıas $\delta \iota$ $\alpha \lambda \nu \epsilon \sigma \theta a \iota ~ \tau \alpha s \quad \pi \rho o s \quad \alpha \lambda$

 pols tas kplбets $\epsilon \pi[0 t$ $\eta \sigma \alpha \nu \tau 0 \quad \pi \epsilon \rho \iota$ avt ${ }^{[\nu}$ $\kappa \alpha \iota \quad \mu \epsilon \nu \quad \delta \eta \kappa \alpha \iota \tau \omega[\nu \tau \epsilon$ $\tau \epsilon$
${ }^{170} \chi^{\nu \omega \nu} \tau \alpha s \pi \rho o s \tau \alpha \nu \alpha \gamma$ [ $\kappa$ ]ala тov ßıov $\chi$ р $\eta \sigma \iota>$ [ $\mu$ ]as кац tas $\pi \rho \rho$ оs $\eta \delta o$ $\nu \eta \nu \quad \mu \epsilon \mu \eta \chi \alpha \nu \eta \mu \epsilon$
vas tas $\mu \in \nu$ єupovaa
${ }_{175}$ Tas $\delta \epsilon[\delta] 0 \kappa\langle\mu \alpha \sigma \alpha \sigma \alpha .>$
$\lambda$. $\chi \rho \eta \sigma \theta \alpha \iota$ тols $a \llbracket \nu \theta \rho \omega \rrbracket$
$\alpha \lambda \lambda \eta \lambda$ ous $\eta \mu \iota \nu \quad \gamma \in \gamma o$
${ }_{1}{ }^{4} 0 \nu \in \nu . \quad \mu \eta \delta \epsilon \nu \quad \mu \epsilon \nu \quad \alpha \nu \epsilon \nu$ $\left.\tau \eta s \quad \pi o \lambda \epsilon_{L}^{〔} \omega\right] s \quad \tau \eta s \quad \eta \mu \epsilon$ $\tau \epsilon \rho \alpha s \in \iota \nu \alpha l \cdot \tau \alpha \delta \epsilon \pi \lambda \epsilon \iota$ $\sigma \tau \alpha \delta \iota \alpha$ $\tau \alpha v \tau \eta \nu \quad \gamma \in \gamma \in \nu \eta$ $\sigma \theta \alpha \iota$ тара入aßov $\sigma \alpha$ $\gamma \alpha \rho$ §39
145 tous E E $\lambda \eta \nu$ as $\alpha \nu 0 \mu \omega s$
ऽ $\omega \nu \tau \alpha$ ．к $\alpha \iota ~ \sigma \pi о \rho a \delta \eta \nu$ каı
olkouvtas．tous $\mu \epsilon \nu v$ $\pi о ~ \delta v \nu \alpha \sigma \tau \epsilon \iota \omega \nu$ vßрıऽо $\mu \in \nu o u s$ ．tous $\delta \in \delta_{\iota} \alpha \nu \alpha \rho$ ${ }^{150}$ Х $\downarrow \alpha \nu \alpha \pi 0 \lambda \lambda \nu \mu \in \nu 0 \cup s .>$ $\kappa \alpha \iota ~ \tau о \nu \tau \omega \nu \tau \omega \nu \kappa \alpha \kappa \omega \nu$ $\alpha \nu \tau o u s \quad \alpha \pi \eta \lambda \lambda \alpha \xi \in \nu$ ． $\tau \omega \nu \quad \mu \in \nu \quad \kappa v \rho \iota \alpha \llbracket \iota \rrbracket \gamma \in \nu 0$ $\mu \in \nu \eta$ ． $\operatorname{\tau o\iota s} \delta^{\prime}$ à $v \tau \eta \nu \pi \alpha$

Col．xviii．
$195 \cdot v] \phi \quad$ er $\cdot \mathrm{\rho ots}$
［ $\lambda$ ］
【 $\pi \rrbracket$ ］ois $\left.\pi \alpha \rho_{[ } \epsilon\right] \delta \omega \kappa \epsilon^{\cdot} \quad \tau \eta \nu$
тоו้vv $\alpha \lambda \lambda \eta \nu$ סוoוk $\eta$
$\sigma \iota \nu$ ovt $\omega$ ¢ $\phi \lambda 0 \xi \in \nu \omega s$
180 катєбкєvабато кає
$\pi \rho o s \quad \alpha \pi \alpha \nu \tau \alpha \mathrm{~s}$ оเкєا
$\omega s$ ．$\omega \sigma \tau \epsilon$ каl $\operatorname{\tau ols}$ X $\rho \eta$
$\left.\mu \alpha \tau \omega \nu \quad \delta \in o \mu \in \nu 0_{\square}^{\prime} l\right] s$
кає тols $\alpha \pi о \lambda \alpha v \sigma \alpha \iota ~ \tau \omega \nu$
${ }^{185} v \pi \alpha \rho \chi о \nu \tau \omega \nu \quad \epsilon \pi \iota \theta v \mu о v$
$\sigma \iota \nu \quad \alpha \mu \phi о \tau \epsilon \rho о \iota s$ ар $\mu о \tau$
$\tau \epsilon \iota \nu \cdot \kappa \alpha \iota \mu \eta \tau \epsilon$ тols $\epsilon v$
סal $\mu$ ovoval．$\mu \eta \tau \epsilon$ тols
$\delta v \sigma \tau v \chi$ Хov $\iota \nu \quad \epsilon \nu$ таıs $\epsilon$
$190 \alpha \nu \tau \omega \nu \quad \alpha \chi \rho \eta \sigma \tau \omega S \quad \epsilon \chi \epsilon \iota \nu$
$\alpha \lambda \lambda$ єкатєро८s $\alpha v \tau \omega \nu$
$\epsilon \iota \nu \alpha l \pi \alpha \rho \quad \eta \mu \iota \nu$ тoıs $\mu \in \nu$
$\eta \delta \iota \sigma \tau \alpha s$ бıатрı $\beta \alpha_{\imath}[s]$ то८s
$\delta \epsilon \alpha \sigma \phi \alpha \lambda \epsilon \sigma \tau \alpha \tau \eta \nu$ кат $\alpha$

Col．xix．
$\mu^{\Gamma} \iota \kappa \rho \circ \nu \epsilon \pi \circ \iota \eta \sigma \alpha \nu \alpha \lambda \lambda \alpha$ тобo［utov $\tau \alpha s ~ \tau u \chi \alpha s$ $\epsilon \kappa[\alpha] \tau \in \rho^{\top}[\omega \nu \quad \mu \epsilon \tau \eta \lambda \lambda \alpha$ $200 \xi \alpha \nu . \omega \sigma[\theta$ o $\mu \in \nu \quad \iota \kappa \in \tau \in \nu$ $\epsilon \iota \nu \quad \eta \mu \alpha{ }^{\top} \alpha \xi \iota \omega \sigma \alpha s \beta \iota \alpha$ $\tau \omega \nu \quad \epsilon[X \theta \rho \omega \nu \quad \alpha \pi \alpha \nu \theta \circ$ $\sigma \omega \nu \quad \epsilon \delta \epsilon \eta[\theta \eta \quad \delta \iota \alpha \pi \rho \alpha \xi \alpha$ $\mu \epsilon \nu 0 S \quad \alpha \pi \quad \eta \lambda \theta_{\epsilon \nu} \quad$ Eupvo
${ }_{20} 5\left[\theta_{j} \epsilon U S \quad \delta \epsilon \quad \beta[\iota \alpha \sigma \alpha \sigma \theta \alpha \iota \quad \pi \rho 0 \sigma\right.$
［ $\delta о к \eta \sigma \alpha s$ avtos al $\chi \mu \alpha$ ］
［ $\lambda \omega \tau$ os $\gamma \in \nu \circ \mu \epsilon \nu \sigma] s \quad \iota[\epsilon$
［ $\tau \eta s \quad \eta \nu \alpha \gamma \kappa \alpha \sigma \theta]!\eta$ ката

# ［ $\sigma \tau \eta \nu \alpha \iota \kappa \alpha \iota \tau \omega] \mu \in \nu v$ <br> $\oint 60$ <br> $210[\pi \epsilon \rho \epsilon \nu \epsilon \gamma \kappa] 0 \nu \tau \iota \tau \eta \nu$ <br> $[\alpha \nu \theta \rho \omega \pi \iota \nu] \eta \nu \quad \phi \nu \sigma \iota \nu$. 

Col．$x x$ ．
$[\epsilon \tau] \epsilon[\lambda \epsilon \nu \tau \eta \sigma \epsilon \nu \quad \pi 0 \lambda \lambda \omega \nu$
$\left[\begin{array}{ll}\delta & v\end{array}\right] \pi \alpha \rho[\chi o v \sigma \omega \nu \quad \eta \mu t \nu$ $[\epsilon v] \epsilon \rho \gamma \epsilon[\sigma l \omega \nu \quad \epsilon \iota S \quad \tau \eta \nu \quad \pi 0$
${ }_{215}[\lambda l] \nu \quad \tau \eta[\nu \quad \Lambda \alpha k \in \delta] \alpha[\iota \mu 0 \nu \iota$ $[\omega \nu], \pi \epsilon[\rho \iota \tau \alpha v] \tau \eta s \quad \mu[o \nu \eta s$ $\left[\mu 0^{\circ}, \iota \quad \sigma v \mu_{\imath}^{\top} \beta \in \beta \eta\right] \kappa \in \nu \quad \epsilon_{\mathrm{L}}^{〔} \iota \pi \epsilon \iota \nu$ $[\alpha \phi] o \rho \mu[\eta \nu \quad \gamma \alpha \rho] \lambda \alpha \beta o \nu[\tau \epsilon s$ $[\tau \eta] \nu \delta \iota[\eta \mu \omega \nu] \alpha v \tau o \iota[s \gamma \epsilon$
$220[\nu] \sigma \mu \epsilon\left[\nu \eta \nu \quad \sigma_{\lrcorner}^{\top} \omega \tau \eta \rho \iota \alpha[\nu\right.$
［ol］$\pi \rho \circ \gamma[0 \nu 0] \iota \quad \mu \in \nu \quad \tau \omega[\nu$ $[\nu] \nu \nu \in \nu[\Lambda \alpha] \kappa \in \delta \alpha \iota \mu[0 \nu \iota$ $[\beta] \alpha \sigma \iota \lambda \epsilon \nu \circ \nu \tau \omega \nu . \in \gamma \gamma \circ[\nu 0 \iota$
［ $\left.\delta H_{\rho}\right] \alpha \kappa \lambda \epsilon$ оиs к $\alpha \tau \eta \lambda[\theta o \nu$
$225[\mu \epsilon] \nu \quad \epsilon[[s]$ $\Pi \epsilon[\lambda o] \pi o \nu \nu \eta[\sigma 0 \nu$ $[\kappa \alpha] \tau[\epsilon \sigma \chi]$ ov［ $\delta]$ A $\rho \gamma$ оs $\kappa \alpha[\iota$ $[\Lambda \alpha \kappa \epsilon \delta \alpha \iota \mu] o \nu[\alpha]$ к $\alpha \iota \quad M \epsilon \sigma[\sigma \eta$ $[\nu \eta \nu$ оккь $\sigma] \tau \alpha \iota \delta \epsilon \quad \Sigma \pi \alpha[\rho$ $[\tau \eta S \quad \epsilon \gamma \in \nu 0 \nu] \tau \circ$ ．ка८ $\tau \omega[\nu$
$\omega \sigma \tau \epsilon \pi \epsilon \rho_{[ }[l] \mu \epsilon \nu \quad \tau \eta S \in \nu$ тoıs E入入ךб८ $\delta v \nu \alpha \sigma \tau \epsilon \iota \alpha s$. ouk oi§ oT $\pi \omega$ s $\alpha \nu$ TıS $\sigma \alpha$ $\phi \epsilon \sigma \tau \epsilon \rho \circ \nu \in \pi \iota \delta \epsilon \iota \xi \alpha \iota \delta v$ ${ }_{2} 50 \nu \eta \theta \epsilon \iota \eta$ ．ठокєє $\delta \in \mu о \iota$
$\kappa \alpha \iota \pi \epsilon \rho \iota \tau \omega \nu \overline{\pi \rho o \tau \epsilon \rho o \nu}$
$\pi \rho o s$ tous $\beta \alpha \rho \beta \alpha \rho o u s$ т $\eta \iota$
$\pi 0 \lambda \epsilon \iota \pi \epsilon \pi \rho \alpha \gamma \mu \epsilon \nu \omega \nu>$
$\oint 61$
${ }_{2} 3^{\circ}[\pi \alpha \rho o \nu \tau \omega \nu] \alpha \gamma \alpha \theta \omega \nu[\alpha$
［ $\pi \alpha \nu \tau \omega \nu \quad \alpha \nu \tau] o \iota s \quad \alpha \rho[X \eta$
$[\gamma \circ \iota \kappa \alpha \tau \epsilon \sigma \tau \eta] \sigma \alpha \nu \cdot \omega[\nu \in \quad \oint 62$
$[\chi \rho \eta \nu \quad \epsilon \kappa \epsilon L \nu O \nu] s \quad \mu \epsilon[\mu$
［ $\nu \eta \mu \in \nu 0] v s \quad \mu \eta \delta_{\epsilon} \epsilon \pi o$
${ }_{2} 35\left[\begin{array}{lll}\tau & \epsilon \iota \varsigma & \tau \eta \nu\end{array}\right] \chi^{\omega \rho \alpha \nu} \tau \alpha \nu \tau[\eta \nu$ $[\epsilon \iota \sigma \beta \alpha \lambda \epsilon t] \nu \quad \epsilon \xi \quad \eta S \quad o \rho \mu[\eta$ $[\theta \in \nu \tau \epsilon S \in]<s$ тоб $\alpha \nu \tau[\eta \nu$ ［ $\epsilon v \delta \alpha \iota \mu o] \nu \iota \alpha[\nu \kappa \alpha \tau \epsilon \sigma \tau \eta$ ［ $\sigma \alpha \nu \mu \eta \delta \quad \epsilon][s]$ кı $\nu \delta v[\nu o u s$

$\left[\begin{array}{ll}\tau \eta \nu & v\end{array}\right] \pi \in \rho \quad \tau \omega \nu \quad \pi \alpha[\delta \omega \nu$ ［ $\tau \omega \nu]$ Н $\rho \alpha \kappa \lambda \epsilon o v s \pi \rho[о$ $[\kappa \iota \nu \delta] \nu \nu \epsilon v \sigma \alpha \sigma \alpha \nu \cdot \mu[\eta$
 ${ }_{2} 45[\gamma \in \nu 0] \mu \in \nu 0 \iota S$ St $\delta 0 \nu \alpha[\iota$

Col．xxiii．

```
§65 285 \deltaou\lambda\omega\sigma\alpha\sigma[0]\alpha\iota \tauovs E\lambda\lambda\eta
 \nuas \epsilon\phi \eta\muas \pi\rho\omega\tau\[\eta]]s \iota
 o\nu\tau\epsilon\mp@subsup{S}{}{*}}\epsilon\pi\iota\phi\alpha\nu\epsilon\sigma\tau\alpha\tau\llbracket[\alpha]\
```

    \pi\rhoо\sigma\etaк\epsilon\iota\nu \epsilon!\pi\epsilon\epsilon\nu. \alpha\lambda
    255 \lambda\omegas \tau'{\epsilon\epsilon] \epsilon\pi\epsilon\iota\delta\eta к\alpha\iota \tauо\nu
\eta\sigma
\lambdaoyov кат\epsilon\sigma\tau\alpha\mu\eta\nu \pi\epsilon
\rhol \tau\etaS \eta[\gamma]\epsilon\muovlas \tau\etaS \epsilon
\pi \epsilonK\epsilonl\nuOvS \epsilon\sigmaо\mu\epsilon\nu[0v]\s.
\alpha\pi}\alpha\nu\tau\alphas \mu\epsilon\nu ov\nu \epsilon\xi\alpha
260 \rho\iota0\mu\omega\nu tous k\iota\nu\deltav >
\lambdat
vous av a\nu \muакро\lambdaоуol
\eta\nu}\pi<\epsilon\rho\iota \delta\epsilon \tau\omega\nu \mu\epsilon\gamma\iota
\sigma\tau\omega\nu \tauov \alphav\tau0\nu \tau\rhoо\piov
ov\pi\epsilon\rho o\lambda\iota\gamma\omega \pi\rhoот\epsilon\rhoо\nu
265\pi\epsilon\iota\rhoа\sigmaо\mu\alpha\iota ка\iota \pi\epsilon\rho\iota \tauоv
\tau\omega\nu \deltal\epsilon\lambda0\epsilon\iota\nu. \epsilon\sigma\taul y \alpha\rho
[\alpha]}\rhoX\alpha\iotaо\tau\alpha\tau\alpha \mu\epsilon\nu \tau\omega

```

```

    [\delta]v\nu\alpha\sigma\tau\epsilon\iota\alphas \epsilonX0\nu\tau\alpha >
    270 [\Sigma]kv0\alphal к\alpha\iota \Theta\rho\alphaк\inS к\alpha\iota
[\Pi\epsilon]\rho\sigma\alpha\iota. \tauv\gamma\chi\alpha\nuоv\sigma\iota \delta ov
[\tauOו] }\mu\epsilon\nu a\pi\alpha\nu\tau\epsilons \eta\mu\iota

```

```

    [\pio]\lambdals \pi\rhoos \alpha\pi\alpha\nu\tau\alphas
    275 [Tov]Tous \deltaı\alphaкı\nu\deltauv\inv
[\sigma\alpha]\sigma\alpha\cdot к\alphaוто\iota \tau\iota \lambdaо\iota\piо\nu
[\epsilon\sigma]\tau\alphal \tauols \alpha\nu\taul\lambda\epsilon\gamma[0'\nu\sigma\iota\nu
[\eta]\nu \epsilon\pi\iota\delta\epsilon\iotaX0\omega\sigma\iota \tau\omega\nu
[\mu]\epsilon\nu E\lambda\lambda\eta\nu\omega\nu ol }\mu
280 [\deltav]\nu\alpha\mu\epsilon\nu 0}\mp@subsup{0}{}{0}\iota\tauv\gamma\mp@subsup{\chi}{}{\alpha
[\nu]\epsilon\iota\nu

```

```

    [\tau\epsilonS]. [\tau] }\omega\nu \delta\epsilon \beta\alpha\rho\beta\beta\alpha\rho\omega
    [o\iota \betaо]v\lambdaо\mu\epsilon\nuо\iota ка\tau\alpha
    $305\left[\begin{array}{lll}\mu \in \nu & \alpha\end{array}\right] \pi \alpha \nu$ то $\tau \omega \nu E \lambda \lambda \eta$
$\left[\begin{array}{lll}\nu \omega \nu & \gamma\end{array}\right] \in \nu 0 S^{*} \quad \delta i\left[\alpha \alpha^{2} \delta \epsilon \pi \rho o s\right.$
$\left[\eta \mu \alpha s \in \gamma^{\dagger} \kappa \lambda \eta \mu[\alpha \tau \alpha] \pi_{[0]}^{[ }{ }^{\dagger}\right.$
$\eta \sigma \alpha \mu \in \nu 01 \cdot \nu о \mu[$ [ $\}$
$\tau \epsilon \mathrm{\epsilon} \in[\boldsymbol{\tau}$ joutou रov $\tau[\rho o$
$310 \pi 0 v \pi[\rho o s] \mu \iota \alpha \nu \quad \mu \in \nu$ [ $\pi 0$
$\lambda \iota \nu \kappa \iota \nu \delta v\left[\nu \epsilon^{\prime} v \sigma \epsilon \iota \nu^{*} \alpha \pi \alpha\right.$
$\sigma \omega \nu \delta \epsilon \alpha \mu[\alpha] \kappa \rho \alpha \tau \eta \sigma \epsilon L \nu$.
ov $\mu \eta \nu \quad \kappa[\alpha \tau] \omega \rho \theta \omega \sigma \alpha \nu^{*}$
$\alpha \lambda \lambda \alpha$ тpos $\mu$ ovous tous
тols $\pi \epsilon \rho \iota \tau \omega \nu \pi \alpha \tau \rho \iota \omega \nu$

$\tau \alpha \pi \epsilon \iota \nu \eta$ s ov $\eta \mathrm{q}$ т $\eta \mathrm{s}$ E $\lambda$
$295 \lambda \alpha \delta o s ~ \eta \lambda \theta 0 \nu$ єוS $\tau \eta \nu X^{\omega}$
$\rho \alpha \nu \quad \eta \mu \omega \nu \quad \Theta \rho \alpha \kappa \in S \quad \mu \epsilon \nu$
$\mu \in \tau$ Еvцодтои тои По
$\sigma \iota \delta \omega \nu \rho s . \sum \kappa v \theta \alpha \iota \delta \epsilon \mu \epsilon$
$\tau A \mu \alpha\} \circ \nu \omega \nu \tau \omega \nu A \rho \epsilon$
$3 \circ 0$ $\omega s$ $\theta v \gamma \alpha \tau \epsilon \omega \nu$. ov $\kappa \alpha$
[ $\tau \alpha$ тov] autov Xpovov.

[катє] $\rho \circ \iota \tau \eta s$ Eupшा $\eta s$

$315 \pi \rho o \gamma o v o u s ~ t o u s ~ \eta \mu \epsilon$
$\tau \epsilon \rho \circ v s \quad \sigma v \mu \beta \alpha \lambda о \nu \tau \epsilon s$.
о $\mu \circ \iota \omega s \delta_{\iota} \epsilon \phi \theta \alpha \rho \eta \sigma \alpha \nu$.
$\omega[\sigma \pi \epsilon \rho \quad \alpha \nu \in \ell \pi \rho o s \quad \alpha \pi \alpha \nu$
$\tau \alpha s$ av $\theta \rho \omega \pi$ ous $\epsilon \pi \circ$

$\mu \in \gamma \in \theta$ os $\tau \omega \nu$ как $\omega \nu$
$\tau \omega \nu \quad \gamma \in \nu O \mu \epsilon \nu \omega \nu \quad \epsilon \kappa \in \iota$
av
vols. ov $\gamma \alpha \rho \cdot \pi 0 \theta$ ol $\lambda$ oyoı
${ }^{1} 5 \pi \rho o y o v o u s ~ t o u s ~ \eta \mu \epsilon$
$\tau \epsilon \rho 0 v s \quad \sigma \nu \mu \beta \alpha \lambda о \nu \tau \epsilon s$.
o $\mu \circ \omega \omega s$ ठ $\epsilon 申 \phi \alpha \rho \eta \sigma \alpha \nu$.
$\omega[\sigma \pi \epsilon \rho \alpha \nu \in l \pi \rho o s \quad \alpha \pi \alpha \nu$
$\tau \alpha s$ av $\theta \rho \omega \pi$ ous $\epsilon \pi \circ$
$320 \lambda \epsilon \mu \eta \sigma \alpha \nu . \delta \eta \lambda o \nu \delta \in \tau о$
$\mu \in \gamma \in \theta$ os $\tau \omega \nu \quad \kappa \alpha \kappa \omega \nu$
$\tau \omega \nu \quad \gamma \in \nu O \mu \epsilon \nu \omega \nu \quad \epsilon \kappa \in \iota$


## Col．xxiv．

$\left.\pi \epsilon \rho \iota \quad \alpha_{\llcorner } v \tau\right] \omega \nu$ тобоитоע $\chi$ Х $\rho$

## $\mu \eta$

325 vov $\delta \iota \epsilon \mu \in l \nu \alpha \nu$ ．єl каl
$\llbracket \mu \eta \rrbracket \tau \alpha \pi \rho \alpha \chi \theta \epsilon \nu \tau \alpha$ $\pi \circ \lambda v$ $\tau \omega \nu \quad \alpha \lambda \lambda \omega \nu \quad \delta[\iota] \eta \nu \epsilon \gamma \kappa \epsilon \nu$. $\lambda \epsilon \gamma \epsilon \tau \alpha \iota$ § ovv $\pi \epsilon \rho \iota \quad \mu \in \nu \quad \S 7 \circ$ $A \mu \alpha\} \circ \nu \omega \nu$ $\omega s \tau \omega \nu \quad \mu \epsilon \nu$
$33^{\circ} \in \lambda \theta o v \sigma \omega \nu$. ov $\delta \epsilon \mu \iota \alpha \pi \alpha$ $\lambda \iota \nu \quad \alpha \pi \eta \lambda \theta \epsilon \nu^{\cdot}[\alpha] \iota \delta \epsilon \quad v \pi 0 \lambda \epsilon \iota$ $\phi \theta \epsilon \epsilon \sigma \alpha \iota \cdot \delta i \alpha \alpha] \eta[\nu] \epsilon \nu \theta a \delta \epsilon$ $\sigma v \mu \phi \circ \rho[\alpha \nu \quad \epsilon] \kappa \quad \tau \eta s \llbracket \epsilon \xi] \alpha \rho$ $\chi \eta S \quad \epsilon \xi \epsilon \beta \lambda[\eta \theta] \eta \sigma \alpha \nu \cdot \pi \epsilon \rho \iota$
$335 \delta \epsilon \Theta \rho \alpha к \omega \nu$ оть тоע $\alpha \lambda \lambda$ о
 оккоข้тєs $\eta \mu \iota \nu$ ．$\delta \iota \alpha$ т $\eta \nu$ тотє $\gamma \epsilon \nu 0 \mu \epsilon \nu \eta \nu \quad \sigma \tau \rho \alpha$ $\tau \epsilon \iota \alpha \nu$ रoбovтov $\delta_{\iota \epsilon \lambda \iota>}>$
$340 \pi 0 \nu . \omega \sigma \tau \epsilon \epsilon \nu \tau \omega \mu \epsilon \tau \alpha$ $\xi v \tau \eta s \chi^{\omega \rho \alpha s} \epsilon \theta \nu \eta \pi o \lambda$ $\lambda \alpha$ ．кає $\gamma \in \nu \eta \pi \alpha \nu \tau 0 \delta \alpha \pi \alpha$ ． $\kappa \alpha \iota \pi o \lambda \epsilon[l] s \quad \mu \epsilon \gamma \alpha \lambda \alpha s$ к $\alpha$ тоıкı $\sigma \theta \eta \nu \alpha[\cdot]$ тоит $\omega \nu$
$345 \delta \epsilon$ ov $\tau \omega[s] \epsilon \chi \circ \nu[\tau \omega] \nu$ ov $\kappa$ ок $\nu \eta \tau[\epsilon] o \nu \quad \epsilon \sigma \tau[l] \pi \epsilon \rho \iota$ $\left.\tau \omega \nu \quad v \pi o \lambda o l \pi \omega_{\llcorner } \nu\right] \quad \epsilon \iota \pi \epsilon \iota \nu$ $\alpha \delta \eta \sigma v \mu \phi \epsilon \rho \epsilon \tau$ тоוs $\pi \rho \alpha$ $\gamma \mu \alpha \sigma \iota \nu \quad \mu \nu \eta \sigma \theta \eta \nu \alpha \iota>$
$350 \pi \epsilon \rho \iota \alpha v \tau \omega \nu$ к $\alpha \lambda a \mu \in v$ ovv каı $\tau \alpha v \tau \alpha \quad \kappa \alpha \iota \pi \rho \epsilon \pi \diamond[\nu] \tau \alpha$ тots $\left.\pi \epsilon \rho \iota \quad \tau \eta S \quad \eta \gamma \epsilon^{\prime} \mu\right] 0 \nu \iota$ as $\alpha \mu \phi \iota \sigma \beta \eta \tau 0 v \sigma \iota[\nu] \alpha$ $\delta \epsilon \lambda \phi \alpha \quad \delta \epsilon \tau \omega \nu \quad \epsilon \iota \rho \eta[\mu] \epsilon$
$355 \nu \omega \nu$ к $\alpha \iota \tau \alpha \operatorname{\tau o\iota \alpha v[\theta }$ o七 $\alpha$

Col．xxv．
$\kappa \iota \nu \delta \nu \nu \omega[\nu$ $\epsilon \varsigma$ тоv autov X $\rho 0 \nu 0 \nu \sigma v \mu \pi \epsilon \sigma o \nu \tau \omega \nu$
$3^{6} 5 \mathrm{~K} \alpha \iota \tau \omega \nu \quad \mu \epsilon[\nu \pi o \lambda \epsilon \mu \iota$ $\omega \nu \alpha \nu v \pi \sigma^{\sigma} \sigma \tau \alpha \tau \omega \nu$ oוo $\mu \in \nu \omega \nu \quad \epsilon \iota \nu \alpha \iota \delta \iota \alpha$ то $\pi \lambda \eta \theta_{0}$ ．$\tau \omega_{\ell}^{\top} \nu \quad \delta \epsilon \sigma v \mu \mu \alpha$ $\chi^{\omega \nu} \quad \alpha \nu v \pi[\epsilon \rho \beta \lambda \eta \tau o \nu$
$37 \circ \eta[\gamma] 0 v \mu \in \nu \omega[\nu \in X \in \iota \nu \tau \eta \nu$ $\alpha \rho \epsilon \tau \eta \nu . \alpha \mu \mu^{\prime} \phi о \tau \epsilon \rho \omega \nu$
$\left.\kappa_{i} \rho\right] \alpha \tau \eta \sigma \alpha \nu \tau[\epsilon S$ 由S $\epsilon \kappa \alpha$
$\tau \epsilon \rho \omega \nu \quad \pi \rho o[\sigma \eta \kappa \epsilon \nu \kappa \alpha \iota$
$\pi \rho o s \quad \alpha \pi \alpha \nu[\tau \alpha s$ tous
375 Kı $\nu \delta u v 0 v[s \quad \delta \iota \in \nu \in \gamma$ коvтєs．$\epsilon v[\theta u s \quad \mu \in \nu$ $\tau \omega \nu \quad \alpha \rho \iota \sigma \tau[\epsilon \epsilon \omega \nu \quad \eta \xi \iota$ $\omega \theta \eta \sigma \alpha \nu$ o［ $v \pi 0 \lambda \lambda \omega$ $\delta v \sigma \tau \epsilon \rho \circ \nu \tau[\eta \nu \quad \alpha \rho \times \eta \nu$ $380 \tau \eta s \quad \theta \alpha \lambda \alpha \tau \tau \eta s \in \lambda \alpha \beta o \nu$ $\delta_{0 \nu}[\tau] \omega \nu \quad \mu_{[ }^{\top} \epsilon \nu \quad \tau \omega \nu \quad \alpha \lambda$ $[\lambda \omega \nu] E \lambda \lambda \eta \nu^{\circ} \omega \nu$ ov $\left[\begin{array}{ll}\kappa & \alpha \mu\end{array}{ }^{\top} \phi \iota \sigma \beta{ }^{\prime}[\tau 0 v \nu \tau \omega \nu\right.$ $[\delta \epsilon \tau \omega] \nu \nu v \nu[\eta \mu \alpha s \alpha$
$3^{85}[\phi \alpha \iota \rho \epsilon] \iota \sigma \theta \alpha[\iota$ § $\eta \tau \circ v \nu$ $[\tau \omega] \nu^{\bullet} k \alpha \iota \mu[\eta \delta \epsilon \iota S$ o七
$\epsilon \sigma \theta \omega \mu \epsilon \alpha \underset{[\nu}{[\nu O \epsilon L \nu} \quad$ o $\tau \iota \kappa \alpha[\iota] \Lambda \alpha \kappa \epsilon[\delta \alpha \iota \mu о \nu \iota$ o८ $\pi[\epsilon] \rho \iota ~ \tau o u[$ Tous $\tau 0 u s$ $\oint 7139 \circ$ kalpous $\pi[0 \lambda \lambda \omega \nu$ $[\alpha \gamma \alpha] \theta \omega \nu$ alt $10 \iota$ тots
$[E \lambda \lambda] \eta \sigma \iota \kappa \alpha \tau[\epsilon \sigma \tau \eta \sigma \alpha \nu$ $[\alpha \lambda \lambda] \alpha$ סı $\alpha$ रто тоито $[\kappa \alpha \iota$ $[\mu \alpha] \lambda \lambda o \nu \quad \in \pi \alpha \iota[\nu \in \iota \nu$
$\pi \epsilon \rho$ єıкоs tous $\epsilon \kappa[\tau \omega \nu$
тоьout $\omega \nu \quad \gamma \in \gamma 0 \nu 0_{\mathrm{L}} \tau \alpha \mathrm{s}$
[s] ol $\pi \rho o s \quad$ a apeiov [אa]!
ミ $\epsilon \rho \xi \eta \nu \pi \sigma \lambda \epsilon \mu \eta \sigma \alpha[\nu \tau] \epsilon \varsigma$
$360 \epsilon \pi \rho \alpha \xi \alpha \nu \cdot \mu \epsilon \gamma เ \sigma \tau 0 v \gamma \alpha[\rho$
$\epsilon \kappa \epsilon \iota \nu 0 \nu \pi 0 \lambda \epsilon \mu$ оv $\sigma v$
$\sigma \tau \alpha \nu \tau о \varsigma . к \alpha \iota \pi \lambda \epsilon \iota \sigma \tau \omega \nu$

Col. xxviii.
[ $\epsilon \sigma \kappa о \pi o v v$ or] $] \omega s$ акрь [ $\beta \omega \mathrm{\omega}$ к $\alpha \iota \kappa \alpha \lambda \omega s] \epsilon \xi \circ \geqslant>$
405 [ $\sigma \iota \nu$ ovX ovt $\omega$ tous] $\pi \epsilon$ $\left[\begin{array}{llll}\rho \iota & \tau \omega \nu & \iota \delta \iota \omega \nu & \sigma v\end{array}\right] \mu \beta o$
$[\lambda \alpha \iota \omega \nu$ $\omega s$ rous $\pi \epsilon] \rho \iota \tau \omega \nu$ $\left[\kappa \alpha \theta\right.$ єкабт $\left.{ }^{\prime} \nu \quad \tau \eta\right] \nu \quad \eta \mu \epsilon$ [ $\rho \alpha \nu \quad \epsilon \pi \iota \tau \eta \delta \epsilon \nu \mu \alpha \tau^{\top} \omega \nu$.

410

$\oint 7^{8}$
${ }^{15} \lambda \alpha \mu \eta \lambda \nu \mu\left[\epsilon^{\prime} \omega \nu \in s\right.$; $\alpha \pi o$
$\kappa \alpha \lambda \epsilon \iota\left[\begin{array}{lll}\sigma \theta \alpha \iota & \tau \omega\end{array}\right] \pi \underset{\sim}{\pi} \epsilon \epsilon[l \nu \quad \epsilon$
$\pi \rho o \sigma \alpha[\gamma \circ \rho \epsilon] \cup[0] \mu \in[\nu O L \quad \tau \alpha S$
$\pi o \lambda \epsilon ו S \quad \alpha \lambda \lambda\left[{ }^{\circ} \alpha \quad \mu \eta\right] \beta \iota \alpha[\kappa \kappa$
$\tau \alpha \sigma \tau \rho \epsilon \phi о \mu \in \nu 0{ }^{\circ} \pi \iota \sigma \tau$
420 тєpols $\mu \in \nu$ tols 入oyois $\eta$
[к] $\alpha \iota \nu v \nu$ тоוs оркоוs Хр" $\omega$
[ $\mu \epsilon$ ] $\nu 0$ : $\tau \alpha เ s ~ \delta \epsilon ~ \sigma v \nu \theta \eta$
[kal]s $\omega \sigma \pi \epsilon \rho$ аע $\alpha \gamma \kappa \alpha \iota s$
$[\epsilon \mu] \mu \epsilon \nu \epsilon \epsilon \nu] \alpha \xi[\iota] \quad \nu \nu \tau \epsilon[s$
425 ovX [ov $\omega \bar{\omega} \epsilon \pi l] \tau \alpha<\downarrow$ $\delta \nu \nu\lceil a \sigma \tau \epsilon \iota \alpha / S$

11 lines lost.
[avtaıs] $\delta$ lavol $\alpha \iota s$ Xp $\omega$
$[\mu \epsilon \nu 0] \iota$ ка[l Tous $\nu \in \omega^{[ } \tau \epsilon$
440 [pous $\epsilon] \nu \tau[$ oloviol]s $\eta \theta \epsilon$ $\left[\sigma \iota \pi \alpha \iota \delta_{,} \epsilon v o v v^{\prime} \tau \epsilon\right.$ o]ut $\omega s$
[ $\alpha \nu \delta \rho \alpha s$ ] $a \gamma \alpha \theta[0 u s \quad \alpha] \pi \epsilon \delta \epsilon l$
[ $\xi \alpha \nu \quad \tau 0 v] s \pi o \lambda \epsilon[\mu \eta]^{\dagger} \sigma \alpha \nu$
[ Tas $\pi \rho o$ ]s tous $\epsilon \kappa$ т $\eta \mathrm{S}$
445 [A $A l \alpha \varsigma \quad \omega] \sigma \tau \epsilon \mu \eta[\llbracket \theta]] \epsilon \nu \alpha$
$[\pi \omega \pi o] \tau \epsilon \delta v \imath \eta \theta \eta \nu \alpha \iota$

# $[\pi \epsilon \rho \iota \alpha v] \tau \omega \nu \quad \mu \eta \tau \epsilon \tau \omega \nu$ <br> $[\pi o \iota \eta \tau \omega] \nu \mu \eta \tau[\epsilon] \tau \omega \nu$ <br>  <br> $45^{\circ}[\pi \rho \alpha \gamma \mu \epsilon] \nu \omega \nu \quad[\epsilon] \iota \pi \epsilon\left[l^{\prime} \nu\right.$ 

Col. xxx .


Col. xxxii.

Col. xxxi.
$[\lambda \epsilon] \nu \tau \eta \sigma \alpha \iota \epsilon \nu \quad \alpha \lambda \lambda \alpha \quad \tau \omega \nu \quad \oint 84$ $[\alpha \nu \tau] \omega \nu \quad[\tau] 0 \iota s \in \kappa \quad \tau \omega \nu \quad \theta \epsilon \omega \nu$ $[\gamma \in \gamma o] \nu o \sigma \iota \nu$ каı ка入ov $460[\mu \in \nu 0 l] s \quad \eta \mu i \theta \epsilon o l s \quad \alpha \xi t$ $[\omega \theta \epsilon \iota \epsilon]^{\top} \nu^{\bullet}$ каı $\gamma \alpha \rho$ єкєl [ $\nu 01]$ $\tau \alpha \mu \in \nu \quad \sigma \omega \mu \alpha \tau \alpha$ [ $\tau$ ]als $\tau \eta s \quad \phi v \sigma \epsilon \omega s$ avay [k] $\alpha \iota S ~ \alpha \pi \epsilon \delta \circ \sigma \alpha \nu \quad \tau \eta S ~ \delta ~ \alpha$ 465 [ $\rho \epsilon] \tau \eta \rho$ a $\theta \alpha \nu \alpha \tau о \nu \tau \eta \nu$ $[\mu] \nu \eta \mu \eta \nu \quad \epsilon \pi o \iota \eta \sigma \alpha \nu$. $[\alpha \epsilon l] \mu \in \nu$ ouv ol $\theta[\eta \mu] \epsilon$ [ $\tau \in \rho \circ \iota]$ троуоvoь кає $\Lambda \alpha$ $[\kappa \in \delta \alpha \iota] \mu o \nu \iota o \iota \phi i \lambda o \tau \iota$ $470[\mu \omega s \pi \rho]$ ]s $\alpha \lambda \lambda \eta \lambda$ ous $[\epsilon \iota X o \nu \quad o] v \quad \mu \eta \nu \quad \alpha[\lambda \lambda \alpha$
 фpovๆ] $\sigma a v \tau \epsilon s$ a $\pi \eta v \tau[\omega v]$
$\oint 8_{4} \quad[\pi 0 \lambda \epsilon] \mu \circ \nu$ © $\delta \iota 0 \nu \pi 0 \iota \eta \sigma \alpha$
$\epsilon \xi$
) $[\mu \in \nu]$ ol $\pi$ गos tovs $\alpha \pi \alpha>$
[a]
$\sigma \eta s \tau \eta s$ E $\lambda \lambda[\alpha \delta o s \kappa \alpha] \tau \alpha$
500 ф $о \nu \eta \sigma \alpha \nu[\tau \alpha s \tau \eta] \nu$ o८
$\kappa[\epsilon \iota \alpha] \nu \delta \nu \nu \alpha[\mu \nu \nu \epsilon] X^{\circ} \nu$
$\tau \in S \quad \alpha[\pi \eta \nu] \tau \omega[\nu] \quad 0 \lambda![\gamma] \rho[\iota$
$\pi \rho o s[\pi o \lambda \lambda \alpha s] \quad \mu \nu[\rho \iota \alpha \delta \alpha s$
$\omega \sigma \pi \epsilon[\rho \quad \epsilon \nu \quad a \lambda \lambda o \tau \rho \iota \alpha \iota s$
$505 \psi v \chi{ }^{\circ}$ is $\mu \epsilon \lambda \lambda 0 \nu \tau \epsilon s$
$\kappa \iota \nu[\delta u \nu \epsilon v \sigma \epsilon \iota \nu$ ol $\delta$ ov
$\kappa[\epsilon] \phi[\theta \alpha \sigma \alpha \nu \quad \pi v \theta o \mu \epsilon \nu o \iota$
$\tau[0 \nu \pi \epsilon \rho \iota \quad \tau \eta \nu \quad A \tau \tau \iota \kappa \eta \nu$
$\pi \rho[\lambda \epsilon \mu \circ \nu$ к $\alpha \iota \pi \alpha \nu \tau \omega \nu$
$510 \tau[\omega \nu \alpha \lambda \lambda \omega \nu \quad \alpha \mu \epsilon \lambda \eta \sigma \alpha \nu$
$[\pi \epsilon \rho \iota \kappa \alpha] \lambda \lambda \iota \sigma \tau \omega[\nu \quad \epsilon \nu \in$ [кelrors] Tols $\chi$ [povors $\epsilon$ [ $\phi \iota \lambda 0 \mathrm{l} \ell] \kappa \eta \sigma[a \nu$ ouk $\epsilon \mathrm{X}$ 475 [ $\theta \rho 0]$ us. $\alpha[\lambda \lambda \alpha \nu \tau \alpha \gamma \omega \nu / \sigma$ [ $\tau \alpha s]$ $\sigma \phi \alpha s[\alpha v] \tau o v[s$ etval [ $\nu o \mu i$ ' $\left.\delta o \nu_{[ }^{\prime} \tau \epsilon S\right]$. ov $\delta \epsilon \epsilon \in[\pi \iota$ סov
$\left[\begin{array}{ll}\lambda \epsilon \iota \alpha & \tau\end{array}\right] \eta^{\imath} \tau \omega[\nu \quad E] \lambda \lambda \eta \nu[\omega \nu$ тov $\beta \alpha \rho \beta[\alpha \rho] o v \quad \theta \epsilon[\rho \alpha \pi \epsilon v$ 480 [o] $\nu \tau \epsilon s . \alpha \lambda \lambda[\alpha] \pi[\epsilon \rho \iota \quad \mu \epsilon \nu$ $[\tau] \eta s$ кolv $\eta \eta]$ s $\sigma[\omega \tau \eta \rho \iota \alpha s$ [оно’ $\nu 0 o v[\nu] \tau \epsilon[s$ ототє
 $[\nu \eta \sigma]$ ovт $\alpha \iota . \pi \in \rho[\iota$ тоитоv 485 [motov] $\mu \in \nu 0 \iota \quad \tau \eta[\nu \quad \alpha$ $[\mu i \lambda \lambda] \alpha \nu^{\cdot} \epsilon \pi \epsilon \delta \epsilon \iota \xi \_\alpha \nu \tau o$ $[\delta \epsilon \tau \alpha S]$ avt $\omega \nu \in \nu \psi v$ [Xıas] $\pi \rho \omega \tau o \nu \quad \mu \in \nu \in \nu$ [roıs v] $\pi$. $\Delta \alpha \rho \epsilon$ ove $\pi_{i}^{r} \epsilon \mu$ $490[\phi \theta \epsilon \iota \sigma] \iota^{*} \alpha \pi o \beta \alpha \nu \tau \omega \nu$ $[\gamma \alpha \rho \alpha \nu \tau \omega] \nu$ єis $\tau \eta \nu A \tau$ $\left[\begin{array}{lll}\tau \iota \eta \nu & \text { ol] }] & \mu \epsilon \nu \text { ov } \pi \epsilon \rho \iota\end{array}\right.$ $[\epsilon \mu \epsilon \iota \nu \alpha \nu]$ โंO] $v s \quad \sigma[v\rceil \mu \mu \alpha$ [Xous $\alpha \lambda \lambda \alpha] \tau[o] \nu \kappa[o \iota \nu \circ \nu$

## Col. xxxiii.

$535 \kappa เ \nu \delta[\nu] \nu \omega \nu$, ot $\delta \epsilon \phi \theta \eta \nu \alpha \iota$ $\sigma v \mu[\beta] \alpha \lambda$ ovt $\epsilon$ s $\pi \rho I \nu \in \lambda$ $[\theta \epsilon \iota \nu]$ rous $\beta$ oŋ $\theta \eta \sigma \sigma \nu>$ $[\tau \alpha S \mu \epsilon] \tau \alpha$ סє $\tau \alpha u \tau \alpha \quad \gamma \epsilon$ [ $\nu 0 \mu \epsilon \nu \eta] s$ $\tau \eta S$ v $v \tau \epsilon \rho o \nu$
540 [ $\sigma \tau \rho \alpha \tau \epsilon \iota \alpha s \eta^{7} \nu$ avtos ヨ $\epsilon \rho$ $[\xi \eta S \quad \eta \gamma \alpha \gamma \epsilon \nu \quad \epsilon] \kappa \lambda \iota \pi \omega \nu>$
[ $\tau \in s \quad \eta \kappa o \nu \quad \eta \mu \nu \nu \quad \alpha \mu v$ ]

[ $\pi o \iota \eta \sigma \alpha \mu \in \nu 0]!$ $\sigma \pi \rho[v$
$[\delta \eta \nu \quad \sigma \sigma \eta \nu \quad \pi \epsilon] \rho \alpha \nu \tau i \eta s$
 $\left[\begin{array}{lll}\mu \epsilon \nu \eta S & \sigma \eta\end{array}\right] \mu \epsilon \iota \nu \nu \quad \delta[\epsilon$
 $\left[\mu l \lambda \lambda \eta S^{\circ}\right.$ rous $\mu \in \nu \quad \gamma \alpha[\rho$
[ $\eta$ ] $\mu \in \tau \epsilon \rho \circ$ ev $\pi \rho \circ \gamma 0 v o v[s$
 $\left.\rho^{\prime} \alpha s \pi v\right] \theta \epsilon \sigma \theta \alpha \iota \quad \tau[\epsilon] \tau \eta \nu>$ $\alpha_{-} \pi \circ \beta \alpha_{j} \sigma \iota \nu \quad \tau \eta \nu \tau \omega \nu \quad \beta \alpha \rho$
$\beta[\alpha \rho \omega \nu] \kappa \alpha \iota \beta o \eta \theta[\eta \sigma][[0]]^{\nu}$ $\tau \alpha$ 's $\epsilon \pi l$ ] tous opous $\tau \eta S$
 $\tau \alpha s \quad \tau[\rho o]^{\circ} \pi \alpha l\left[\begin{array}{ll}o v & \sigma \tau \eta \eta^{\prime} \sigma \alpha l>\end{array}\right.$ $\tau \omega \nu \pi o \lambda \epsilon \mu[\iota \nu \nu$ tous $\delta \epsilon \nu$ $\tau \rho \iota \sigma \iota \nu \quad \eta \mu[\epsilon \rho \alpha \iota$ к кає то баvтаıs $\nu v \xi \iota$ дıако
530 $\sigma \iota \alpha$ к $\alpha \iota \quad \chi[\lambda \iota \alpha \quad \sigma \tau \alpha \delta \iota\} \alpha \delta^{\prime} \iota$ $\epsilon \lambda \theta \epsilon \iota \nu \quad \sigma[\tau \rho \alpha \tau о \pi \epsilon \delta] \omega^{\iota} \pi 0$ $\rho \in \cup о \mu \in \nu \circ v[s]$ ov $\tau \omega][s]$ $\left.[\sigma \phi 0] \delta \rho^{\prime}[\alpha]\right] \eta \pi \epsilon \iota X \theta \eta \sigma \alpha \nu$ $\left[\begin{array}{ll}o \iota & \mu \epsilon]^{\prime} \nu\end{array}\right][\mu] \epsilon \tau \alpha \sigma \chi \epsilon \iota \nu \quad \tau \omega \nu$

Col. xxxiv.
$\nu 0 \nu . \alpha \pi\left[\eta \nu \tau \omega \nu \quad \delta_{1 \epsilon \lambda} \neq \mu \epsilon\right.$ vol тov [кıขסuvov $\Lambda \alpha \kappa \epsilon$
575 סal $\mu[0 \nu t o l ~ \mu \epsilon \nu$ єls $\Theta \epsilon p$ $\mu \circ \pi v \lambda \alpha$ s $\pi \rho o s$ тo $\pi \epsilon S \circ \nu$ $X \iota \lambda \operatorname{lov}[s$ avt $\omega \nu \quad \epsilon \pi i \lambda \epsilon$ $\xi \alpha \nu \tau \epsilon s . \kappa \alpha[l \tau \omega \nu \quad \sigma \nu \mu$

$\left[\begin{array}{lll}\mu \in \nu & \tau \alpha & \beta \alpha \sigma \iota \lambda \epsilon \iota \alpha]\end{array} \sigma \tau \rho \alpha \tau \eta\right.$ ［yos $\delta \in$ кат $\alpha \sigma \tau \eta] \nu \alpha \iota$ ro入
［ $\mu \eta \sigma \alpha s$ a $\pi \alpha \nu \tau \alpha s] \delta \epsilon$ tovs

［ $\rho a s \quad \pi \epsilon \rho \iota$ ov $\tau \iota s$ ov］$\chi \chi$
$[\pi \epsilon \rho \beta 0 \lambda \alpha s \quad \pi \rho o \theta v \mu] \eta$

5 lines lost
$\sigma[\alpha] \sigma[\theta] \alpha \iota . \beta o u \underset{\sim}{[ } \eta \theta] \epsilon \iota$［ $\delta \epsilon$
$555 \tau\left[0 \iota^{\top}\right.$ оvто $\mu \nu[\eta] \mu \epsilon[\iota 0] \nu>$
$\kappa \alpha \tau \alpha \lambda \iota \pi \epsilon \iota \nu$ о $\mu \eta \tau \eta s$
$\alpha \nu \theta \rho \omega \pi \iota \nu \eta s \quad \phi \nu \sigma \epsilon \omega[s$
$\left.\epsilon_{[ }^{[ } \rho \gamma\right] \rho, \varphi \in \sigma \tau \iota \nu$ ov $\pi \rho \circ \tau \epsilon$
$\rho[0] \nu \in \pi \alpha \nu \sigma \alpha \tau o \quad \pi \rho \iota \nu \in$
$560 \xi \epsilon v \rho \epsilon \nu$ к $\alpha \iota$ $\sigma v \nu \eta \nu \alpha \gamma \kappa \alpha$
$\sigma \epsilon \nu \circ \pi \alpha \nu \tau \epsilon[s] \quad \alpha \nu \theta \rho \omega \pi o \iota$
Ө $\rho v \lambda o v \sigma \iota \nu . \omega[\sigma] \tau \epsilon \sigma \tau \rho \alpha$
$\tau о \pi \epsilon \delta \omega^{\iota} \pi \lambda \epsilon[v \sigma] \alpha \iota \quad \mu \epsilon \nu$
$\delta \iota \alpha[\tau] \eta S \quad \eta \pi \epsilon \iota[\rho o v] \pi \epsilon \xi \epsilon v$


$\zeta \epsilon v \xi \alpha s . \operatorname{\tau o\nu } \delta \epsilon A \theta \omega \delta_{\iota}$
［op］v乡as．$\pi \rho o s$ $\delta \eta$ Tov ov
［ $\tau \omega] \mu \epsilon \gamma \alpha$ фро $\eta \sigma \alpha \nu \tau \alpha$
570 к $\alpha \iota ~ \tau \eta \lambda \iota к \alpha \nu \tau \alpha \quad \delta \iota \alpha \pi \rho \alpha$ $\xi \alpha \mu \epsilon \nu 0 \nu$ к $\alpha \iota$ тобоv＞
$\tau \omega \nu \quad \delta \epsilon \sigma \pi o \tau \eta \nu \quad \gamma \in \nu 0 \mu \epsilon$
$580 \lambda \alpha \beta o[\nu] \tau \epsilon S[\omega S \in \nu$ Tols $\sigma \tau \epsilon[\nu 0 \iota] s \kappa \omega[\lambda \nu \sigma 0 \nu \tau \epsilon S$ $\alpha v[$ Tovs $] \pi \epsilon \rho[\alpha l \tau \epsilon \rho \omega \pi \rho o$ $[\epsilon \lambda \theta \epsilon \iota \nu]$ o！$\delta$ 「 $\eta \mu \epsilon \tau \epsilon \rho \circ \iota$ $[\pi \alpha \tau \epsilon \rho \epsilon \varsigma] \in \pi[A \rho \tau \epsilon \mu \iota \sigma \iota$ ıo lines lost
$595[\rho \alpha \theta \omega \nu \iota \mu \alpha] X \eta s^{*} \kappa \alpha[\iota \quad \zeta \eta$ $[\tau 0] v v[\tau \epsilon S \alpha]$ vTous $[[[\alpha \nu \tau o]<s]] \alpha[v] \tau[0 v] \mathrm{s}$ $\epsilon \xi \iota \omega \omega \sigma[a$, $[\epsilon] \xi \quad \iota \sigma o[v \quad \kappa] \alpha \tau \alpha \sigma \tau \eta \sigma \alpha \iota>$ $[\kappa \alpha l] \delta \in \delta \iota o \tau \epsilon S \quad \mu \eta \delta[\llbracket] \in \llbracket \Phi \rrbracket]$ $\left.{ }^{[ } \phi \epsilon \xi \eta \eta \quad \eta\right] \pi 0 \lambda \iota s \quad \eta \mu \omega \nu$
$600 \alpha \iota \tau \iota \alpha[\gamma \in \nu \eta] \tau \alpha \iota$ тols $E \lambda$ $[\lambda] \eta \sigma \iota \tau[\eta s \quad \sigma \omega \tau \eta] \rho \iota \alpha s^{*} \circ[\iota$ ［ $\delta$ ］$\eta \mu \epsilon \tau \epsilon \rho[0 \iota] \pi \rho о \gamma о \nu 0 \iota$ $\mu \alpha \lambda \iota \sigma \tau \alpha \quad \mu \in \nu$ 及ov $\lambda o>$ $\mu \in \nu 0 \iota \delta \iota \alpha \phi \nu \lambda \alpha \xi \alpha \iota \tau \eta \nu$ 605 тapoua ${ }^{\text {av }} \delta 0 \xi \alpha \nu \quad \kappa \alpha \iota \pi \alpha \sigma \iota$ $\left.\pi o_{\llcorner }{ }^{〔} \eta \eta_{j}\right] \sigma \alpha \iota \quad \phi \alpha \nu \epsilon \rho 0 \nu$ oт $[\kappa] \alpha \iota \pi \rho о \tau \epsilon \rho \circ \nu \quad \delta \iota \quad \alpha \rho \epsilon \tau \eta \nu$ $[\alpha] \lambda \lambda$ ov $\delta \iota \alpha \tau v \chi \eta \nu \quad \epsilon \nu \in \iota$ $\kappa \eta[\sigma] \alpha \nu \cdot \epsilon \pi \epsilon \iota \tau \alpha \quad \delta \epsilon \quad \kappa \alpha \iota$

Col．$x \times x v$ ．

610 $\kappa$［ $[\alpha \delta \epsilon \kappa \alpha \tau \alpha \pi \lambda \epsilon v \sigma \alpha \nu$
$\tau[\epsilon S$ ovt $\omega s \in \beta$ ov $\lambda \epsilon v$ $\sigma \alpha[\nu \tau 0 \quad \pi \epsilon \rho \iota \tau \omega \nu \lambda o \iota \pi \omega \nu$ $\omega \sigma[\tau \epsilon \pi o \lambda \lambda \omega \nu$ avzols
\kappa\alpha[\iota к\alpha\lambda\omega\nu \pi\rhoоєl\rho\gamma\alpha
615 \sigma\mu[\epsilon\nu\omega\nu . . . . . . . . .
\epsilon\nu [\tauols \tau\epsilon\lambda\epsilonu\tau\alphalols
\tau\omega[\nu к\iota\nu\deltav\nu\omega\nu \epsilon\tau\iota \pi\lambda\epsilon\sigma\nu
\deltai\eta[\nuє\gammaка\nu a0\nu\mu\omegas$\oint 93$
\gamma\alpha[\rho \alpha\pi\alpha\nu\tau\omega\nu \tau\omega\nu \sigma\nu\mu
620 \mu\alpha[X\omega\nu \delta\iotaакє\iota\mu\in\nu\omega\nu
\kappa\alpha\iota [П\epsilon\lambdaо\piо\nu\nu\eta\sigma\iota\omega\nu
\mu\in\nu [\delta\iotaa\tau\epsilon\X\}O\nu\tau\omega\nu
\tauo[\nu I\sigma0\mu

```

Col. xliv.
\([\tau \iota \alpha \nu \in Х 0 \nu \tau \omega],{ }_{[}^{[} \alpha \iota \tau \circ \iota\) \(625[\beta o v \lambda 0 \mu \epsilon \nu 0 \iota \pi] \lambda \in o[\nu \epsilon\) \([\kappa \tau \in \iota \nu\) ovk \(\alpha] \nu \quad \delta \eta \pi o v>\) \(\left[\begin{array}{lll}\tau \eta S & \mu \in \nu & \Sigma\end{array}\right] \kappa \iota \omega \nu \alpha \iota \omega \nu\) \([\gamma \eta s \in \pi \epsilon \theta \nu]^{\dagger} \mu \eta \sigma \alpha \mu \epsilon \nu\) [\(\eta \nu\) П \(\Pi \alpha \tau \alpha \iota \epsilon \omega] \nu\) тo \([\iota s\) \(\omega s\)
630 [\(\eta \mu a s\) катафvуоvб \(\iota] \phi \alpha[\iota\)
 [\(\nu \circ \mu \in \theta \alpha \pi \alpha \rho a \delta o \nu] \tau \in S\)
 \(\left[\tau о \sigma \alpha \nu \tau \dot{\eta} \nu \delta \in \chi^{\omega \rho \alpha}\right] \nu\)
 \([\pi \alpha \rho \epsilon \lambda \iota \pi \sigma \mu \epsilon \nu \quad \eta \pi] \alpha \nu\)
 [ras av \(\eta \mu \alpha s\) єvtrop] \(\omega\)
635 [\(\tau \in\) pous \(\epsilon \pi 0 \iota \eta \sigma \in \nu \quad \tau] 0 \iota \quad \oint 110\)
 [ov \(\omega \omega \nu\) тolvvv \(\eta \mu]^{\top} \omega \nu\)
 \([\gamma \in \gamma \in \nu \eta \mu \in \nu \omega \nu \quad \kappa \alpha] \iota\)

Col. xlvi.
6 lines lost
[\(\tau 0 \cup s ~ \sigma \nu \mu \pi \epsilon] \nu \theta[\eta \sigma o \nu \tau \alpha s\)
\(\oint 109\)
. . . .
o[v \(\delta \iota \epsilon \xi \eta \lambda \theta 0 \nu\) ol rous
\(640 \mu \in \nu\) [a \({ }^{2} о \mu \omega \tau \alpha \tau .0 v s \pi \iota\)
бтот[atous єעоцı\}ov
\(\pi o v[s \quad \delta \epsilon \pi \rho o \delta o \tau a s ~ \omega \sigma\) \(\pi \epsilon \rho \in[v \in \rho \gamma \epsilon \tau \alpha S \in \theta \in \rho \alpha\) \(\pi \epsilon v[o \nu \quad \eta \rho o u v \tau 0 \quad \delta \epsilon \tau \omega \nu\)
\(645 \llbracket \nu] E \iota \lambda[\omega T \omega \nu \quad \epsilon \nu \epsilon \delta o v] \lambda \epsilon \nu\) \(\epsilon \iota \nu \quad \omega[\sigma \tau\) єIS \(\tau \alpha S \alpha \nu \tau] \omega \nu\)
\(\left.\oint 110 \quad \pi \alpha \tau \rho_{i} i \delta \alpha s v \beta \rho i \zeta \epsilon \iota \nu\right] \mu \alpha \lambda\) \(\delta\)
\(\lambda o \nu \in[\tau \iota \mu \omega \nu \tau o v] s\) avto
\([X \epsilon \iota] \rho \alpha\) s ка८ фоעєa]s \(\tau \omega \nu\)
\(650[\pi o] \lambda i\left[\begin{array}{lll}\tau \omega \nu & \eta \text { rous yov } \epsilon\end{array}\right.\)
[as] \(\tau 0[v s\) avt \(\alpha \nu\) eis \(\oint 112\)
[точто \(\delta \omega \mu о \tau \eta \tau о s\)] a
Col. xlvii.
крเvєข фuyas \(\delta \in\) кal \(\sigma \tau[\alpha] \oint 114\) \(\sigma \epsilon \iota \S\) кає \(\nu 0 \mu \omega \nu \quad \sigma v \mu\)

660 ' \(\epsilon \pi \iota \delta \in \tau \eta S \quad \tau 0] v \tau[\omega \nu \alpha \rho\)
\([\chi \eta \rho \delta \iota \alpha\) то \(\pi] \lambda_{\eta} \eta \theta[0 s \tau \omega \nu\)
\(\left[\begin{array}{lll}\circ \kappa \epsilon \iota \omega \nu & \kappa \alpha\end{array}\right] \kappa \omega[\nu \quad \epsilon \pi] \alpha v\)
\(\left[\begin{array}{lll}\sigma \alpha \mu \epsilon \theta & \alpha \lambda] \lambda \eta \lambda o^{r} v s & \epsilon\end{array}\right] \lambda \epsilon\)
\(\left[\begin{array}{lll}{[o v \nu \tau \epsilon s} & o v\end{array}\right] \theta \epsilon \nu l \gamma[\alpha \rho \tau] o\)
\(665\left[\sigma \alpha v \tau \eta \nu \quad \sigma X^{o}\right] \lambda \eta \nu[\pi \alpha \rho] \epsilon\)
\(\left[\begin{array}{ll}\lambda \iota \pi o \nu & \omega \sigma\end{array}\right] \theta \in \tau \epsilon[\rho \omega]\)
\([\sigma v \nu \alpha \chi \theta \epsilon \sigma] \theta \eta \nu \alpha \iota ~ \tau \iota \nu o s\)
[\(\gamma \alpha \rho\) оик єфı]коуто \(\eta\)
\([\tau \iota \varsigma\) ov \(\omega \pi\)] \(0 \rho \rho \omega \tau \omega \nu\)
\(670[\pi 0 \lambda \iota \tau \iota \kappa \omega] \nu \quad \eta \nu \epsilon \xi \epsilon\)
\([\sigma \tau \eta \kappa \omega s \quad \pi \rho] \alpha \gamma \mu \alpha[\tau] \omega \nu\)
[oovıs ov]к [\(\epsilon] \gamma \gamma v s{ }^{[}[\nu] \alpha \gamma\)
\([\kappa] \alpha \sigma \theta \eta \quad \gamma \in \nu \in \sigma \theta \alpha \iota \quad \tau \omega \nu\)
\(\sigma \cdot v \mu \phi о \rho \omega \nu\) \(\epsilon \iota\) 人s \(\alpha \iota \tau 0 \iota\)
675 [ajutal фvбєıs \(\eta \mu \alpha s\)
\([\kappa] \alpha \tau \epsilon \sigma \tau \eta \sigma \alpha \nu\) є८т ovk \(\alpha \iota\)
\([\sigma] X v \nu 0 \nu \tau \alpha \iota\) таs \(\epsilon \alpha u \tau \omega \nu\)
[\(\pi\)]o入є \(\iota\) s ovт \(\omega\) s \(\alpha \nu o \mu \omega s\)
\(\delta_{\iota \alpha}\left\lfloor[\tau \iota] \theta_{\epsilon \nu \tau \epsilon S} \kappa \alpha \iota \quad \tau \eta S\right.\)
680 \(\eta \mu \epsilon \tau \epsilon \rho \alpha s\) [ovт \(\omega s\)]] \(\alpha \delta \iota\)
\(\kappa \omega \mathrm{s}\) катךүороидтєs*
\(\alpha \lambda \lambda \alpha \pi \rho o s\) tols \(\alpha \lambda \lambda o l s\)
\([\kappa] \alpha \iota \pi \epsilon \rho \iota \tau \omega \nu \delta \iota \kappa \omega \nu\).
\([\kappa] \alpha \iota \tau \omega \nu \quad \gamma \rho \alpha \phi \omega \nu \tau \omega \nu\)
685 [\(\pi o] \tau \epsilon \pi \alpha \rho \quad \eta \mu \iota \nu \quad \gamma \in \nu 0\)
\(\mu[\epsilon] \nu \omega \nu \quad \lambda \epsilon \gamma \epsilon \iota \nu \quad \tau 0 \lambda>\)
\(\mu \omega \sigma \iota \nu\) avtol \(\pi \lambda \epsilon \iota o v s\)
\([\lfloor\eta] \in \nu \quad \tau \rho \iota \sigma \iota[\llbracket \nu] \mu \eta \sigma \iota \nu \quad a\) крıтоиs атоктєเขаע
690 тєs \(\omega \nu \eta \pi 0 \lambda \iota s \epsilon \pi \iota\)
\(\tau \eta S \alpha \rho \times \eta S \quad \alpha \pi \alpha \sigma \eta S \in\)
\(\llbracket \dot{\phi} \rrbracket \bar{\chi} \sigma \epsilon \iota \varsigma \kappa \alpha \iota \pi[o] \lambda \iota \tau[\epsilon] \iota \omega \nu\) \(695 \mu \epsilon \tau \alpha \beta o \lambda \alpha s \quad \epsilon \tau \iota \delta[\epsilon] \pi \alpha \iota\) \(\delta \omega \nu \quad v \beta \rho \epsilon \iota s\) к \(\alpha \iota \gamma[v \nu \alpha \iota]\) \(\kappa \omega \nu \quad \alpha \iota \sigma[X \nu] \nu \alpha s[\kappa] \alpha[\iota]\) X \(\rho \eta\) \(\mu \alpha \tau \omega \nu\) [§] \([\alpha \rho] \pi \alpha \gamma[\alpha \varsigma] \tau \iota S\) \(\alpha \nu \quad \delta v \nu \alpha \iota \tau[0] \delta_{\iota \epsilon} \epsilon \epsilon \lambda \theta \epsilon \iota \nu\) \(700 \pi \lambda \eta \nu\) тобоитоע \(\epsilon \iota \pi \epsilon \iota \nu\) \([\epsilon] X 0 \iota \mu \in \nu \quad \alpha \nu \kappa \alpha \tau \alpha \pi \alpha \nu\) \(\tau \omega \nu\) oт८ \(\tau \alpha \mu \epsilon \nu \llbracket v \rrbracket \phi \quad \eta>\) \(\mu \omega \nu \quad \delta \in \iota \nu \alpha \rho \alpha \delta \iota[[o \nu]] \alpha \nu\) \(\tau \iota s \in \nu \iota \psi \eta \phi \iota \sigma \mu \alpha \tau \iota \delta_{\imath}\)
705 є \(\lambda v \sigma \epsilon \nu\) т \(\alpha \Omega\) \(\delta \epsilon \sigma \phi \alpha \gamma \alpha s\) \(\kappa \alpha \iota \tau \alpha s\) \(\alpha \nu о \mu \iota \alpha s \tau \alpha s\) \(\epsilon \pi \iota\) тоut \(\omega \nu \quad \gamma \in \nu 0 \mu \epsilon\)
 סvข \(\alpha \iota \tau 0^{\circ}\) к \(\alpha \iota ~ \mu \eta \nu\) ov
\(\nu \eta \nu\) ou \(\delta \epsilon \tau \eta \nu\) avтo \(\nu о \mu \iota \alpha \nu \tau \eta \nu \in[\nu \tau \alpha \iota s\) \(\pi о \lambda \iota \tau \epsilon \iota \alpha \iota s \mu \epsilon \nu\) [ovk \(\epsilon \nu\) \(\llbracket \nu \rrbracket o v \sigma \alpha \nu \quad \epsilon \nu \quad \delta \epsilon \tau \alpha \iota S[\sigma v \nu\) \({ }^{15}{ }^{1}\) O \(\quad\) к \(\alpha / s ~ \alpha \nu \alpha \gamma \epsilon \gamma \rho \alpha \mu[\mu \epsilon\) \(\nu \eta \nu \quad \alpha \xi \iota \circ \nu \quad \epsilon \lambda \epsilon \sigma \theta[\alpha \iota\) \(\mu \alpha \lambda \lambda o \nu \quad \eta \quad \tau \eta \nu \quad \alpha \rho[\chi \eta \nu\) \(\tau \eta \nu \quad \eta \mu \epsilon \tau \epsilon \rho \alpha \nu \cdot \tau[\iota s\)
\(\gamma \alpha \rho \alpha \nu\) тolavt \(\eta s \kappa[\alpha \tau \alpha\) \(720 \sigma \llbracket \kappa \epsilon v \eta \rrbracket] s \in \pi \iota \theta \nu \mu[\eta \sigma \epsilon \iota \epsilon \nu\) \(\epsilon \nu \quad \eta \iota \kappa \alpha \tau \alpha \pi о \nu \tau \iota[\sigma \tau \alpha \iota\) \(\mu \epsilon \nu \tau \eta \nu \quad \theta \alpha \lambda \alpha \tau[\tau \alpha \nu\) \(\kappa \alpha \tau \epsilon X o v \sigma t[\lfloor\rrbracket] \pi \epsilon[\lambda \tau \alpha\) \(\sigma \tau \alpha \iota \delta \epsilon \tau \alpha s \pi o \lambda \epsilon \iota \iota k \alpha\)

Unidentified Fragments.
\begin{tabular}{|c|c|c|c|}
\hline (a) & (b) & (c) & (d) \\
\hline - & - . & - & - \\
\hline . . \(\delta\) [&]. \(\epsilon\) & \(\rfloor \epsilon \mu t\) &]. [. . \\
\hline \(\epsilon \uparrow[\) & \(\sigma\) & 入ous & a \(\sigma\) Tov \\
\hline \(\epsilon\) [& . . & . & . . . \\
\hline - & & & \\
\hline (e) & (f) & (g) & (h) \\
\hline - & . . & . & . . \\
\hline]. & av & \(\pi\) & To[\\
\hline]av & \(\omega \iota\) & \(\epsilon \iota \nu[\) &]. . [\\
\hline \(] \nu>\) & . . & O20 & J \(\tau \omega \cdot[\) \\
\hline . & & \(\epsilon \lambda\) & \(] \cdot[\) \\
\hline & & - & - . \\
\hline (i) & (j) & (k) & (1\()\) \\
\hline - & - . & & - . \\
\hline]o. [& \(\alpha\). & I. 10 [I & vó \\
\hline 160 &] 0 & \(\alpha\) & T0 \\
\hline] \(\omega\) ס [& . . & . & . \\
\hline . & & & \\
\hline (m) & (2) & (o) & (\(力\)) \\
\hline - & - - & - & - \\
\hline \}ova & \(] \in!\nu_{L}\) & ov. &] . \(\alpha![\) \\
\hline ¢T [&] \(¢ \delta[\) & J. \(\tau\) & J. [\\
\hline . & & . . & . . \\
\hline
\end{tabular}
(q)
\begin{tabular}{ll}
\(] \alpha \sigma \kappa[\) & \(] \rho_{L}^{[}\) \\
\(] \tau \omega[\) & \(] \epsilon \nu[\) \\
& \(\cdot\)
\end{tabular}

(\(y\))
] \(\epsilon \iota \sigma^{-}\)
(r)
\(] \rho[\)
] \(\in \mathcal{\nu}[\)
(v)
] \(!\)
\(] \sigma \in[\)
(z)
] \(70 \nu\)
(s)

(w)

(aa)
] \(\mathrm{y} \tau \mathrm{o}\) [
] \(\tau 0[\)
1. \(\epsilon_{\delta \delta \delta} \delta \xi \xi a \nu\) : so TE ; the marginal variant \(\delta \iota \delta a \xi a t\) is parallel to the vulg. \(\dot{a} \pi a \lambda \lambda a^{\prime} \xi a u\).
9. 中idoveikas is also the spelling of E , and is preferred by Drerup; but in a question between \(\iota\) and \(\epsilon t\) the testimony of a papyrus of this period is of course valueless.
12. The original \(\epsilon \sigma \tau a t\), altered by the second hand, is condemned by the hiatus; ̇̇тти B (lass).
17. то: om. MSS.
18. \(\eta \mu \omega \nu \eta[\pi \sigma] \lambda \iota s: \dot{\eta} \pi o ́ \lambda \iota s \dot{\eta} \mu \omega \hat{\omega}\) MSS.
21. \(\pi]_{\epsilon \rho \iota}\) : so vulg.; the dots signifying deletion were superscribed by the second hand. Om. \(\pi \epsilon \rho^{\prime}\) г.
23. The supplement at the beginning of the line is somewhat short for the lacuna.

29-3r. тàs є̇̇є \(\rho \gamma \epsilon \sigma\) ias kaì ràs xpeias is the vulg. reading. \(\tau[\epsilon\) after \(\tau] a s\) is very doubtful,
 к.т.入. E, B.
 left by the scribe at the beginning of 1.34 , and in this the corrector has inserted something, the slight vestiges of which suit \([\gamma \epsilon] \nu \in \sigma \theta a t\), at the same time deleting \(\gamma \in \nu \quad \mu \epsilon \nu a s\) in 1.35 which reflected the omitted \(\gamma \in \nu \circ \mu \epsilon \nu o u s\) after \(\pi \rho \omega \tau\) ovs. The result is an intelligible sentence in itself
 and others) though not making a serious claim for consideration. \(\pi p a s \tau \in\) is the reading of the MSS.
42. \(\gamma[\epsilon] y \in[\nu \eta] \mu \epsilon \nu \quad v s: ~ o m . ~ M S S . ~ \pi \epsilon \rho \iota \epsilon \rho \gamma \sigma \nu\) is the reading of \(\Gamma\); \(\pi a ́ \rho \epsilon \rho \gamma o \nu\) vulg.
45. \(\delta \omega \rho] \in a \nu \tau \rho[\sigma a]\) ur \(\nu\) : so \(\mathrm{\Gamma}\); \(\delta \omega \rho \epsilon \hat{a ̂ s ~ \tau a \sigma a u ́ \tau \eta s ~ v u l g . ~}\)

60. катакєк] \(] \wedge \mu \epsilon \nu[v]\) : so \(\Gamma\) (\(-\kappa \lambda \epsilon \epsilon\).) ; катєкєклєє \(\sigma\). E vulg., катакєк \(\lambda \eta\). М.
75. каи: от. MSS.
79. єк[atє] pas: so Г, B. ; íкcitepa, which originally stood in the papyrus, is the vulg. reading.
81. amazas: so Г ; má⿱as vulg.
100. \(\delta \in t: 1 . \varepsilon 8 \epsilon \epsilon\).
 refer to except ravur \(\nu\) in 1. 104. The reading inserted by the corrector at the foot of the column agrees with the traditional text. \(\pi a \tau \rho \iota \kappa \omega \tau \epsilon \rho a \nu\) was perhaps influenced by \(\eta \gamma \epsilon \mu \nu \nu \kappa \omega-\) repav: \(\pi\) arpiet., as in the margin, MSS.
109. ras: so \(\Gamma\); om. vulg.
118. [\(\epsilon i\) 's: so \(\Gamma\); eimi vulg.

128. \(a \lambda \lambda \lambda \omega \nu \kappa a \lambda \omega s\) : so vulg., B. ; ä̀ \(\lambda \omega \nu \nu \kappa а \lambda \omega \nu\) ка \(\lambda \omega \bar{s}\) ГE.
138. \(\theta \epsilon \omega \nu\) : so \(\Gamma\); \(\tau \hat{\omega} \nu \theta \epsilon \hat{\omega} \nu\) E and vulg.
157. The alternative reading \(\pi\) од七тelav is that of the MSS.

168. \(a v \tau \omega[\nu\) : so \(\Gamma\); тои́т \(\omega \nu\) vulg.
176. a \(\lambda \lambda\) ois, the reading of \(\Gamma \mathrm{E}\), has been substituted by the corrector for av \(\theta \rho \omega \pi \boldsymbol{\sigma}\). \(\lambda o \iota \pi o i s ~ v u l g .\), and so B . on account of the following ã \(\lambda \lambda \eta \nu\).
196. \(\pi a \rho a \lambda_{\iota} \iota \pi \omega \nu\) : so \(\Gamma\) : vulg. парадıтóvтєs, with tives instead of tis.

207. \(\gamma \in \nu \nu \mu \in \nu 0\)]s (\(\Gamma\)) is better suited to the space than \(\gamma \in\) бovés (vulg.).
213. \(\eta \mu \nu \nu \epsilon \nu_{\epsilon} \epsilon \rho \gamma \in[\sigma t \omega \nu\) : so \(\Gamma\); \(\epsilon \dot{\epsilon} \epsilon \rho \gamma . \dot{\eta} \mu \hat{\nu} \nu\) vulg.
\(215 . \tau \eta \nu\) : so \(\Gamma\); \(\tau \hat{\omega} \nu \mathrm{E}^{1}\) vulg.

 vulg. in the present passage.
234. The supplement at the beginning of the line hardly fills the lacuna, which would be expected to contain eight or nine letters; perhaps there was some correction.
236. [\(\mathrm{ti} \mathrm{\sigma} \beta \mathrm{a} \lambda \epsilon \mathrm{t}] \mathrm{y}\) : so re and Antid. vulg.; there would not be room for the vulg. \(\dot{\epsilon} \mu\) \(\beta a ́ \lambda \lambda \epsilon \iota\).

 letters (by the second hand) is in accord with \(\boldsymbol{\Gamma}\) and Antid. vulg.
\({ }^{2} 55\). The correction is by the second hand.
258. єбоцє \(\quad \eta \mathrm{s}:\) om. MSS.
261. a a av was apparently first written in place of \(\lambda_{t a \nu} a \nu\).
262. \(\pi \epsilon \rho \iota\) : so \(\theta\); \(̇ \pi i \Gamma\), \&cc. The papyrus omits \(\sigma\) dás, which is found after \(\mu \epsilon \gamma i \sigma \tau \omega \nu\) in \(E^{2} \Lambda^{2}\).
264. \(\pi \rho о т \epsilon \rho \circ \nu\) : so \(\Gamma ; \pi \rho . \delta \imath \imath \lambda \theta o \nu\) E vulg.

268. [\(\varepsilon \| \nu \omega \nu\) : so vulg.; \(\gamma \in \nu \hat{\omega} \nu \Gamma E \theta^{2}\). tas, the elimination of which is indicated by the superscribed dots (probably by the corrector), is omitted in the MSS.
273. \(\eta \delta \epsilon[\pi \sigma \lambda t s\), the original reading, is that of \(\Gamma\); the addition of \(\eta \mu \epsilon \tau \epsilon \rho a\) is in accordance with the vulg.

291. After тєкцпрıa the first hand wrote \(\tau \omega \nu\), and left a blank space between this and eotev.

302．каироу：om．MSS．
312．E has \(\grave{\epsilon} \pi\) tкрат \(\dot{\eta} \sigma \epsilon l\) ．
323．The dot in the middle of the line apparently marks the place of the omitted \(a v\) ．
336．ot，which is superfluous，is slightly smudged，and was perhaps intended to be deleted．
 \(\gamma \in \nu o \mu \epsilon \nu \eta \nu\) vulg．
\(344-50\) ．This passage，which has no other authority，is evidently based on the latter part of \(\S 74\) ．Its insertion here seems pointless．The \(\lambda\) of кала in 1.350 is converted from t，after which there was originally a blank space．

355．\(\tau a\) ：om．MSS．；cf．l． 356.
356．［ \(\tau \omega \nu\) ：three or four letters are required to fill the line，and \(\tau a\) in 1.355 points the way；om．MSS．

357－8．The first hand probably made the wrong division \(\gamma \in \gamma=\mathrm{yova}\) a oot．
361．єкєเขov \(\pi о \lambda є \mu о v ~ \sigma v \sigma \tau а \nu т о s: ~ s o ~ v u l g . ; ~ \pi o \lambda . ~ \sigma v \sigma \tau . ~ \grave{\epsilon . ~ Г . ~}\)
366．Om．ouo \(\epsilon \epsilon \nu \omega \nu \mathrm{E}^{1}\) ，om．\(\epsilon \nu a \iota \mathrm{E}^{2}\) ．
376 ．A low stop after s seems to have here been substituted for a high one．

393．\([a \lambda \lambda]\) a ：so vulg．，В．；à入入à кaí \(\mathrm{E}^{1}\) ，каí Г．
\(\delta \iota a\) тоvто is the reading of the MSS．；the corrector＇s \(\delta \iota\) avto tovto is no improvement． кat after тovтo is omitted by \(\mathrm{E}^{2}\) ．

400．\(\mu<\kappa \rho \omega t\) ：so \(\Theta \Lambda\) in the Antid．；ỏגí \(\gamma \varphi\) MSS．here．

402．a＇\({ }^{\top} a \nu\)［raxv：taxì \(\lambda i a \nu\) MSS．For ayav cf．1． 261 ；the reading here is not certain， but \(\lambda_{\text {juv }}\) at any rate is impossible．a a av produces a hiatus．

408．\(\tau \eta\rangle \nu\) ：so \(\Gamma\) ；om．vulg．
410 sqq．The marginal adscript indicates that this fragment comes from \(\S 78\) ，but its position is not clearly marked，and there was evidently a divergence from the ordinary text． \(] \epsilon\) in 1.410 may be \(\delta\} \in \eta \sigma \epsilon\) ，and the word after \(\gamma \rho a \mu \mu[a] \tau \omega \nu\) is very likely \(a \lambda(\lambda a)\) ；but some－ thing certainly intervened between \(\pi o \lambda \lambda(\omega \nu)\) and \(\gamma \rho \alpha \mu \mu[a] \tau \omega\) ．The penultimate letter in l． 412 is either \(\tau\) or \(\gamma\) ．

417．\(\pi \rho \sigma \sigma a[\gamma \sigma \rho \epsilon] v[a] \mu \epsilon[\nu o t\) ：so \(\Theta\) in Antid．，the mistake being occasioned by the pre－ ceding \(\pi \rho \circ \sigma a \gamma o \rho \epsilon \dot{v} \epsilon \sigma \theta a t\) ；but the \(v\) in the papyrus is very uncertain．\(\pi \rho \sigma \sigma a \gamma^{\prime} \mu \epsilon \nu\) м MSS．

42 I ．\([\mathrm{k}] a l\) ：om．MSS．
425． \(\mathrm{E}^{1}\) adds \(a \dot{y} \tau \bar{\omega} \nu\) after тaîs．

449．The MSS．add ékeivots after \(\tau \bar{\omega} \nu\) ，which was here originally omitted．ékeivous is also omitted by \(\Theta \Lambda\) in the Antid．

450．The column contained one or two more lines．
453．It is not certain that the papyrus read \(\mu \in \nu\) with 「E \(^{2}\) ；om．vulg．
46I．The space points to \(\epsilon \kappa \epsilon[\nu 00]\)（ \(\mathrm{E}^{1}\) vulg．）rather than \(\epsilon \kappa \epsilon[\nu \omega \nu]\)（ \(\Gamma\) ），but not very decidedly．

471．кac（vulg．）was possibly written after a \({ }_{[\lambda \lambda a}\) ，though the line is not too short without it．
480．\(\pi[\epsilon \rho \iota \mu \epsilon \nu\) ：so \(\Gamma\) ；ä \(\mu a\) a \(\mu \nu \nu \epsilon \rho i\) vulg．

498 sqq．tous amaons：so MSS．The corrector has inserted \(\epsilon \xi\) before anaons here and
at the top of the column（11．495－6），where the passage is rewritten．The intruded \(\epsilon \xi\) is there accompanied by the variant кaтaфpovpбaves for－ras，a reading also found in \(\Lambda\) in the Antid．，a \(\pi \eta \nu \tau \omega \nu\) on the other hand being placed in its traditional position instead of after exovets as in 1 ． 501 ．As the original scribe gives the ordinary text in 1.497 it is likely that he wrote correctly кaтaфроиŋбavтas in 1． 500 ．

522．т \(7 \nu\) ：om．Antid．
523．\(\beta_{0 \eta \theta} \theta[\eta \sigma]_{o \nu t a}\) s，the original reading，is also found in \(\Theta .1\) in the Antid．
\(5^{2} 5 . \mu^{\prime} a \times \eta_{3}\) ：so \(\Gamma\) ；the reading is uncertain，but there does not seem to be room for кає \(\mu\) ах \(\eta\) ．
\(532-3\) ．The corrections are by the second hand．
535．\(\phi \theta \eta \nu a t\) ：so ГE and Antid．；jфө̄̄vat vulg．；the termination at is written over an angular complementary mark．

536．The letter after \(\tau\) looks like \(o\) ，but this is probably owing to the disappearance of some fibres of the papyrus．
 reconciled with the remains in the papyrus；perhaps єєp \(\nless \epsilon \nu, \epsilon \lambda \lambda a \tau \tau \omega\) ．

555．Tol outo：so \(\Lambda\) here and in the Antid．；тotôtov other MSS．
558．There is no word in the traditional text here between фंve⿴⿱s and \(\dot{\epsilon} \sigma \tau \nu\), but \(\theta_{1} 1\) in the Antid．have \(\tilde{\epsilon} \rho \gamma o v\) ，which no doubt stood in the papyrus．The final \(\nu\) is fairly certain， and the first letter must be either \(\&\) or \(\theta\) ．

561．av \(\begin{aligned} & \text { р } \omega \pi о \iota: ~ o m . ~ M S S . ~\end{aligned}\)
562．\(\theta \rho \nu \lambda\) ovolv：so \(\Gamma\) ；\(\theta_{\rho \nu \lambda \lambda o v ̂ \sigma \iota \nu ~ v u l g . ~}^{\text {5 }}\)
\(\sigma \tau \rho a \tau о \pi \epsilon \delta \omega \iota: \tau \hat{\varphi} \sigma \tau \rho\) ．MSS．
569．\(\mu \epsilon \gamma a\) is omitted by \(\mathrm{E}^{2}\) ．
 of \(\Gamma\) and B ．

598．The second hand，besides rightly emending \(\delta \epsilon\) to \(\delta \iota s\) ，proceeded to alter the division of \(\epsilon \phi \epsilon \xi \eta \rho\) ，but changed his mind．

605．A blank space was left by the first hand before \(\delta 0 \xi a \nu\) ；cf．l． 34.

608．тvхךข ：so Г ；ті้̀ тv́x．vulg．
609．\(\delta \epsilon\) ：so vulg．and Antid．；om．Г．
 intervene between кататлєúซavтєs and oüтшs，and the papyrus would admit of their restoration （кєєvagavтєs тa \(\pi \epsilon \rho \iota \mid \tau[\eta \nu \pi o \lambda \iota \nu\) outws к．т．ג．）；but this would make Col．xxxv a rather long one，whereas 1.623 stands higher than 1．609，and it seems more likely that there was no disagreement here with other MSS．of the Panegyricus．кai ．．．\(\pi \dot{\delta} \lambda \iota \nu\) is bracketed by B．
 too great a disproportion in length between 11.613 and 614 ．As to what followed \(\pi \rho о \epsilon t p y a \sigma \mu \epsilon \nu \omega \nu\) there is no clue．

630．The papyrus most probably had катафиүovaı；фиуoĩ兀 r originally．
638．The slight vestige points to a round letter at the beginning of the line，above and slightly to the left of which there is a \(\tau\) by the second hand．Perhaps the original scribe wrote \(\omega \nu\) instead of \(\tau \omega \nu\) ．
\(6+5\) ．evt ：so \(\mathrm{r}, \mathrm{B} . ;\) enots（vulg．）would be too long for the lacuna．The deletion of \(\nu\) at the beginning of the line is probably by the second hand．
647. \(\pi a \rho\) [\(\delta\) as was originally written for \(\pi a \tau \rho เ \delta a s\); the correction is probably due to the second hand.
 \(\nu\) is broken, but \(a\) cannot be read.

669. ovт \(\omega\) : so \(\Gamma\); ои̃т \(\omega\) тобойтov vulg.

677. tas: so \(\Gamma\); tàs \(\mu \not ́ \nu\) vulg.
679. кає \(\tau \eta s\) : So \(\Gamma\); \(\tau \hat{\eta} s \delta^{3} \mathrm{E}\), vulg. The deletions in this line and the next are probably due to the corrector.
688. The appearance of the papyrus suggests that the scribe partially erased the superfluous letter, which is most probably an \(\eta\), at the beginning of the line.
693. The corrector omitted to alter the \(\mu\) of \(\sigma \nu \mu\).
698. It is unlikely that daaptayas was originally written.
701. [\(\epsilon] \chi a \mu \mu \nu\) av: \({ }^{\prime} \chi \omega\) MSS.

708. ov \(\theta\) दis: cf. 1. 664, note.

713 . єvovaad was originally wrongly divided \(\epsilon\) |povaav.
719. The corrector's \(\kappa[a \tau a] \sigma \tau a \sigma \epsilon \omega s\) is the reading of the MSS.

Fr. (d). This fragment might be placed above l. 29,]artov being restored as \(\epsilon \kappa^{\top}\) aarov and an intervening line being lost.

Fr. \((z)\), which is from the top of a column, may be the end of 1.363 .

\section*{APPENDIX I}

\section*{Addenda and Corrigenda to 'Oxyrhynchus Papyri', Parts III and II.}

For the literature connected with these volumes see the various bibliographies of papyri by U. Wilcken and F. Blass in Archiv fïr Pafyrusforschung iii, S. De Ricci in Rev. des études grecques 1905, and P. Viereck in Bursian's Jahresber. 1907. After comparing with the originals the suggestions which have been made, we give a list of most of those which, whether right or wrong, affect our transcriptions. Supplements of lacunae and readings already indicated in our notes are generally ignored. Where the source of the correction is not indicated, it is our own.
III. 404. 4. رatao \(\tau[\iota\) (Deissmann), cannot be read.
408. 57. av入[as (Schroeder) is possible, as is his suggestion ave[\(\omega v \xi \in\) in 1. \(6 \mathbf{r}\). The following suggestions by him or Fraccaroli are unsuitable: 25 a \({ }^{2} \phi \iota\left[\beta\right.\) ov] \({ }^{2}\) rats, \(\quad 3.3\).
 is very doubtful ; the verso is in a different hand.

 (Leo) does not suit the vestiges very well. 58 . \(\delta i a \operatorname{a}\) tovtov (Leo) can be read. \(6_{3}\). out [ou \(\delta]\) etat (Leo) is possible. \(\quad 80 . \mu \epsilon \theta \eta[\kappa a s\) (Leo) is possible, but not \(\beta \lambda « \psi \epsilon \epsilon s\) in 1. 81 . 100. то \(\lambda o c_{\text {I }} \pi \frac{1}{2}\) ov is inadmissible.

411. 36. \(\tau \eta\) [s \(\sigma\) тparias (Fuhr) is possible.
412. 6. 1. \(\nu \epsilon \sigma \pi \epsilon \nu \theta \epsilon a\) oוtov for vєoสєข \(\theta_{\epsilon}\) awtov (Hefermehl, Berl. Phil. Wochenschr.,
 Berl. Phil. Wochenschr., Nov. 14, 1903) is possible, and in 1.35 द]as can be read. 55. For \(\epsilon \pi \epsilon \epsilon[\tau \eta]\) s there is not room.
413. 6. \(\delta \eta \lambda]\) owótı (Sudhaus) is possible. 28. ép \(\overline{\mathrm{f} y \mu o ́ s}\) (Crusius, Herondas, Mimiambi, \({ }^{1905}, \mathrm{pp}\). 101 sqq.) does not suit the vestige of the letter before \(\mu\) which seems to be tor o. 53. oi \(\pi \epsilon \nu \mid \theta_{0} \hat{v} \tau \epsilon s\) (Crus.) is unsuitable. 57. Crusius' proposed reading \(\tau \delta\) ióvt \(\omega \nu\) [\(\pi \rho\) os \(\dot{a} \lambda \lambda \eta_{\eta}^{\prime} \lambda\) ous is possible but very doubtful. \(\quad 91 . \pi a \rho a \lambda a d ̣[\xi\) (Crus.) may be right. 112. \(\mu] a i v \epsilon \sigma\left(\theta_{u t}\right) \pi o \eta^{\prime} \sigma(e t s)\) (Sudh.) is possible, but the first letter after the lacuna is more like \(\delta\).
 (Sudh.) is unsuitable. 118 marg. 1. \(\sigma \kappa \lambda \eta \rho o ́ r e \rho(o s)\) for \(\sigma \kappa \lambda \eta \bar{\rho} \delta(s) \tau \epsilon\) (Sudh.). \({ }^{130}\). каi
 130. кaтavye \(\lambda[\lambda \omega\) (Crus., Sudh.) is possible. 132. 8[cé \(\phi\) vyov (Crus., Sudh.) cannot be

 178. a \(\gamma \omega \nu\) (ia ?) which we printed in the margin against l. 213 probably refers to this line (Crus., Sudh.). 181. \(\lambda \dot{\xi} \xi \omega\) (Sudh.) is possible. 186. \(\lambda o ́ \gamma \varphi\) (Sudh.) is unsuitable. 186. \(\pi[o \tau] \epsilon^{\prime}\left(\right.\) Sudh.) is possible, but not \(\pi \mu^{\prime} \mathrm{p}^{\prime}{ }^{\nu}\) (Crus.).
420. 2. \(\phi\left[{ }^{[}\right] \lambda \operatorname{lo\tau }\left[\eta \sigma{ }^{\top} \epsilon \omega \nu\right.\) (Fuhr) or \(a\left[\pi^{\top} \lambda_{o \tau}{ }^{[}[] \mu \omega \nu\right.\) (G. G. A. Murray) is possible. \(\epsilon \kappa \theta \rho \epsilon \psi\) as (Fuhr) is possible, but there is not room for \(\pi o \tau^{\prime}\) in the lacuna before it.
448. A new fragment belonging to the bottom of Col. xviii contains the beginnings of \(11.263-73 \tau \eta \nu \delta^{\prime} a[\pi a \mu \epsilon \iota \beta\)., \(\delta a \iota \mu[o \nu \iota \eta, \epsilon \iota \pi[\epsilon \mu \nu\), ov \(\mu[\epsilon \nu, \chi a \iota \rho[\omega, \epsilon \lambda \epsilon[\epsilon \iota \nu, \epsilon \iota \mathcal{L}[\), avє \([\rho \epsilon \mathcal{S}\), ov \(\delta a[\rho a\), ov \(\delta\) € \(v \eta \rho \epsilon, \sigma \eta \mu a[\).
452. 1०. 1. \(\pi \rho \omega \tau o \iota\) for \(\pi \rho \omega \tau о \nu\).
464. 3. \(\sigma \tau \epsilon \rho \epsilon \sigma \epsilon \iota\) (Kroll) is inadmissible. 5. \(\sigma \chi \circ \mu\)] \(\leqslant \nu \eta \nu\) (Ludwich) is possible. 6. \(\epsilon\)]k \(\delta o v \lambda \omega \nu\) and \(\xi_{2}[\nu \epsilon \sigma \epsilon \iota\) (Kroll, Ludw.) are possible. 12. \(\mu[\epsilon \lambda \lambda o \nu \tau o s\) (Ludw.) is possible. 13. кai[\(\rho о \nu о] \mu о \nu\) (Ludw.) can be read. 14. крaтє] \(\rho o \nu\) (Kroll) is unsuitable. I5. фаv \(\lambda \omega \nu\) (Kroll) is possible. I6. \(\theta \in \mu[a\) (Kroll) can be read. 18. єXotє (Kroll) is inadmissible. I 9. \(\pi^{\top} \rho o \delta o \mu[\omega \nu\) (Ludw.) is inadmissible, but \(\eta o[\tau] \epsilon[\pi] \nu \nu \epsilon v \sigma \omega \sigma \iota\) is possible, while \(\delta \eta] \lambda \epsilon v \sigma \omega \sigma \iota\) какоь \(\pi a \lambda \iota \nu\) (Kroll) is inadmissible. 20. ка] \(a \lambda \lambda о \iota\) (Ludw.) can be read, but
 (Kroll). 22. \(\Delta \eta \eta^{\dagger} \mu \circ \phi i \lambda o v\) (Kroll) and кo]vрoфiлov (Ludw.) are not long enough. \(\quad 28\). Пaфı (Kroll) is inadmissible. 35. a \(1 \lambda a \gamma \eta s\) (Ludw.) is possible. 37. как os (Ludw.) or \(\phi a]\) os (Kroll) can be read. 38. кıv \({ }^{[}\)סvovous (Kroll, Ludw.) is possible. 39. \(\chi^{a \lambda \epsilon \pi a \iota}\) (Kroll, Ludw.) can be read.
 1. apı \(\delta \eta \lambda o s\) (Kroll, Ludw.). 45. \(\mu a \rho \tau v \rho \epsilon s ~ \eta \eta s\) (Ludw.) is inadmissible. 54. 1. єк \(\sigma \kappa о \tau \epsilon \iota \eta s\) (Kroll). 55. a \(\quad\) 2 \(\alpha\left[\nu\right.\) (Ludw.) is possible. \(\quad\) 58. \(\left.\phi a_{\imath} \downarrow\right] \nu \omega[\nu\) (Ludw.) is possible. 61. \(\rho_{.} \iota \iota s\) (Ludw.) is possible.
471. The Maximus against whom this speech is directed seems to be the praefect in 103-7, Vibius Maximus. De Ricci suggests that the erasure of his name on the Coptos tariff and the Abu Tufa milestone may be due to these proceedings. 6. l. ov v i. e. \(v \pi(\epsilon \rho)\) ov for \(\hat{o} v\) (Wilcken). \(\quad\) 18. \(\delta o v \delta \eta \nu\) (i. e. \(\sigma \pi o v \delta \eta{ }^{\imath} \nu\)) can be read for \(\delta o v ́ \lambda \eta \nu\) (De Ricci). 20. \(\theta \lambda_{\iota} \beta \circ \mu \epsilon \in \nu \omega \nu\) (Crönert) is possible. 24. o] \(\ddagger \in \tau a \iota\)] (Crön.) is unsuitable, but his
 can be read. 75. ov can be read for \(\sigma v\), as suggested by T. Nicklin and Crönert, but the letters seem to have been deleted. 108. ó \(\chi^{\lambda}\)] \(\quad 1\) póv (Crön.) is unsuitable. \({ }^{1} 31\).

 \(\dot{\delta}\) [\(\delta\) ́́ does not suit ; \(\kappa\) [ai can be read.
472. 24. катаүрафо́vт \(\omega \nu\) (Crön.) is possible. 25 . \(\pi a \rho \epsilon[\chi \theta] \epsilon \nu \tau \omega \nu\) (Crön.) cannot be read. \(\quad\) тoúrot [s \(\delta^{\circ}\) ovik] (Crön.) is possible. 37. The mutilated word is not oùkov̂v (Cron.). 48. \(\delta \iota a \tau \epsilon \theta \eta \nu a \iota\) (Crön.) is unsuitable.
481. 2. 1. \(\pi \rho \omega \dot{\prime} \tau \omega s\) for oú \(\tau \omega s\); cf. P. Tebt. II. p. 132.
485. 3. 1. Є̇к for \(\pi a\langle\rho a ́\rangle\). '̇̀ \(\nu \pi t o \nu\) cannot be read in l. \(3^{6}\).
488. 22. 1. [i8 lap ; cf. P. Tebt. II. 327. 28 and 487. 18.
491. 5. Crönert suggests ка \(\theta^{\prime}\) ó \(\delta \eta \pi о \tau о\) v̂ \(\tau \rho o ́ \pi o \nu\) after aip \(\eta \tau a \iota\), but the passage is hopelessly illegible. \(\quad\) 9. 1. кขßєpyஸ́gךs (Crön.).
492. 9. The word before ékтєiбt is not kai (Crön.).
494. 44. Probably \(\pi a \rho] \epsilon \tau \epsilon ́ \theta \eta\); cf. 713. 1 \(\pi a \rho \epsilon \tau \epsilon \in \theta(\eta)\).
495. 9-10. \(\pi \hat{a} \nu \delta \iota \epsilon \theta \hat{v}[\nu \epsilon \iota \nu \dot{\omega s}\) ầ av̉ \(\hat{\eta}\) סoк \(\hat{\eta}\) (Crön.) is possible.

499. і5. 1. \(\chi о ́ \rho \tau \varphi\) for \(\chi\) о́ртоу.

504. 16. \(\tilde{\omega} \sigma \tau \epsilon]{ }^{2} \rho \hat{a} \sigma \theta a \iota\) av̇тồs (Crön.) is unsuitable. \(20 .[\pi \epsilon \rho \hat{\imath}\) тoìтo (Crön.) is possible. 44. тov̂ סıa סóxov (Crön.) is not very suitable.
 more likely. 38. \(\pi\) араүраф \(\bar{\eta} s\) (Crön.) is possible.
525. 8. \(\lambda c[\beta \dot{\omega}]\) ! \(\left(\right.\) Crön.) for \(\lambda \omega\left[\tau o{ }^{\prime} \hat{\nu}\right.\) is possible.
530. 8. \(\eta \dot{\delta} \eta\) for \(\epsilon \pi i\) (Crön.) is unsuitable.
533. 1 3. \(\tau \epsilon \lambda \bar{\epsilon} \omega s\)] (Crön.) is unsuitable. The letter after \(\gamma\) áp might be almost anything. 17. 1. eis \(\Pi a[\kappa \in\} \rho \kappa \eta\).
611. 1. Matpéa (cf. 529. 13) for \(\mu \epsilon \tau \rho \epsilon a\) (Crön.).
653. 18 sqq. 1. \(\kappa n \rho \pi[\) ồ for \(\kappa \pi \rho \pi\) ov̀.
IV. 659. 64 . a \([\checkmark \eta \kappa \in \nu\) (Schroeder) is unsuitable.
660. 9. \(\mu a \lambda a\) (Wilamowitz) is unsuitable.
662. 34. avтเтa入 \(\omega \nu\) то \(\pi \rho \iota \nu\) (Wilam.) is unsuitable. 39. \(\pi a \rho\) Evp \(\quad\) (Wiao (Wilam.) is unsuitable. 5 I. Neither ava入єov nor avaтadєov. (Wilam.) can be read.
863. 5. к]oเซw (Körte) is probable. 8. The corrupt \(\pi v \omega \nu\) is emended by Rutherford to \(\pi(\epsilon \rho i)\) i \(\hat{\omega} \nu\), by Körte to \(\pi(\epsilon \rho i) \tau \omega \nu\), the next word being \(\pi o \iota \eta(\tau \hat{\omega} \nu)\) in either case.
664. I \(55 . \Lambda_{j} \cup \kappa o \phi[\rho \omega \nu\) (Wilam.) is unsuitable.
665. 12. 1. Aкрa[\(\gamma a \nu] \tau \iota \nu \omega \nu \epsilon \pi \iota\).
668. I63. єк тo v (Wilam.) is possible, but the vestiges suit eis better than eк.
688. Fr. (c) should be turned the other way up and read as diu, belonging to 1. r 64 , where \(1 . \mathrm{gla}\) dium.
880. 3. 1. \(\mu \in \tau a\) for \(\mu \in \gamma a\).
681. 4. a \({ }^{\prime} k \rho o v \sigma v \mu \pi \epsilon \sigma \sigma\left[\nu \tau^{r}\right.\) (Fuhr) is unsuitable. I r. \([a v] \tau\) (Fuhr) is unsuitable.
682. 5. \(\pi \epsilon \rho![\sigma]][\epsilon \lambda \lambda \epsilon t\) (Fuhr) is possible.
698. 90. l. \(\epsilon[\lambda a \theta \in, 3\) lines being lost between this and the line beginning a (Fuhr).
697. 38. Perhaps \(\tau о \tau[\epsilon] \epsilon[\phi a \iota \mid \nu \epsilon \tau о \epsilon \iota \nu a \iota\), as Fuhr suggests.
701. 26-8. Perhaps \(\tau \omega \nu \nu o \mid \mu[\omega \nu\) ov \(\delta \epsilon \tau\) тots \(a \lambda \mid \lambda\) ots, as Fuhr suggests.
705. 4 I. 1. \(\pi^{r}\) pós \(\left.\tau \grave{o} \tau a \mid \mu \epsilon i o v\right]\) (Wilam.). 78. Wilcken prefers \(\chi[\omega \rho i\) jou to \(\chi\) [ópt ou.
717. 5. \(\mu \epsilon \tau\) à тои́то v (Wilam.) is unsuitable.
720. 7. Caesarib(us) çoss (De Ricci) can be read. 5. sena[tus consullo (Gradenwitz) after et is unsuitable. \(\quad \mathbf{5} 5\). Wilcken's suggestion legi for cepi is very doubtful, especially the supposed \(g\).
735. 1. \(\dot{\text { apı }} \lambda \mu \hat{\omega} \nu\) for ápı \(\theta \mu \hat{\omega} \nu\) (De Ricci). 14. ad cognnlega is resolved by Wilcken ad \(\operatorname{cogn}(\) oscendum \()\) lega(tur \()\), by De Ricci ad \(\operatorname{cogn}\) (itionem) lega(ti). 15 . Sirracus for Ierraeus (De Ricci) is possible. 16. 1. Gaddius for Gradius (De Ricci). 22. Salmeus (De Ricci) is possible. 27. De Ricci suggests cum epistrat(ego) at the beginning of the line, which is possible. 29. 1. Eponuchus (De Ricci).
736. 81 इєкои́vтаs (Wilam.) is unsuitable.

\section*{APPENDIX II}

\section*{List of Papjri distributcd.}

We give here a list of published Oxyrhynchus and Hibeh papyri which have been presented to different museums and libraries in Europe and America in addition to those of which a list was given in Part IV, pp. \(265-7 \mathrm{I}\), and also some further details about those Oxyrhynchus and Fayum papyri which in the former list were assigned to America without a more precise indication. We have added the present reference numbers (where ascertained) of the several institutions to which the papyri now belong. The papyri which do not
appear in either list are still at Queen's College, Oxford. The following abbreviations are employed :-
B. M. = British Museum. The numbers refer to the Catalogue of Greek Papyri.

Bodl. \(=\) Bodleian Library, Oxford. The references are to the hand-list of MSS.
Bolton \(=\) Chadwick Museum, Bolton, Lancashire.
Bristol \(=\) Bristol Museum.
Brussels = Musées Royaux, Brussels, Belgium.
Cairo \(=\) Museum of Antiquities, Cairo, Egypt. These papyri remain temporarily with us at Oxford.
Cambridge \(=\) Cambridge University Library. The numbers refer to the 'Additions'.
Carnegie \(=\) Carnegie Institute, Pittsburg, U.S.A.
Charterhouse \(=\) Library of Charterhouse School, Godalming, Surrey .
Chicago \(=\) Haskell Oriental Museum, University of Chicago, U.S.A.
Columbia \(=\) Library of Columbia University, New York, U.S.A.
Cornell = Library of Cornell University, U.S.A. The papyri are numbered MSS. A 101.
Dublin \(=\) Library of Trinity College, Dublin.
Edinburgh \(=\) Library of Edinburgh University.
Gen. Theol. \(=\) General Theological Seminary, New York, U.S.A.
Graz \(=\) Library of Graz University, Austria.
Harvard = Semitic Museum of Harvard University, Mass., U.S.A.
Holyoke \(=\) Mount Holyoke College, South Hadley, Mass. U.S.A.
Johns Hop. \(=\) Library of Johns Hopkins University, Baltimore, U.S.A.
Manchester \(=\) Museum of Manchester University.
McCormick \(=\) Library of McCormick Theological Seminary, Chicago, U.S.A.
Michigan \(=\) University of Michigan, Ann Arbor, Michigan, U.S.A.
Morgan \(=\) Pierpoint Morgan Collection, New York, U.S.A.
Pennsyl. \(=\) Museum of Science and Art, University of Pennsylvania, U.S.A.
Princeton \(=\) Library of Princeton College, New Jersey, U.S.A.
Smithsonian \(=\) Smithsonian Institution, Washington, U.S.A.
Toronto \(=\) Museum of Victoria University, Toronto, Canada.
Union Theol. = Union Theological Seminary, New York, U.S.A.
Vassar \(=\) Library of Vassar College, Poughkeepsie, New York, U.S.A.
Wellesley \(=\) Wellesley College, Mass., U.S.A.
Western Res. = Western Reserve University, Cleveland, Ohio, U.S.A.
Yale \(=\) Library of Yale University, U.S.A.

\section*{Oxyrhynchus Papyri.}

\section*{I.}
34. Bodl. Gr. class. a. 9 (P).

\section*{II.}
211. Harvard.
213. Yale.
219. Yale.
250. Pennsyl. 2797.

254-6. Union Theol. 257. Michigan.
259. Pennsyl. 2798.
267. Johns Hop.
268. Yale.
271. Harvard.
272. Michigan.
274. Union Theol.
276. Yale.
287. Columbia.
293. Columbia.
294. Princeton.
295. Columbia.
297. Columbia.
298. Princeton.
392. Princeton.
395. Michigan.
III.

401-2. Harvard.
403. Gen. Theol.
404. Bodl. Gr. theol.
f. \(10(\mathrm{P})\).
405. CambridgeAdd.
4413.
406. McCormick BH
88470. 1.
408. Yale.
409. Bodl. Gr. class.
c. 55 (P).
410. Bodl. Gr. class.
d. 75 (P).
411. B. M. \(\mathrm{I}_{5} 23\).
413. Bodl. Gr. class.
b. 4 (P).
414. Columbia.
415. Graz I. 1930.
416. Brussels.
417. Smithsonian.
418. Harvard.
419. Brussels.
420. B. M. \({ }^{5} 524\).

421-3. Harvard.
424. Graz I. 1926.
425. Brussels.
426. Toronto.
427. B. M. \(1_{5}{ }^{2} 5\).
428. Harvard.
429. Manchester.

430-1. Harvard.
432. Graz I. 1929.
433. CambridgeAdd.

44 I4.
434. Harvard.

435-6. Yale.
437. Brussels.
438. Yale.
439. Bolton.
440. Manchester.
441. Brussels.
442. Dublin Pap. E.
8.
443. Graz I. 1927.
444. Yale.

446-7. Harvard.
448. Cornell.
458. Harvard.
459. Columbia.

460-2. Harvard.
464. Bodl. Gr. class.
d. 75 (P).
465. B. М. \({ }_{5} 26\).
466. Columbia.
467. Bodl. Gr. class.
f. 73 (P).
468. Edinburgh.
469. Chicago.
470. Dublin Pap. F.
8.
471. Bodl. Gr. class.
a. \(10(\mathrm{P})\).
472. Morgan.
473. B. M. 1527.
474. Manchester.
475. Charterhouse.
476. Chicago.
477. Columbia.
478. Brussels.

479-80. Chicago.
481. Gen. Theol.
482. Chicago.
483. Pennsyl. 2822.
485. Bodl. Gr. class.
c. 56 (P).
486. Columbia.
487. Chicago.
488. Brussels.
489. B. M. 1528.
490. Graz I. 1920.
491. Morgan.
492. Dublin Pap.C.4.
493. Toronto.
494. B. M. \(\boldsymbol{1}_{5} 29\).
495. Brussels.
496. Bodl. Gr. class. a. 9 (P).
497. Yale.
498. Toronto.
500. Graz III. i9ı8.

502-3. Cornell.
504. Bodl. Gr. class. c. 57 (P).
505. Cornell.
506. Harvard.
507. Brussels.
508. Cornell.
509. Brussels.
510. Chicago.
511. Graz I. 193 r.
512. Chicago.
513. Toronto.
514. Vassar.
515. Smithsonian.

516-8. Pennsyl.
2799-2801.
519. Brussels.

520-1. Columbia.
522. Yale.
523. Cornell.

524-5. Vassar.
526-7. Pennsyl.
2802-3.
528. Dublin Pap.F.9.
529. Pennsyl. 2804.
530. B. M. 1530. 531-2. Pennsyl. 2805-6.
533. Harvard. 534-40. Columbia. 541. Cornell. 543-9. Cornell. 551. Princeton. 552-3. Harvard. 555-7. Harvard. 559. Harvard. 561-72. Johns Hop. 574. Bodl. Gr. class.
f. 74 (P).
575. Chicago.

577-8. Chicago.
579. Gen. Theol.
580. Johns Hop.
582. Johns Hop.

583-4. Michigan.
585-8. Johns Hop.
590-8. Holyoke.
599. Gen. Theol.

605-7. Yale.
609-10. Chicago.
611. Carnegie.
612. Pennsyl.
613. Princeton.
615. Princeton.

616-7. Yale.
618-20. Princeton.
621-7. Yale.
628-32. Pennsyl.
2807-Ir.
633. Union Theol.
638. Yale.

639-43. UnionTheol.
645. Yale.
646. Manchester.

648-50. Pennsyl.
2793-5.
652. Pennsyl. 2796.
653. Bodl. Gr. class.
c. \(5^{8}(\mathrm{P})\).

\section*{IV.}
654. B. M. \(\mathrm{I}_{5} \mathrm{I}^{\mathrm{I}}\).
655. Harvard.
656. Bodl. Gr. bibl.
d. 5 (P).
657. B. M. \(\mathrm{r}_{532}\).
658. Yale.
659. B. M. 1533.
660. Graz I. 1923.
661. Cairo.
662. B. M. I 533.
663. CambridgeAdd.
4415.
664. Cairo.
665. Toronto.
666. Bodl. Gr. class.
d. 76 (P).
667. Dublin Pap. F.
10.
668. B. M. \(\mathrm{r}_{532 .}\)
669. Cairo.

670-2. Wellesley.
673. Brussels.
674. Dublin Pap. F.
II.
675. Graz I. 1922.

676-8. Wellesley.
679. Brussels.
680. Manchester.
681. Johns Hop.
682. Edinburgh.
683. Manchester.
684. Johns Hop.
685. Bodl. Gr. class.
f. 75 (P).
686. B. M. 1534.
687. B. M. I 535.
688. B. M. 5536.
689. Wellesley.
690. Brussels.

691-2. Wellesley.
693-5. Princeton.
696. Pennsyl. 28I4.
697. Dublin Pap.E.9.
698. Wellesley.
699. Dublin Pap. F.

\section*{II.}

700-2. Harvard.
703. Bodl. Gr. class.
g. 5 I (P).
704. Pennsyl. 2820.
705. CambridgeAdd.
4416.
706. Pennsyl. 2823
707. Morgan.
708. Manchester.
709. Bodl. Gr. class. e. 88 (P).
710. Brussels.
711. Graz I. 1925.
712. Cairo.
713. В. М. I 537.
714. В. М. I538.
715. Bristol.
716. CambridgeAdd. 4418.
717. Cairo.
718. Columbia.
719. Yale.
720. Bodl. Lat. class.
d. 12 (P).
721. Cairo.
722. Columbia.
723. Cairo.
724. Carnegie.
725. Toronto.
726. Cairo.
727. В. М. 5539.
728. Cairo.
729. В. М. 1540.
730. Cairo.
731. Manchester.

732-4. Cairo.
735. Morgan.
736. Brussels.
737. Western Res.
738. Graz I. 192 I.
739. Cairo.
740. CambridgeAdd. 4417.
741. Cambridge Add. 4419.
742. B. М. 554 I.
743. Brussels.
744. Toronto.
745. Columbia.
746. Brussels.
747. Charterhouse.
748. Western Res.
749. Cairo.
750. Western Res.
751. Cairo.
752. Western Res:
753. Toronto.

754-5. Princeton. 756-8. Yale.
759. Brussels.
760. Graz I. 1928.
761. Harvard.
762. Pennsyl. \(28 \mathrm{I}_{5}\). 763. Cairo.

764-5. Harvard.
766-9. Johns Hop. 770. Bolton.
771. Manchester.
772. Bristol.
773. Brussels.
774. Johns Hop.
775. Pennsyl. 2821.
776. Pennsyl. 2817.
777. Cairo.
778. Pennsyl. 2818.
779. Cairo.
780. Dublin Pap. F. 12.
781. Pennsyl. 2819.
782. Pennsyl. 2816.
783. Edinburgh.
784. B. M. I542.
785. Morgan.
786. Cairo.
787. Columbia.
788. Morgan.

789-91. Columbia.
792. Toronto.

793-4. Cairo.
795. Morgan.

796-7. Columbia.
798. Morgan.

799-801. Cairo.
802. Graz I. 1933.
803. Harvard.
804. Toronto.
805. McCormick BH
88470.2.
806. Cairo.
807. McCormick BH
88470. 3 .
808. Cairo.
809. Carnegie.
810. Cairo.

811-2. Vassar.
813. Brussels.
814. Carnegie.

815-7. Cairo.
818. B. M. I543.
819. Vassar.
820. Cairo.
821. Vassar.
822. Wellesley.
823. Brussels.
824. Wellesley.
825. Cairo.
826. Wellesley.
827. Cairo.
828. Graz I. 1934.
829. Wellesley.

830-1. Gen. Theol.
832. B. M. 1544.
833. CambridgeAdd.
4420.
834. CambridgeAdd.

442 I.
835. Gen. Theol.
836. Brussels.

837-8. Cairo.
839. Bodl. Gr. class.
c. \(59(\mathrm{P})\).

\section*{Fayîm Papyri.}
9. Holyoke.
14. Michigan.
19. Chicago.
20. Pennsyl. 2776.
22. Pennsyl. 2782.
23. Chicago.
53. Pennsyl. 2789.
58. Pennsyl. 2791.
59. Pennsyl. 2788.
60. Pennsyl. 2783.
63. Pennsyl. 278 I.
64. Yale.
65. Pennsyl. 2779.
77. Pennsyl. 2780.
80. Pennsyl. 2787.
81. Pennsyl. 2790.
86. Pennsyl. \(279^{2}\).

86 (a). Yale.
94. Princeton.
103. Princeton.
106. Princeton.
110. Columbia.
113. Yale.
115. Yale.
117. Pennsyl. 2785.
119. Pennsyl. 2786.
120. Pennsyl. 2784.

137-8. Yale.
145. Harvard.

147-50. Harvard.
154. Michigan.
156. Michigan.

158-9. Michigan.
190-5. Princeton.
222. Harvard.
225. Harvard.
227. Harvard.
230. Harvard.
239. Princeton.
241. Cornell.
243. Cornell.

245-7. Cornell.
250. Chicago.
251. Cornell.
253. Pennsyl. 2777.

255-7. Michigan.
261. Pennsyl. 2778.
263. Columbia.
265. Yale.
267. Yale.
268. Holyoke.
271. Princeton.

272-3. Yale.
274-7. Chicago.
291-3. Union Theol.
296. Johns Hop.
299. Harvard. 30 4. Johns Ilop. 3u6. Johns Hop.

311-7. Cornell. |333. Johns Hop.
320-1. Harvard. 335. Yale. 331. Johns Ilop. 338. Cornell.
343. Jolms Hop. 347-8. Johms Hop.

\section*{Hibch Papyri.}

35-6. Harvard.
37. Carnegie.
39. Brussels.
42. Graz I. 1924.
43. Carnegie.
44. Yale.
46. Morgan.
49. Yale.
54. Toronto.

55-6. Yale.
60. McCormick BH
\(8844^{2}\). I.
61. McCormick BH \(88+42\). 2 .
62. Brussels.
75. Pennsyl. 2824.
79. Pemnsyl. 2825.
83. Harvard.
86. Carnegie.
103. Carnegie.
114. Carnegie.
118. Columbia.
120. Smithsonian.
122. Smithsonian.
123. Western Res. 125-7. Gen. Theol.
129. McCormick BII
\(8844^{2}\). 3 .
13.1. Brussels.

135 McCormick BH \(88_{4+2.4}\).
136. Cairo.
138. Graz I. 1932.
139. MicCormick BH
\(88_{t+2} 5\).
140. Brussels.

141-4. Columbia.
119. Princeton.

152-3. Princeton.
154. Vassar.
155. Smithsonian.

1:57-8. Harvard.
159-62. Yale.
163. P'rinceton.
164. Cairo.
165. Princeton.
168. Graz I. 1919.
170. Smithsonan.

\section*{I N D I C E S}

\section*{INDEX I． 840.}
ä \({ }^{\text {atos }} 14,21,29\).

ảסıkeì I．
à入入á 2，5，16， 45 ．
ả入入áббєєン 19.
ä \(\lambda \lambda\) os 18 ．

\({ }_{\text {ä }} \theta^{2} \rho \omega \pi\) os 5， 39 ．
àтó 44.
а̇токрі̀єєбөає 30.
ȧто入анßávєเข 4.
ä \(\rho \chi\) єє \(\rho \epsilon\) ús 10 ．
aủ̀ \(\lambda \tau \rho i ́ s ~ 36\).
aủtós \(3,7,8, \mathrm{II}, 24,30\) ．
\(\beta a ́ \lambda \lambda \epsilon t \nu 33\).
ßа́лтєєข 43.
ßami i̧civ I5， 42.
ßáravos 7.

үáp 3， 15.
aaveíi 25.
ठ́́p \(\mu \alpha 35\) ．
8 tá 25.

ci 18.
cival \(17,23\).
cis 8.
cíनáyєı 8.
ékeívos \(24,39\).
éktós 35.
่̇ \(\nu\) 4，9，23，25，33， 43
\({ }^{\epsilon} \nu \delta \delta o \theta \epsilon \nu 39\).

€̈ \(\downarrow \delta \nu \mu a 19,27\).
ย̇עтайӨa 23 ．
éтьӨvцía 38.
є́ \(\pi\) เтрє́тєєレ 12.
тохєбӨat 28， 44.
テ̈тєpos 25， 26.

ऍ \(\omega\) ク́ 44 （？）．
ちんós 4.
ض́ \(\mu\) ́́ \(\rho a 34\).
ífóv 9， \(17,23\).
íqтával 2 I ．
каӨарєи́єє» 23， 24.
каӨapós \(18,28\).
какіа 4 I.
какой \(\rho\) коs \(_{5} 5\) ．
\(\kappa a \lambda \lambda \omega \pi i \zeta \epsilon \iota \nu 8\).
катє́ \(\rho \chi є \sigma \theta a \iota 26\).
\(\kappa \lambda i ̂ \mu a \xi<26\).
кóлaбts 6.
\(\kappa v ́ \omega \nu 33\).
\(\lambda \epsilon ́ \gamma \epsilon \iota \nu\) II，24，31， 42.
Aeveís io（？）．
入evkós 27.
\(\lambda i \mu \nu \eta 25\).
入ovév I4，19，24，32， 37.
\(\mu a \forall \eta \tau \eta{ }^{\prime}\) I 5，22， 42.
\(\mu \dot{\eta}\) 2，18，31， 42.
\(\mu \eta_{\nu} \mathrm{I} 5\).
\(\mu \eta \boldsymbol{\tau} \boldsymbol{1} 14\).
\(\mu 0 \lambda\) úve九v 16.
رóvos 4.
\(\mu \nu \rho i \zeta \epsilon \iota \nu 36\) ．
\(\nu i \pi t \epsilon \sigma \theta a \iota 34\).
\(\nu u ́ \xi 34\) ．
ö \(\boldsymbol{\mu}\) отоs 3 ．
ӧ \(о\) оца II．
ópầ \(13,20,31\) ．
ös \(18,33,42\) ．
ö \(\sigma \pi \epsilon \rho 35\) ．
ov 3 ．
ovaí 3 I， 45 ．
oủס́é 20.
oủotis 18.
```

ouvv 23.
ovitos I 3, I7, 32.
\piа\rhoa\lambdaа\mu\betaávєl\nu 7.
\piâs I.
\piá\sigma\chi\in\iota\nu 3.
\pia\tau\epsiloni้ I 7, 20.
\pi\epsilon\rhot\piat\epsiloniv 9.
\pi\lambda\eta\rhooû\nu 40.
\pio\lambdaús }6
\piо́р\nu\eta 36.
\piov́s }15
\pi\rhoó 1.
\pi\rhoós 30, 38.
\pi\rhoо\sigma\beta\lambda\epsilon\piт\epsilon\iota 29.
\pi\rhoобє́\rho\chiє\sigma0a\iota 9.
\pi\rhoо\sigma\epsiloń\chi\epsilon\iota\nu 2.
\pi\rhoóтє\rhoо\nu 1.
\pi\omegas 2.
\sigmak\inv̂os 14, 21, 30.
\sigmaкор\piios }3
\sigma\mu\eta}\chi\epsilonL\nu 35, 37
\sigmaoфi\zeta\epsilon\sigma0at r.
\sigmav́ 12, 15, 23, 32.
\sigmav́v 22.
\sigmav\nu\tauv\gamma\chiáv\epsilon\iota\nu II.
\sigma\omegaT\etá\rho 12,30.
Tis I2.
Tis IO.
то́\pios 17.
то́тє 28.
тиф\lambdaós 3I.
vँ8\omega\rho 33, 43.
i\mu\epsilonis 3.
v̇\pio\mu\epsilońv\epsilon\iota\nu 6.
\Phiapı\sigmaaîos IO.
\chieiv 32.
\chioipos 33.

```

\section*{INDEX II． 841.}

\section*{Large Roman numerals refer to poems：sch．\(=\) scholium．}
＂Aßoinpa II． 5 sch．；Fr． 2. i sch．；II． 69 sch．； Fr．5． 5 sch．
＇Aßסŋpital II． 3 sch．
＊Aßoinpos II．1， 104.
«yaOós II． 43 sch．；III． 95 sch．
«уаклеө́s IV． 12 ；V． 48.
«̀yavós IX． 36.
à \(\gamma \gamma_{\epsilon} \lambda \lambda \epsilon \epsilon \nu\) II． 77.
ärye入os VI．IOI．
ãyєเข I． 8 ；VI． 103.
áyєíatat Frs．129－31．II．
à 入入âa III． 5 ．
à \(\lambda_{a o-}\) III． ．
à \(\lambda^{2}\) aós VI． 62 ；VII． 3 ；Fr．26． 6 （？）．
á \(\boldsymbol{\text { ví̧eı }}\) Frs． 1 29－31． 6 sch．
ä \({ }^{2}\) pios II．6I．
à \(\gamma \chi^{i \theta} \boldsymbol{\theta} \boldsymbol{\varepsilon}\) оs VII． 10.
a่ \(\boldsymbol{\gamma}^{\boldsymbol{\omega}}\) VI． 60.
ảঠá́धтєpos IV． 27.
äठортоя VI． 128.
«ध \(\theta\) 入ov IV． 22.
áei v．I．II． 52 ．
áédıos IX．I．
áє́ \(\xi \in \iota v\) V．l．VI．Io．
a \(1 \eta\) VI． 137.
＇A \(\theta\) à \(\nu a . .\). Fr．28． 4.

a \(\theta \lambda\) 品 II． 57 sch．
á \(\theta\) póos IV． 42.
＊A \(\theta \omega\) III． 63 sch．
Aiyaios Fr． 19.27.
A 九̈чıa VI． 125 sch．， 134 sch．， 137.
ai8̀́s II． 51.
aiєi II． \(5^{2}\)（v．l．ȧєi）．
аُєє VI． 8.
at \(\theta_{\varepsilon} \sigma \theta a t\) VI． 97.
aiӨjp III． 17 ；VII．I I（？）．
aikㄱํ V． 45 sch．
aipeiv V． 36.
aía II． 58.
aỉ \(\chi\) atás II． 62.

аккєрбєко́дая IX． 45 ．
йкрацттоя VI． 88.
áкодои́ \(\theta\) мs Fr． 95.4 sch．
äкоя IV． 26.
äкотоя I． 3 ．
àктis IX． 1.
＇A入éछà8pos Fr．96． 2 sch．；Frs．129－31．I sch．
ả入є́ \(\xi \in \iota \nu\) VI．Io（v．l．ảp \(\dot{\prime} \xi \epsilon \iota \nu\) and \(\dot{a} \epsilon \xi \epsilon \iota \nu)\) ．

ä \(\lambda_{t s}\) IV． 24 ．
ả入ıт \(\dot{p}\) เos Frs．129－31．I sch．
ảخкá II． 37 and sch．
ä入кєноя VI． 98.
à入入á II． 55 sch．， 73 ；IV． 28 ；VI．54， 105 ， 128 ；IX． 7.
ä \(\lambda \lambda_{0} \theta_{\iota}\) IV． 48 ．
ä \(\lambda \lambda\) os II．63；VI．I 18 sch ．
ä \(\lambda \mu a \mathrm{Fr} .33 \cdot 5 \cdot\)
ä \(\lambda_{s}\) VI． 100.

ã \(\lambda \omega \sigma \iota\) \ VI． 82.
ü \(\mu \mathrm{IX}\) ． 16 ．
\(a \mu a .\). Fr． 21.7 sch．
ảца६ıтós Fr．16． 6.
גцар II． 76 ．

á \(a_{\chi} \neq\) vos VI． 53 ；IN． 3.
àß \(\beta\) робia Fr．46． 2.
á \(\mu \beta\) ро́бьos IX． 35 ．
ӓцßротоя III．І 6 ：VI． 140.
ај \(\mu i \beta \epsilon \sigma \theta a t\) IV．I 5 ．
áд́́ \(a_{\text {IX．}} 3\) ．
d̉ \(\mu \pi \epsilon \lambda\) о́єєя II． 25 ．
à \(\mu \dot{\nu} \boldsymbol{\epsilon} \sigma \theta a \iota\) II． 63 sch．
à \(\boldsymbol{\phi}_{i}\) II． 97.
ајдфє．．．Fr．26． 3.
\({ }_{\text {á }} \boldsymbol{\mu} \phi\) ißuivetv Fr．33． 2.
а́ \(\boldsymbol{\phi} \boldsymbol{i} \pi\) олоs VI． 117.
ä้ \(\mathrm{II} .4^{8} \mathrm{sch}\) ．＝ảvá VII． 12 ．
àvá II． 97 ；III．ı6．ă \(\mu\) IX．16．ä V VII． 12.
àvá8ooıs III． 96 sch．
àvaìєє anı IV．\(^{66 .}\)
âvatpeì VI． 118 sch．；Fr．82． 7 sch.
àvaрє́ \(\pi \in \sigma \theta a \iota\)（？）VI．I 36.
à \(\nu a \lambda u ́ \epsilon \iota \nu\) VI． 94 （inf．ảvàúधע）．
\({ }_{\text {ä }} \nu a \xi\) IV． 35 ．
àvutı日́̀và IX． 39.
àvó \(\epsilon \epsilon i a\) II． 55 sch．， 57 sch．
ävє \(\mu\) аs VI． 110 ．
\(a ̈ \nu \in v \theta \in\) Fr．I6． 14.
àv́p II． 37 and sch．， 57 ；IV．33；VI． 9 ；
Fr．16． 13 ；Fr．82． 29 ；Fr．86．1 ；Fr． 92.
I（？）；IX．4， 20 ；Fr．134． 3 sch．

à \(\nu \theta\) Os I． 10 ．

áviка Fr．82． 26.
ävıt
ảvocyvúvat Fr．87． 2.
àvoрє́a IX． \(45^{\circ}\)
äขта II．69．
à \(\nu \tau \epsilon \rho \epsilon\) í̊єı VI． 88.
ä \(\nu \tau \epsilon \sigma \theta a \iota\) II． 42.
 sch．（？）；VI． 59 sch．；Fr．84． 10 sch．； IX． 35 sch．
àvтітадоя II． 43 sch．
ảoıóá III． 12 ；VI． 128.
áoíó \(\mu\) os VI． 6.
àóptotos VI． 87 sch ．
điтaเтễ Fr．82． 7 sch．
äтаs Col．xxv sch．
à \(\pi \epsilon i \rho \omega \nu\) VI． 176.
a่ \(\pi \dot{\eta} \mu \omega \nu\) IX． 8.
ӥтиттоs Fr． 19.23.
ảnó II． 3 sch．；V． 35 sch．；VI．135， 183 sch．；Fr． 21.10 ；Fr． 107 sch．；Frs． 129－3I． 4 sch．
ảnodıóvóvı IX． 36 sch ．
äтоокоя II． 3 sch．
а̇токтєірєцу II． 73 sch．
＇А \(\pi\) ó \(\lambda \lambda \omega \nu\) I． 8 ；II． 5 ；V． 1 et saep．；VI． 14 ， \(91 ;\) Fr．84．I3；IX． 40 （？）；Fr．134． 2 sch．
а̇тодоуєїөaı Fr．70． 1 sch．
àто \(\boldsymbol{\epsilon \rho i \zeta \epsilon \iota \nu}\) Frs．129－31． 6 sch．
àторі́а Fr．19． 16 sch．
àто́ppota Frs．129－3I． 4 sch．
ג่ \(\pi \circ o \pi a ̂ \nu\) VI． 134 sch．
\(\dot{\alpha} \pi \omega \theta \epsilon i \sigma \theta a \iota\) IV． 47.
＂pa VI． 96.
＊Apros IV． 29 and sch．
à \(\rho \in \tau \alpha ́\) IV． 22 ；VI．13I，I76．
\({ }_{\alpha} \rho \in \tau \eta \dot{\eta} \mathrm{Fr} .124\) sch．
áp \(\eta \boldsymbol{\gamma} \epsilon \iota\) v．l．VI．ıо．
＇Apíctapxos（？）II． 61 sch．；Fr．82． 35 sch．（？）；Fr．94． 3 sch．；Frs．129－3I． 6 sch．；Fr． 134.9 sch．
＇Apıбтафávŋs（？）II． 75 sch．；VI． 89 sch．，I 8 I sch．
à \(к к є i ̀\) II． 3 I．
ӓ \(\rho \mu а\) Fr． 16.8.
äро⿱ра IV．\(^{2} 5\) ；VI． 106.

\({ }^{\text {ä }} \rho \chi \in \sigma \theta a \iota\) VI． 50.
ảp \(\chi\) á IX． 20.
àp \(\chi\) ŋ́ II． 3 sch．
＇Agrepia V． 42.
ảgtós II．48；Frs．I29－31．I3．
ä \(\sigma \tau \rho \circ \nu \mathrm{VI} .126\) ；IX． 2.
äซтv I． 7 ；IV． \(3^{2 .}\)
＇ \(\mathrm{A} \sigma \omega \pi\) ós VI． 134.
áт \(\rho a \pi\) ós IX． 5 ．
\(a v ̉\) II． 80 ；Fr．82． 19 sch．
av̉ \(\delta a ́\) II．IOI ；IV． 3 ；VII． 17.
aủ入á VII． 3.
Aủ ís Fr．139． 2 sch．， 3 sch．
aủ̉ós III． 94 ；VII． 1 I（？）；IX． \(3^{6}\) sch．
aย่งаอхモโi้ IV． 37.
aủtós II． 43 sch．；VI． 7 sch．；Fr．82． 4 sch．
aủ \(\chi\) єî̀ II． 37 sch．
aù \(\chi \mu\) ós VI． 125 sch．
＂̈фар VI．81 ；Fr．82． 22.
＇Афроо́т́т II． 5 ；VI． 4.
＇A \(\chi\) ato＇VI． 85 ．
ä \(\omega\) ros VI． 59 and sch．
\(B a \beta v \lambda \dot{\omega} \nu\) IV． 15.
ßaӨúסoほos II． \(5^{8}\) ；Fr．28． 2 （？）．
\(\beta a \theta \dot{u} \zeta \omega \nu\) Fr． 47 ． 3 （？）．
\(\beta\) ßии́кодтоя VI． 135.
\(\beta\) a日ís IV． 44 ；Fr．16． 15 ．
及aìet VI． 100.
ßaıós II． 74.
\(\beta\) á̀ \(\lambda \epsilon \iota \nu\) IV． 10.
ßapúктvтоs IV． 41.
\(\beta\) ィatás VI． 84.
\(\beta \iota o ́ \delta \omega \rho o s\) IV． 26.
Bios IV． 26 sch．；VI． 117 ．
\(\beta \lambda \dot{\omega} \sigma \kappa \epsilon \iota\) I． 1 ；II． 73.
及очгоціа IV． 27.

Bpotiocos VI． 79.
Bpotiós VI． 55 ；IN． 48.
\(\beta \omega \mu\) о́s III． 9 ；VI． 114 ；VII． 15.
âa II． 62 ；VI．120．\(_{\text {raia II．} 25 ; ~ V I . ~} 109\) ； IX． 19.
ráp II． 3 sch．， 42,43 sch．， 55 sch．；VI． 7 ， 54， 62 ；Fr．16． 13 ；Fr． 116.3 ；IX． 47 ； Frs．129－31．+ sch．
\(\gamma \in\) IV． 28 ；VI． 54 （？）， \(123,175\).
\(\gamma \in \nu \in a ́ l\) I． 9 ．
\(\gamma^{\in \nu \in \dot{~}}\) Fr．82． 2 sch．
үévos II． 4 I ；IX． 20.
\(\gamma\) foatós VI． 113 ．
ү́́pas IV． 30.
rйpas I． 1 ；VI． 116.
\(\gamma_{i \gamma \nu \in \sigma} \theta a t\) II． 57 sch．， 79 and sch．；IV． 50 sch．；Fr．66． 2 sch．

\(\gamma \lambda \nu \kappa v \mu a ́ \chi a \nu o s ~ I I . ~ 80 . ~\)
\(\gamma \lambda v \kappa u ́ s ~ I I . ~ I O I ~ ; ~ V I . ~ 59 . ~\)
\(\gamma \lambda \bar{\omega} \sigma \sigma a\) VI． 59 ．
roveís II． 55 sch．， 73 sch．
yóvos Fr．19． 30.
रpáфধıl VI． 119 sch．， 121 sch．， 122 sch．
rová IV．4．
סa九นóvıos Fr．82． 21 ；IX． 34.
\(\delta_{\text {ai }} \boldsymbol{\mu} \nu \nu\) VI． 13 r．
סaís I． 8.
áádos V．I el saep．；Fr．47． 2.
\(\Delta a ̂ \lambda o s ~ I V . ~ 12 ; ~ V . ~ 17 ~(?), ~ 40 . ~\)
ठàpos Fr．28． 4.
Sạos II． 40.
\(\Delta a p \delta a v i a ~ V I . ~ 90 . ~\)
\(\triangle a p \delta a v i\) inal Fr．\(^{2}\) 2． 27.
Sapóv I． 9 ．
8áфø Fr． 107 sch．
бафипфорккós Fr． 107 sch．
סє8oukévaı Fr．19． 23.
8eív II． 55 sch．， 57 sch．
8etvós Frs．129－3I． 4 sch．
détitos Fr．19． 2.
\(\Delta \epsilon \lambda \phi\) oi II． 98 ；VI．isch．， 16,63 ；Fr． \(13+.5\) sch． סépas V． 42 ；VI． 80.

סך入оиót، VI．i I sch．
\(\Delta \dot{p} p \eta\) vas II． 5 ．
סприásєo \(\theta a t\) VI． 119.
Suá Vl． 7 sch．；Frs．129－3I． 3 sch．， 6 sch．

8adicóčac Fr．16． 16.

8ıартá̧єц VI．ıı 8 sch．
8¿ạтoùn VI． 96.
8tatpißetr VI． 134 sch．
8aф́́petv II． 43 sch．
8icóvat II． 53 ；III． 101 （？）；IV． 52 ；V． 41 ；
Fr． 16.12.
ठıк ．．．Fr．66． 2 sch．
סıкаішs Fr．84． 12.
ס九ó V＇I． 118 sch．
\(\Delta 九 \rho \mu \dot{\gamma} \delta \eta\) V VI． 76.
8is Frs．129－31．I sch．
8เต́кєเข II． 4.
\(\Delta\) เívugos IV． 25 ．
Sокєì II． 43 sch．；Fr．82． 29.
סóga Fr．49． 2.
§órtetpa VII．I（？）．
ס \(\rho\) îs IV． 52 ．
8úvapus I． 4.
Súraotaı II． 33 sch．， 37 sch．， 73 sch．；Frs． 129－3I．I sch．， 4 sch．

\(\delta v \sigma \mu \epsilon \eta_{i}^{\prime}\) II． 69 ．
\(\delta \nu \sigma \chi\) ¢аaives VI． 118 sch．
\(\delta \omega \bar{\alpha}\) Fr．26． 6.
ঠ்́р \(\boldsymbol{\mu}\) a IV． 26 sch．
\(\Delta \omega p\) tés VI． 123.
e九ív II． 31 sch．， 43 sch．
tầ IV．50， 5 I．

＇ryvadiseriv V1．133．
é \(\gamma \epsilon i \rho \in \iota \nu\) VI． 108.

＇＇\(\gamma\) ต́ II．26， 102 ；IV． 2 I． 49 ；V． 44 ；VI． 5 ， 58；Fr．16． 16 ；Fr．19．23；Fr．84． 14 ；
Fr．94． 2 （ \(\omega \bar{\omega} \nu)\) ；Frs．129－31． 19 （＇̇ \(\mu(\nu)\) ．
ésooiv IV． 4.
\(\tilde{\epsilon} \zeta_{\epsilon} \epsilon \theta a t\) Fr．19． 18.
\({ }^{2} \theta^{\prime} \dot{\prime} \lambda \epsilon \iota\) II． 79 and sch．；IV．28；Fr．19． 21.
Ëvos VI． 64 ．
©i II．31， 57 sch．；VI． 9 I．
cioros Fr．35．I．
єi8 \(\omega \lambda\) отонеiv VI． 130 sch．（？）．
tikuidos Fr． \(134 \cdot 9\) sch．；cf．Fr．134． 3.
єì九opay（？）v．l．VI． 183.
civat II． 3 sch．， 28,48 sch．， 75 （ \(ิ \nu=\) éóv）；
IV. 27, 35, 49, \(5^{2}\); VI. 11 sch. ; Fr. 2 I. 7 ; Fr. 73 sch.; Frs. \(129-3\) I. 1 sch., 3 sch. ; Fr. I34. 2 sch.
fis II. 75 sch.; IV. I3 sch.
fis II. 33 sch.; VI. I sch., 7 sch., Col. xxv sch., 118 sch.; Fr. 19. 4 ; 1X. 9 ; Fr. 139. 2 sch .

є̇к III. 95 sch.; Fr. 84. 14 sch. ; Fr. 134. 4 sch. \(\begin{gathered}\epsilon \in \dot{d} \rho \chi a ̄ s \\ \text { IX. } \\ 20 .\end{gathered}\)
‘Ека́ßa Fr. 82. 27.
éкаßо́доя VI. 79, іпі ; IX. \(3^{8}\).

éxás IV. 35.
є̈кабтоя VI. 62 sch.
'Екítа II. 78.
éкátepos Fr. 82. 15 sch.
єккать IX. 46.
єкато́ү \(\chi\) єь Fr. 82. 3 I.
éкатóv IV. 37.
éкßá̀ \(\lambda_{\epsilon \iota \nu}\) II. 63 sch.
 є́кєílV. 50 sch.
ékสoveiv II. 43 sch.
є́кळ́v II. 102.
\(\epsilon \lambda . .\). II. 27 sch.
èhaúveiv III. ı6; IX. 6.
è \(\lambda a \chi\) रívotos IV. 14.
' \(\mathrm{E} \lambda\) éva VI. 95.
єं \(\lambda \iota<\alpha ́ \mu \pi \nu \xi\) III. 15 .

ілıкผ̄тts II. 99.
'EגAávos VI. 125.
'E \(\lambda \lambda \dot{\eta}\) íos VI. 125 sch.
'Eג入avis IV. 23.
'EגAćs VI. 62 sch.
' \(\lambda \pi\) is II. 43 sch.
е́ \(\mu \beta a ́ \lambda \lambda \epsilon \iota \nu\) VI. 78.
i \(\mu \boldsymbol{\mu} \boldsymbol{\gamma \epsilon i \nu}\) II. 57 sch.
ípós II. 29 ; IV. 44 ; VI. 1 I and sch.; Frs. 129-31. 17.
\({ }_{\epsilon} \mu \pi a \nu\) II. 29.

\(\epsilon_{\epsilon \nu}\) II. 31 sch., 43 sch., 48 sch., 69 sch.; III. 12 ; VI. 5, 61, 98, 106, 119 sch., 120, 124 sch., 125 sch.; Fr. 19. 24; Fr. 95.5 sch.; IX. 3,17 sch., 36 sch., 40 sch., 41 ; Fr. 162. 2 sch.
évaipetv VI. in 4.
ënazos Frs. 129-3I. 3.
èvciva VI. 123.
\({ }^{\epsilon} \nu \nu a \operatorname{V} .44\).
évavtós I. 5 .
èvnaeтทpis Frs. 129-3I. I sch., 6 sch.
'Evdooióas IV. 4 I.
évorкív II. 63 sch.
єуштєа II. 74.
ë̀ étuos VI. I I sch.
évúnviov Fr. 82. 19 sch.

' \(\begin{gathered} \\ \epsilon\end{gathered} \rho \chi \in \sigma \theta a \iota\) Fr. 82. 2 sch.

' \(\xi=\pi i \sigma \omega\) II. 27.
éós IV. 39 .
énaueiliv IV. 36 .
є \(\pi \epsilon i\) IV. 50 sch.; V. 40 ; VI. 7 sch., 98 ; Fr. 17. 3 ; Fr. 84. 15 sch.
ётєєта II. 65 ; IV. 46 ; VI. 105 .
\(\epsilon_{\epsilon} \pi \epsilon \nu \theta \rho \dot{\sigma} \sigma \kappa \epsilon \iota \nu\) VI. 114.
\(\dot{\epsilon} \pi \epsilon ́ \rho \chi \in \sigma \theta a \iota\) I. 7 ; II. 63 sch.
\(\pi_{\pi}^{\pi} \epsilon \sigma \theta a \iota\) Fr. 22. 3 (?).
ढ̈ \(\pi \eta \lambda\) vs II. 48 sch.
\(\dot{\epsilon \pi i}\) I. 3 ; IV. 16 sch.; VI. 7 and sch., 100, 116, 134 and sch., 140 ; Fr. 19. 10 sch., 27 ; Fr. 26. 7; Fr. 82. II sch.
є่ \(\pi \iota \pi i \pi \tau \epsilon \iota \nu\) II. 64.
еттіткотоя IX. 5 .
 sch.
'̇ \(\pi \tau \tau \in \in \lambda \lambda \epsilon \iota \nu\) IX. 28-9 sch.
\(\dot{\epsilon} \pi \iota \tau i \theta \in \sigma \theta a \iota\) II. 48 sch.
ётıгрє́тєь IX. 46.
е̇ \(\pi \iota \chi\) ф́pıos IV. 46 ; VI. \(13^{8 .}\)
ढ̈ँ \(\pi\) os IV. 5 ; VI. Col. xxv sch.; VII. 2 sch.; Fr. 84. 10.
с́рабөaı VI. 58 ; Fr. 19. 29.
ёруор Fr. 87. 3.
'́ \(\rho \in ́ \pi \tau \epsilon \iota\) I. 9.
épevaầ Fr. 16. 15.
'Epex \(\theta\) eís V. 45 sch.
є́ \(\rho \bar{\eta} \mu\) os IV. 47.
\({ }^{e} \rho i{ }^{\prime}{ }^{\prime} \epsilon \iota\) VI. 87 and sch.
є́рıкиóńs V. 39.
'Epıvís Fr. 82. 3 o.
é \(\rho i \pi \nu \eta\) V. 21 sch.
е́рккїos VI. 114.
ש̈ртєє II. 26.
ё \(\rho \rho \epsilon \iota \nu\) II. 33 sch.
 Fr. 82. 5 sch.; Fr. 137. 2 sch.
'́s IV. 44 ; VI. \({ }^{115} 5\); VII. 3.

є́ \(\sigma\) 人ós II． 102.
ëtas VI． 10.
ยัть Frs．129－31． 21.
ยтоя VI． 62 sch．；Firs．129－31． 6 sch．

єủayopia II． 67.
єủavtク́s VII． 18.
єủavj̀＇s Fr．19．25，v．1．єủnyís and vava－ rins（？）．
E v̌ßota V． 35.
є ن̉ßou入ía II． 50 ．
єu̇ía II． 52 ．
єієркйs IV． 45 ．
єن̉єтпрía VI． 62 sch．
єن̉Өєтеì II． 43 sch．
eì \(\theta\) éws Fr． 82.18 sch．
є \(\dot{\theta} \theta v \mu i ́ a\) I． 2.
єй́картоя II． 26.
єن̉к入є \({ }^{\prime}\) II． 103.

є \(\dot{\mu} \boldsymbol{\epsilon} \boldsymbol{\nu}\)＇s II． 78 ；V． 45.
єن̉vá Fr．I9． 20.
єỉvá̧єıv VI． 128.
civopia I．Io．
Eỉzávtıos IV．35， 60 sch．
єท̃oठนos II． 97.
\(\epsilon \ddot{\pi} \pi \epsilon \pi \lambda\) os Fr ．16． 10.
\(\epsilon \dot{\pi} \pi \lambda \epsilon \kappa \eta\)＇s III． 12.
Eũрıтоs IX． 49.
єірібкєє VI． 53.
єujpußias VI．103；IX． 4 I．
єчри́ота VI．134；Fr．82． 24.
єủpús VI．60，96， 120.
єن̉puфаре́т \(\rho\) а VI．II．
\(\epsilon ข ้ \phi \rho \omega \nu\) VI．I I 5 ．
є \(\tilde{v}_{\chi \in \sigma \theta a \iota}\) VI．64， 125 sch．
є́фoסos II． 43 sch．
＇́форầ II． 29.
ẽ̌єเข IV． 48 ；V． 39 ；VI．Col．xxv sch．， 57 ；
Fr．26． 3 ；Frs．129－31． 4 sch．
é \(\chi\) Opós II．32， 54 ．
ऽ́́ \(\theta_{\text {eos II．} 63 \text { ；VI．}}^{5}\) ．
̧áкотоs IX． 18.
Ź́aOos IX． 44 ．
کєuyvúvat Frs， 129 －31． 20.
Zeús IV． 4 I ；VI．r，94， 125 and sch．；Fr． 19． 21 ；Fr．92． 3 ；IX． 7.
Zqдóסotos IV＇． 58 sch．；VI． 55 sch．， 59 sch．， 118 sch．， 119 sch．， 183 sch．

グ II． 37 sch．， 43 sch．， 48 sch．；VI．II 8 sch．；
1ス． \(6,14-7,17\) sch．， 19.

ぞठ \(\eta\) II． 55 ．
\(\dot{\eta} \mu\) eis II． 55 sch．
ŋ́нє́тєроs II． 73 sch．， 77 sch．
і́ріка II． 29 sch．；Fr． 82.4 sch．
\({ }^{\circ} \mathrm{H} \rho a\) VI． 88.
च̈pws IV． 58 sch．（？）．
j́ovxía II． 33 ；IV＇． 7.
ฑัro七 VI． 118 sch．， 130 sch．（？）．
ŋ̈тор VI． 12.
\(\theta a \lambda i a\) VI． 14.
Өá \(\lambda \lambda \epsilon \iota\) II． 52.
Өацá II． 98 ；Fr．19． 27.
\(\theta\) \(\theta \mu ı \nu a ́ ~ V I . ~ 16 . ~\)
\(\theta\) á \(\mu \nu\) os IV． \(5^{2}\) ．
Oappeiv II． 23 sch．
\(\theta \in a ́ ~ I I I . ~ I 5 ; ~ V I . ~ C o l . ~ x x y ~ s c h . ~\)
Өєдiyodos I． 6.
\(\theta \in \mu i \xi \epsilon \nu 0 s\) VI．I 3 I．
Өє́диs Fr．84．I5 sch．；IX． 41.
\(\theta є р \dot{т} \boldsymbol{\omega}\) V． 45 ．
\(\theta\)＇́pos IX． 17 and sch．
\(\theta \epsilon \sigma \pi \epsilon ́ \sigma\) os VII．I．
Өétıs VI．84．
\(\theta\) cós II．54， 65 and sch．；IV．17；VI．51，61， 80，94，112；Fr．82．\＆sch．；Fr．95． 3 sch．
Ө่́ \(\omega \nu\) II． 37 sch．
Ө \(\dot{\eta} \beta a\) I． 7.
\(\Theta \hat{\eta} \beta_{u}\) Fr．82． 11 sch．；IX．9， 40 sch．
Өŋßaiou Fr．134． 7 sch．
Ońp Fr． 26.5.
\(\theta \nu \eta \eta^{\sigma} \kappa \epsilon \downarrow\) II． 55 sch．
Ooós IX． 7.
Ooós VI．I 8.
Oparús VI． 86 ；v．I．Fr．96．ı．
Өраїкіа II． 25.
Epovía II．I．
Opóos IX． 36.
Or বítpp Fr．16． 10 ；Fr．19． 22.
Өúeiv III． 96 sch．；V1． 62.
Qvófis III． 8.
Ójpa II．I sch．
＇Iá \({ }^{2}\) V II． 3.
iévat Fr．17． 2.
iematarl IV．31， 62.

\section*{INDICES}
iєصóv VI． 125 sch．
iєро́s III．93．iєрө́тато̀ Fr．82． 2 ；Fr．87．3． でऽєเข VI． 93.
î I． 5 ；IV． 31,62 ；VI． \(121,122\).
ỉ̛ios II．35，71，107；V．I et saep．；Fr． 28． 3 ．
«каঠ ．．．（єiкáoıos？）Fr．134． 3 sch．
iкєтєن́є兀 IX． 8.
iкขєí⿱日aı VI．II 6.
＂ì七ор VI．8i， 104 ；Fr．82． 32.
\(i \mu \epsilon \rho \ldots\) Frs．129－31． 18.
ïva VI．II sch．， 140.
＇lóvios Fr． 4 6． 4 （？）．
i \(\pi \pi ィ \kappa o ́ \nu\) II． 43 sch．
\(i \pi \pi t o s\) Fr． 26.3.
ï \(\pi \pi\) оя II． \(4 \mathrm{I}, 43\) sch．；VI． 107 ；Fr． 16. 6 （？）， 7.
imtoróas IX． 7.
introxápuas II． 104.
їадц Fr．22． 3.
\({ }^{\prime} \mathrm{I} \sigma \mu[\eta \nu \ldots\) Fr． 16 I ．
＇I \(\sigma \mu \eta \eta^{\prime} \iota \nu\) IX． 35 sch．， 40 sch.
＇I \(\sigma \mu \eta \nu^{\prime}\) os Fr．26． 7.
＇I \(\sigma \mu \eta \nu\) ós Fr．I38．I sch．（？）．
i \(\sigma\) ó \(\nu \quad \theta \mu\) ज Fr．90． 2.

ïбтa⿱日大ィ II． \(3^{8,} 99\).
ioxús IX． 4.
ix日ús IV． 20.
＇I \(\omega\) via Il． 3 sch．
Káó \(\mu\) оs IX． 44.
каієє Frs ． 129 －31． 19.
каєขós IV． \(3^{8}\) sch．
каıоо́s II． 31 sch．， 34 ．
ка́ланоs IX． 36.
калєìv II． 5 sch．， 96 ；Fr．19． 26.
кало́s II． 66.
ка́ \(\nu є \iota \nu\) II． 27.
катขós III． 96 sch．
Kap \(\theta a i a\) IV． 13.
карто́s IX． 14.
ка́ртıттоs v．l．Fr．19． 28.
Kaqta入ia VI． 8.
Kagtádıos Fr．I 34 ．I sch．
катá II． 43 sch．；IV． 6 ；VI．i I sch．
катаßaiveєу II． 34 ；VI．I 3， 60.
катак入и̧́єєข IX． 19.

катáqкıos VI．I 39.

катєрєímєєン Fr．82． 33.
катоєкєì IV． 60 sch．；Fr．139． 3 sch．
\(\kappa \epsilon(\nu)\) IV． 50 ；VI． 90.
кє́ap IV．6r sch．；Fr．82． 21.
\(\kappa \in \delta \nu\) о́s IV． \(5^{8}\) sch．；VI． \(12,105\).
кeivos II．68；Frs．129－3I． 19.
кє \(\lambda\) aঠєiv II．Iог ；VII． 17 ；v．l．Fr．16． 5.
\(\kappa є \lambda a \delta \epsilon \nu \nu o ́ s\) V． 46.
кє入aıvє \(\phi \dot{\eta}\) S VI． 55 ．
\(\kappa_{\text {кé }}^{1} \eta_{\boldsymbol{s}}\) Fr．46． 4.
\(\kappa \in \nu \epsilon \in \omega \sigma \iota\) IX． 16.
Kéos IV． 60 sch ．
кє \(\rho a v \nu o ́ s\) IV． 43.
Ké \(\omega\) s IV．7， 13 sch．
K \(\eta \phi \iota \sigma\) ós VI． 7 sch．
кi \(\omega \nu\) Fr．90． 4.
к入á̧єє Fr．82． 20.
к入âpos IV． 48.
\(\kappa \lambda \epsilon ́ \pi \tau \epsilon \iota \nu\) IX． 3 ．
\(\kappa \lambda i ́ \nu \epsilon \iota \nu\) Fr．84．I I．
\(\kappa \lambda \dot{\epsilon} \iota \nu \mathrm{VI} 58.\).
K \(\lambda \dot{u} \mu \boldsymbol{\nu} \boldsymbol{\sigma}\) Fr． 82.8 sch．
\(\kappa \lambda \nu \tau о ́ \mu a \nu \tau \iota\) VI． 2 ；Frs．129－31． 22.
кגขтós v．l．VI． 14 ；Fr．84． 13.
коьขós，кaтà коเขoû VI．II sch．

Kôas Fr．19． 22.
ко́ \(\boldsymbol{\alpha}\) VI． 138.
ко́ра VI． 16 ；Fr．16． 1 1；IX． 43.
корифа́ VI． 93 ；VII． 12 ；Fr．82． 23.
краívet II．103；IX． 34.
крátıбтоs Fr．ı9． 28 （v．I．ки́pтıбтos）．
кре́áa VI．i 18 sch．
K \(\rho \dot{\eta} \tau \eta\) IV． 50 sch．；Fr． 134.4 sch．
Kо́ólos VI． 68 ；Fr． 26.6.
Kро⿱宀八＇шу Fr．82，\({ }^{2} 5\).
K \(\rho\) ó \({ }^{2}\) os VI． 134.
кри́лтєєу VI． \(133^{8 .}\)
ктấधaı II． 59.
ктєivel VI．II9；inf．ктávє V VI． 119 sch．
ктіऍєє II． 29 sch．；V． 39.
куаขо́коноя v．l．VI． 83.
куауо́тлокоя VI． 83 （v．l．киауо́коноs）．
\(\kappa \hat{\nu} \mu\) V V． 100.
китáptoros IV． 50 and sch．
кúpoos Fr．116． 2 sch．
\(\kappa \omega \lambda \dot{v} \epsilon \iota \nu\) VI． 118 sch ．
\(\lambda a \gamma \chi a ́ v \in \iota \nu\) IV． 53.
\(\lambda o \mu \beta a ́ v \epsilon \iota \nu\) II． 3 sch．；VI． 130 ．
\(\lambda c i \mu \pi \epsilon \iota \nu\) III． 95 sch．
入av \(\begin{aligned} & \text { aiveı VI．} \\ & \text { I } 10 .\end{aligned}\)
入oós I． 9 ；II．3， 48 ；VI． 179.
ムatoíos VI． 15 ；Fr． 33.4 （？）．
＾at́ V． 44.
\(\lambda \epsilon ́ \gamma \epsilon \iota \nu\) IV． 39 ；VI． 11 sch．；VII． 13 ；Fr．
19． 16 sch．；Fr． 71.4 sch．；Fr．82． 33 ；
IX． 35 sch．；Frs． \(129-31.4\) sch．， 7 sch．
入eimeเv II．36，72， 108 ；IV．29， 45.
\(\lambda \epsilon u к \dot{\omega} \lambda \epsilon \nu\) Vs VI． 87.
\(\lambda \epsilon ́ \chi o s\) VI． 140 ；Fr．19． 10 sch．；IX．35， 42.
\(\lambda \epsilon ́ \omega \nu\) VI． 7 sch．
\(\lambda \eta \overline{\mu \mu}\) II． 37 sch．
入íav IV． 48 ；Fr．162． 1.
\(\lambda_{\text {ı }}\) ós VI． 64.
\(\lambda_{i} \sigma \sigma \epsilon \sigma \theta a\) VI． 3.
\(\lambda_{\text {tтадеи́eıl }}\) IX． \(3^{8 .}\)
入óyos II． 77 ；IV． 35 ；Fr．82． 24 ；Fr． 84. 14 sch．
入oเтós II． 33 sch．；Fr．84． 8.
＾ogías VI． 60.
入oхєia Fr．19． 10 sch．
入ขто́s Fr．86． 3 （？）．
\(\mu а і є \sigma \theta a \iota\) IV． 36.
на́кар IV． \(4^{6}\) ；Fr． 48.2.
\(\mu a ́ \lambda a\) Fr．84． 12.
далакós II． 52.
\(\mu a ̂ \lambda \lambda o \nu\) II． 48 sch ．
นáv II． 39.
\(\mu a \nu i \epsilon \iota \nu\) II． 46.
даขtcia Fr．65． 2 sch．
цаитєíєб日at Fr． 82.1 sch．；Fr．129． 3 sch．
щávtı Fr．26． 9 ；Fr．84． 13 ；Fr． 95.6 sch．（？）．
\(\mu\) д́руабөa九 II． 39.
на́татоя IV． 34.
на́тךр II．28， 29 ；III． 6 ；IV． 44 ；VI．12， 105 ；IX． 2.
да́тршs Fr．27． 2.
\(\mu \epsilon ү а \lambda\) óкотоз IX． 17 sch．
нє́үаs II． 26 ；IV． 48 ；VI． 90 ；Fr．84． 10.
\(\mu \epsilon \delta^{\epsilon} \omega \nu\) VI． 124 ．
Mелантоs IV． 28.
Mєлá \(\phi \nu \lambda \lambda o \nu\) II． 69 and sch．
\(\mu\) е́ \(\lambda_{\iota}\) VI． 59.
Me入ía IX．35， 43.
\(\mu \mathrm{f}\) 入iyapus III． 11 ；V． 47.
\(\mu \epsilon \lambda \lambda \epsilon \iota \nu\) II． 57 sch．， 77 sch．
\(\mu \epsilon \lambda \pi \epsilon \sigma \theta a t\) VI． 17 ．
\(\mu^{\prime} \dot{\nu}\) II． 53 ；IV． 22 ；VI． 51 ；Fr．84． 14 ；
Fr．90．3；Frs．129－31． 18.
\(\mu\) évos VI． 88.
де́ンтоя V1． 11 sch．
\(\mu\) н́pos IV． \(3^{8 .}\)
нєтá II． 43 sch．；Fr． 95.5 sch．（？）；IX． 2 I， 36 sch．；Frs． \(129-31.4\) sch．
\(\mu \in \tau а \pi о р є\) v́єб \(\theta a \iota\) IX． 49 sch．
\(\mu \in \tau \rho i \omega s\) I． 3 sch．
не́т \(\rho o \nu\) I． 3 ；VI． 12 I．
\(\mu_{\text {е́ } \chi \rho t ~ V I . ~} 62\) sch．
\(\mu \eta\) II． 26 ；IV． 16 sch．；VI． \(91,115\).
\(\mu \eta \dot{\eta} \delta \sigma \theta \theta a t\) IX．I．
\(\mu \eta\) дos IX． 37.
\(\mu \eta \nu\) II． 75
нйпотє II．36，72， 108 ；Fr．84． 14 sch．
\(\mu \dot{\eta} \tau \in \mathrm{VI}\) ． 116 ．
\(\mu\) нуvívaı Fr．19． 29 ；IX． 43.
\(\mu \iota \nu\) II．73；VI．II5（v．I．\(\nu \iota \nu)\) ；Fr．19． 24 （v．l．\(\nu t \nu), 26\) ；Frs． 129 －31． 18.
Mขанобúva VI． 56 ；Fr．I6．II．
ноїра II． 64.
ноípıos（ \(\mu v \rho \imath\) เos Pap．，v．1．Пú \(\theta\) ıos）VI． 118.
Mô̂́a IV． 24 ；VI． 181.
Moıraios IX． 39.
Modoббis VI． 109.
\(\mu о \lambda \pi a ́\) II． 96.
ноvapхєiv IV． 29.
но́pıov III． 95 sch．

Mov̂бa Fr．95． 3 sch．
но́ \(\chi\) oos II． 33 and sch．
Mvpui8óves VI． 107.
vaitiv II． 24 ；IV． 2 I；V． \(3^{6 .}\)
Nais II．I．
vaós III． 7.
ขẫos V． 39 ；VI． 124.
ขavarìs（？）v．l．Fr．19． 25.
עautpútavis VI．I 3 o．
vaítas Fr．19． 26.
\(\nu\) ข́кия VI． 98.
\(\nu\) ข́ \(\mu \epsilon \iota \nu\) VI． 54 ；Fr．33． 4.
ขєо́то入เs II． 28.
Nєоттодєнеs VI． 102.
\(\nu\) ข́ós VI． 122 ；IX．20．\(\nu \epsilon \dot{\omega} \tau \epsilon \rho о\) IX． 6.
ข́́фos VI． 92.
\(\nu \eta \lambda \eta_{s}\) Fr．26． 5.
ขท̄oos IV． 16 sch．
ขเкầ II． 63 sch．
ขıкафпріа Fr． \(4^{8 .} 3\).
vík II． 43 sch．， 106 sch．

\section*{INDICES}
\(\nu\) viv． 15 ；v．l．VI． 115 ；VI． 180 ；v．l．Fr． 19． 24 ；Fr．82． 32 ；IX． 47.
ขфєто́s IX． 14.
עоєì II． 54 ．
ขо́тиа I． 3 ；1I． 43 sch．
ขо́ноя II．IO2．
ขouós IV． \(5^{1}\) ．
yóos V． 45 ．
ขотєрós IX．I 7 sch．
vóroos IX． 17 and sch．
\(\nu \grave{\nu}\) I．5；VI． 12 I．
vov VI． \(5^{8 .}\)
\(\nu\) ผิто้ VI． 139.
\(\xi \in \nu i a\) VI．61．

\(\delta\) demonstr．，tâs Fr．19．28．тب̣ IX． 44. тоí II． 59 ；IV．42．тà каì тá VI． 132.
ö̀̇ II．3；Fr．82． 29.
óoós IV．6；Fr．16．I5；IX 4.
óduv \(\quad\) pás I．I．
\({ }_{\delta} \theta_{\epsilon} \nu\) Fr．I 34.5 sch．
oiкề V． 42.
оїко \(\theta \in \nu\) IV． \(3^{2}\) ．
oikóधєтоs I． 4.
oíkas IV． 45 ．
oipas VI．II5．
oiov II． 3 sch．， 43 sch．， 55 sch．
oì \(\chi \in \sigma \theta a \mathrm{II}\) II． 55 ；IV．6I sch．
oímponólas IV． 3 o．
ӧктผ́ III． 10.
ä \(\lambda\) ßos II． 60 ；VI． 133 ；IX． 9.
¿גizos IV． 52.
ò ooós Fr．82． 21.
ödos IV． 45.
òлофи́ \(\rho \epsilon \sigma \theta a t\) IX． 21.
＇O \(\lambda \dot{v} \mu \pi \imath o s\) VI．I．
＂ \(0 \lambda \nu \mu \pi o s\) VI． 92.
＂Oипроs Fr．17．I ；Frs．129－31． 4 sch．
\({ }_{\text {ö }} \mu \boldsymbol{\lambda}\) оя VI． 108.
\({ }^{\circ}{ }^{\circ} \mu \mu а\) IX． 2.
ö \(\mu\) vivaı VI． 112.
одоооя II． 37 sch．
ö \(\mu \phi\) III． 94 ；V． 48.

\(\delta_{\boldsymbol{\rho}}^{\boldsymbol{\omega} \nu \nu \mu о \text { Fr．} 134 .} 6\).
＇Oveitys IV．61 sch．（？）．
\({ }_{\mathrm{d}}^{\mathrm{g}} \mathrm{\epsilon} \dot{\epsilon} \boldsymbol{\omega}\) II． 48 sch．

óтía VI．го1．
\({ }_{0} \pi \lambda \frac{}{}{ }^{2}\) Fr． 93 ． 4.
\({ }_{\text {öпоv II．}} 5\) sch．；VI． 125 sch．
đ́pầ I．3；VI． 106.
ӧркоs Frs．129－3I． 4 sch．
ó \(\rho \nu v \in \epsilon \iota\) IV．II．
＇Oрботрíaıa IX． 47.
＇Opruyía Fr．19． 26.
ópфavós VI． 9.
ös II． 79 sch．；III． 95 sch．；IV． 36 ；VI． 62
sch．，77，104，113， 118 sch．；Fr．82， 27 ； IX． 41 ．
öбos，ö \(\sigma \sigma o s\) VI． 87,89 and sch．
б̈бтє VI． 63.
ö́cis Fr．i6． 14.
öтє Fr．86．I．
ӧть IX． 2 I．
oủ，oủk IV．28， 53 ；VI．94， 127 ；Fr．19． 21 ； Fr．86． 3.
oùdé II． 55 sch．；VI．ıio，in 1 ．
oủdeís IX． 2 I．
ойкє́т兀 II． 55 sch．
oủ óreves IX． 15 ．
оиี้ยкєข VI． 127 ．
Oúpavós Fr． 16.10.
оӥтє VI．105， 106.
oưros II． 43 sch．， 69 sch．， 105 sch．；VI． \(5^{1 \text { ，}}\) 57 ；Fr．16． 16 ；Fr． 82 ． 17 sch．；IX． \(3^{6}\) sch．；Frs．129－31．i sch．， 4 sch．；Fr． 162. 3 sch．oütcs Fr．69． 1 sch．；Fr．82． 35 sch．
ó \(\psi i\) itepos VI． 82.
\(\pi а \gamma \epsilon \tau o ́ s ~ I X . ~ 17 . ~\)

тá \({ }^{2}\) a Fr．82． 26.
пátos Fr．82．17 sch．
тauáv II．4，35， 7 I ，107；V． 47 ；VI． 182.
\(\pi a \imath{ }^{\prime} \omega \nu\) VI．121， 127.
Пaioves II．61．
\(\pi\) ais II． 2 ；IV． 60 sch．；V． 44 ；VI．12，74， 77 （ \(\pi\) áis）， 83 ， 134 ；Fr． 28.3.
пá入aı II．56；Fr．19． 26.
\(\pi a ́ \mu \pi a \nu\) IV． 47.
\(\pi а \nu a \pi \epsilon i \rho \omega \nu\) Fr．82． 24.
Пávówoos V． 45 sch．
Пave \(\lambda \lambda a ́ s\) VI． 62.
חáv⿴囗oos VI． 74.
\(\pi a \nu \tau \epsilon \lambda \eta^{\prime} \mathrm{I}\) I． 5 ．
таvтoঠaтós II． 43 sch．

тíp, тара́ VI. 17,120 ; 1X. 17 sch.; Frs. 129-31, 18, 19.
таратиүха́vè 11. 43 sch.
паре́хен IV. 24.

Пápıs VI. 79.

\(\pi\) ápos IN. 6.
\(\pi\) âs IV. 6 ; VI. 55, \({ }^{3} 32\); Fr. 82. 32 ; Fr. 84. 10 and sch., 15 sch. ; Fr. 87. 3 ;IX. 21.

Паб»фáa IV. 38.
\(\pi\) á \(\sigma \notin \iota \nu\) IX. 2 I .
\(\pi a \tau \dot{\eta} \rho\) VI. 56,118 sch.; Fr. 21. 10; Fr. 82. 8 sch. ; IX. 45 ; Frs. 129-31. 9.
\(\pi\) а́т \(\boldsymbol{\text { tos II. }} 2\) sch.
патрis IV. 29.
татры́เos VI. 106, 168 (?).
\(\pi \epsilon\) ôà VI. 86.

\(\pi \in \delta i o n\) IV. 16 and sch.
\(\pi \epsilon ́ \delta o \nu\) Fr. 82. \(3^{2}\); IX. 16.
\(\pi \epsilon \zeta \epsilon \dot{v} \epsilon \downarrow\) II. 43 sch .
\(\pi \epsilon i \theta \in \iota\) VI. 13, 52 ; Fr. 19. 20.
\(\pi \epsilon \iota \rho a ̂ \nu\) IV. 46.

\(\pi\) tétas IX. 35.
\(\pi є ́ \mu \pi \epsilon \iota\) IV. 43 ; Fr. 88. 1.
\(\pi \dot{\varepsilon} \nu \theta\) os IV. 53 .
пеขтátodıs IV. I3 sch.
\(\pi \epsilon \pi \rho \omega \mu\) évos Fr. 82. 26.
\(\pi\) траіреє Fr. 2 I. 9.
тépà II. 6r.
пе́руацог VI. 96.
\(\pi \dot{\epsilon} \rho \theta \epsilon \iota\) VI. 91.
перi IV. 58 ; VI. 62 sch., \(95,118,125\) sch.
\(\pi \in \rho i a \lambda \lambda a\) IX. 48.
\(\pi е \rho ı\) óáos IV. \(5^{1 .}\)
Пépoaı II. 29 sch.
пе́т \(\rho a\) II. 98 ; Fr. \(19.2_{5}\).
П \(\eta \lambda \epsilon\) tioas VI. 99.
П пие ós Frs. 129-31. 4 sch.
\(\Pi\) перídes VI. 6.
חiv8apos Fr. 82. 3 sch.; IX. I sch.
חiveoos II. 97.
\(\pi\) tятós VI. 85 .
\(\pi \lambda a ́ \sigma \sigma \epsilon \nu\) II. 30.
\(\pi \lambda \tilde{j} \rho \in \mathrm{Fr}\) Fr. 82.17 sch.
\(\pi \lambda\) оítos IV. 46.
\(\pi \nu e i v ~ F r . ~ 96 . ~ 2 . ~\)
по́धep VI. 50,130 .

тоітип IX. 37 sch.
тоьа VI. 172.
по́лєноя II. 43 sch., 57 sch., 59, 105 ; IV. 40 ; IN. 13.
тодépeos II. \(30,31 \mathrm{sch}\).
толасіохоs Frs. 129-31. 12.
Поддás VI. 89.
\(\pi\) дддtós Fr. 33. 3.
\(\pi\) ódes II. 3 sch., 29 sch., 48 sch. ; IV. I3
sch., 37 ; V1. 104 ; Fr. 99. 2 ; IX. 44.
\(\pi\) плдтev́elv II. 48 sch.
тодла́кь VI. 182.
\(\pi 0 \lambda u ́ \delta \omega \rho o s\) II. 60.
тоди́ \(\mu \eta \lambda\) os V. 38 (v. I. фєрє́ \(\mu \eta \lambda o s\)).
пo \(\lambda\) ús II. 48 sch., 75 ; IV. 50 sch.
тоди́ \(к к о т о я ~ I X . ~ I . ~ . ~\)
\(\pi\) дरíctovos VI. 99.
полеiv II. 66.
по́vos VI. 89 ; Fr. 16.17.
то́тtıs VI. \(8_{3}\); IX. 47.
то́vtos VI. 124 ; IX. 16.
\(\pi \sigma \rho \theta \mu{ }^{\prime}{ }^{\prime}\) Fr. 139. 2 sch. (?).
\(\pi\) ópos Fr. 162. 2 sch.
Побє \(\delta \delta a ̂ \nu\) II. 2.
Побєıסávtos II. 4 I.
\(\pi\) тотацо́s II. 73 ; Fr. 13 8. 1 sch.
тот́́ IV. \(4^{2}\); VI. 73, 135 ; Fr. 82. 5 sch., 28 ; IX. 4 I.
\(\pi\) тоті II. 75 ; III. 14.
тотєкиреї II. 45.
по́тиа IX. ıо.
moús VI. 18.
\(\pi \rho র ́ \sigma \sigma \epsilon \iota \nu \mathrm{Fr} .8_{4}\) I 12.
пріацоя VI. 113.
\(\pi \rho i v\) I. I, 2.
\(\pi \rho o ́\) VI. 89 ; VII. 15.
\(\pi \rho о \beta\) ィßásév II. 106.
\(\pi \rho о \beta \dot{\omega} \mu\) оя \(\operatorname{Frs} .129-3\) I. 20.
\(\pi \rho \circ \theta \nu \dot{\eta} \sigma \kappa \epsilon \epsilon \nu\) II. 56 and sch.
\(\pi \rho o ́ \theta v \rho o v\) VI. 134 sch., 135 .
\(\pi \rho о \lambda\) е́ \(у \in \epsilon\) II. 77 sch .
\(\pi \rho о \mu a ́ \theta \epsilon \epsilon a \mathrm{Fr} .82 .35\).
\(\pi \rho \circ \pi a ́ \rho o t e \nu\) II. 70.
трós II. 43 sch., 57 sch.; VI. I, II 4 ; 1X. 7. \(\pi \rho п \sigma\) ó 8 เov Fr .108 sch. (?). тробтактікиิs VI. 177 sch . \(\pi \rho о т \rho \dot{\epsilon} \pi \epsilon \iota\) Fr. 82. 10 sch. трофátas VI. 6 ; 1X. 42. \(\pi \rho u ́ t a v i s ~ V I . ~ 69 . ~\)
\(\pi \rho\) ต̂tos II. 76 ; Fr. 107 sch.
mтavós \(\mathrm{Fr} . \mathrm{I} 6.8\).
Пúधıos v．l．VI． 118 ；IX． 43.
\(\Pi \nu \theta \dot{\omega}\) VI．I sch．， 2.
\(\Pi \nu \theta \omega \nu o ́ \theta \epsilon \nu\) VI． 72.
\(\pi \hat{v} \rho\) II． 30 ；III． 95 sch．；VI． 98 ．
\(\pi \hat{\omega}\) s IV． 49 ．
peiv VI． 7 sch．；IX． 18.
\({ }^{\prime} і \boldsymbol{\prime} \pi \tau \in \iota \nu\) Fr．19． 25.
pó \(\theta\) ıos VI． 129.
ба̂ \(\mu\) IX． 13.
бацаiveı Fr．82． 23.
\(\sigma a o ́ \phi \rho \omega \nu\) IX．46．\(\sigma \omega ́ \phi \rho \omega \nu\) I． 10.
бє́̉as II． 44 ；VI． 97.
\(\sigma \epsilon v ́ \epsilon \sigma \theta a t\) IX． 5 ．
\(\sigma \eta \mu a i v \epsilon \iota \nu\) III． 95 sch．
б日ध́vos III．93；IX． 14.
бкıá̧є九ン I． 2 ；VI． 180.
бкıб́єяs VI．I 7.
\(\sigma к \lambda \eta\) ро́s Fr．82． 3 I．
\(\sigma к о ́ т є \lambda о s\) IV． 21.
бкото́s VI． 94.
ミкирó \(\theta \in \nu\) VI． 102.
бós VI． 133 ．
бофіа Fr．16． 15 ；IX． 4.
roфós VI． 52.
бтєúठєเข Fr．82． 20.

otopás V． 38.
бтатเá̧єıv II． 48 sch．
бтá \(\sigma \iota\) IV． 53 ；IX． 15.
бтє́ \(\rho є \epsilon \nu\) IV． 34 ．
бтépvò IV． 14.

aто⿱亠乂⿰丿⺄⿱㇒木乃小年 Fr．82． 22.
бтратєúє \(\sigma\) Oà Fr．82． 10 sch．
бтратós II． 73 sch．，75， 104 ；IV． 42 ；IX． 44.
£ \(\tau \dot{\prime} \xi\) Frs． \(129-3\) I． 4 and sch．
\(\sigma v\) II． 3 （ \(\sigma \epsilon \in \epsilon \epsilon\) ）and sch．；III． 13 （ \(\tau i \nu\) ）；VI． 1， 127 ；Fr．82． 25 ；IX．7， 43 ；Frs． 129－31． 18 （riv）．
бvүүє́vєıa IV． 33 ．
бขцфє́єєє II． 57 sch．
бúpфороs Fr．26． 12.
สúv II．59，74， 80 ；V． 18,47 ；VI． 4.55 ；
Fr． 26.4 ；Fr． 94.3 sch．；Fr． 112 ． 1.

avváфeıa Frs．129－3I． 4 sch．
бvขép \(\notin \sigma \theta a t\) VI． 125 sch．

бvขウ่ \(\theta \omega s\) VI． 118 sch．
ovvteivetv IX． 49.
бvขтє入єì II． 65.
Eúpıos Fr．I6． 7.
\(\sigma \phi \in i ̂ s, \sigma \phi l(\nu)\) IV． 40 ；V．40．\(\sigma \phi i \sigma \iota \nu\) Fr．84．II．
\(\sigma \chi\) є \(\delta\) óv I．I ；II． 73 ；VI．IO9．
\(\sigma \dot{\omega} \phi \rho \omega \nu\) I．10．\(\sigma a \delta ́ \phi \rho \omega \nu\) IX． 46.
Tápтapos IV． 44.
тẫpos VII． 14 ．
та́фós VI． 98.
тaұútovs II． 100.
тахús Fr．96．I（v．1．Opaoús）．
тє \(\theta \mu\) о́s IV． 47 ；VI． 57.
теíxos II． 37.
\(\tau \epsilon \lambda \epsilon i ้\) II． 65 sch．；Fr．19． 30 ；Fr．82． 25.
\(\tau \epsilon \lambda \epsilon ́ \omega s\) Fr．82． 19 sch．
тє \(\overline{\text { evtaios II．} 105 .}\)
т́́dos Fr． 2 I． 7.
\(\tau \epsilon ́ \mu \epsilon \nu 0 s\) VI． 120.
тєós VI．I I．
т́́pas IV． 39 ；Fr． 82.34 ；IX．Іо．
\(\tau \epsilon \cup ́ \chi \epsilon \iota \nu\) VI． 132.
тє́хขа IX． 39.
Té́s II． 3 sch．， 29 sch．
Tท́to II． 3 sch．
T \(\eta \lambda \ldots\) IV．6ı sch．
Tívépos IX． 4 I ．
tiєє IX． 48.
rı日́vaı IV． 30 ；VI． 8 1， 99 ；IX．3， 19.
тіктєเข II． 29 sch．；Fr．82． 30 ；IX． 42 ；
Frs．129－31． 21.
тıá VI．I I and sch．， 118.
ris Fr．19．20；IX．I．
tis I． 2 ；II． 3 I， 66 ；IV． 25,60 sch．；VI． \({ }^{1} 30\) sch．；Fr． 26.4 （？）；Fr． 95.2 sch．（？）． 5 sch．；IX．6，9，13，34；Frs．129－31． 4 sch．
Tıтар \(\eta \sigma\) ıos Frs．129－31． 4 sch．
\(\tau \lambda a ̂ \nu\) II． 64.
тó日ı VI．I5．
тои IV． 21,40 ；VI． 70 （？）， 132.
тоь́об́є Fr．82． 23.
тоьоิтоs II． 43 sch．
токєข́s II． 57.
\(\tau о \lambda \mu a ̂ \nu\) VI． 94 ．
Tópapos VI． 109.
то \(о\) офо́ \(о\) о Fr．19． 30.
то́тоз II． 5 sch．， 69 sch．
róre VI． 137.

т \(\rho\) axús II． \(3^{2}\) ．
треї IV． 40.
трє́тeiv II． 43 sch．；IX． 9
тptóסous IV． 43.
т \(\rho\) пфós II． 63 ；VI． 14.
T \(\rho \omega i ́ a\) VI． 75.
тvyגáveıv II． 76.
тиф \(\lambda_{\text {ós Fr．16．}}\) з．
ти́ха Fr． 2 I． 8.
íßpisetv II． 48 sch．
ṽ \(\delta \omega \rho\) VI． 7 and sch．， 134 ；IX． 18 and sch．； Frs．129－31． 4 sch．
viós IV．38， 61 sch．；Frs．129－31． 21 ；Fr． 152． 2.
ข́pétépos V． 46 ；VI． 139 ；IX． 37.
\(\dot{v} \mu \nu\) ．．．Fr． 21 I． 10.
ípleì IV． 4 sch．；Fr．94．I sch．
\({ }^{3} \mu \nu\) оз Fr．16． 5.
ímavтเá̧єเข II． \(3^{2}\) ．
vit́́ II． 63 sch．；VI． 62 ；Fr．84．14， 15.
ímepyavầ III． 95 sch．
íт́́ртатоя II． 68 ；Fr． 86.4 ；IX． 2.
íл́́рфатоs IX． 15.
ítиадє́є Fr． 82.34.
inó Fr．82． 28 ；Fr． 90.4 ；IX． 34.
íтоцévєเข II． 65 sch．；Fr．144． 2 sch．

í \(\psi \eta\) 入ós II． 98.
v́廿iконоя VI． 95.
ข̃ \(\psi\) เбтоs II． 38.
\(\dot{v} \psi \delta \theta \epsilon \nu\) III． 1 I．
фаєขvós III． 17 ；VI． 126.
фаiveıv Fr．19． 25 ；Fr． 90.2.
фavepós VII．13．фavepḕs Fr．74． 2 sch．
фе́ \(\quad\) yos II． 68.
фе́рєєン II．33，43， 57 ；IV． 25 ；VI．76， 124 sch．；Fr．82．29；IX． 13.

\(\phi\) tiats IX． 14.
\(\phi \theta o v e i v ~ I I . ~ 46 ~ s c h ., ~ 55 ~ s c h . ~\)
фӨóvos II． 55 ．
\(\phi \iota \lambda . .\). VI． 178.
\(\phi \iota \lambda a . .\). VII． 7.
фi入eir VI． 67 （？）．
фı入 \(\eta \sigma \iota \sigma \tau\) ́́ \(\phi\) avos I． 8.
філı \(\pi \pi\) os I． 7.

фiגos II． 31 ；IV． 33 ；VI．12， 120.
\(\phi \lambda \epsilon ́ \gamma \epsilon \iota \nu\) II． 67.
фонико́тєऽऽа II． 77.
фо́vos VI． 86.
форєiv Fr．19． 27.
фра̧́є兀 Fr．49． 1.
фр \(\dot{\nu}\) IV． 50 ；Fr． 16.13 ；IX． 37.
\(\phi \cup \lambda a ́ \sigma \sigma \epsilon \iota \nu\) VI． 9 I ．
фúperv II． 73 and sch．
\(\chi^{\text {á } \lambda к є о з ~ I I . ~} 100\) ；VI． 7 sch．；Fr．90． 3.
\(\chi^{a \lambda к є ́ о \psi ~ I I I . ~} 94\).
\(\chi^{a \lambda \kappa о \theta \dot{\omega} \rho a \xi}\) II．I．
\(\chi^{\text {адкокорибтás VI．} 108 .}\)
\(\chi^{a \lambda \kappa o ́ t} \boldsymbol{v \lambda}\) os VI． 7 and sch．
х＇́pıs II． 103 ；IX． 37.
Xápıtes III． 2 ；IV．I 3 ；VI． 3 ；Fr．II2． 1.
\(\chi\) хaбرátoo VI． 7 sch．
\(\chi^{\theta \omega \dot{\nu}}\) II． 60 ；IV．14， 42 ；VI．16；Fr． 84.
14 ；IX． 17.
хорєи́єєン IV． 2 （？）．
\(\chi\) र́pevats VI． 9.
Xopós II． 99 ；III． 101.

\(\chi \rho \hat{\eta} \mu \alpha\) VI． 118 sch．
\(\chi \rho \eta \sigma \mu\) о́s Fr． 82.9 sch．
хрךотท́pเo้ VI． 7 I ；VII． 18 ；IX． 40.
ұро́vos II． 27 ；III． 14 ；IV． 11 ；VI． 5.
x \({ }^{2}\) v́reos VI．1，92， 137 ；Frs．129－31．I sch．
X \(\rho\) v́aıл \(\pi\) os Fr．84．14 sch．（？）．
хрибо ．．．Frs．129－31．10．хрибо－．．． 111. 13.

хрибоко́мая V． 4 I ．
\(\chi\) \(\bar{\omega}\) роs IX． 49.
廿óфos VI． 8 and sch．
£ VI． 125 ；Fr．28． 2 ；Fr．82． 24 ；IX．2， 10.
※ IV． 3 I， 62.
ఱ่ón II．IO2 sch．，IX． 36 sch．
ف̀xeavós Fr．84．I 5 and sch．；IX． 43.
\({ }^{*} \Omega \rho a t\) I． 6.
äpıos III． 14.
\(\dot{\omega}\) Frs．129－3I． 4 sch．， 6 sch．
өфє́入єıa II． 37 sch ．

\section*{INDEX III． 842.}

Numerals in thick type refer to columns．

ảみаӨóv 12． 28 ；20． 34.
áүадактєì 1． 9 ；18． 24.
ả \(\gamma \gamma_{\epsilon} \lambda \lambda_{\epsilon \iota \nu} 15.3\) ．
aี้ \(ү\) เข 17． \(23 ; 19.14,20 ; 20.15,36 ; 21\). 4 ；Fr． 7 I． 5.
 18． 33 ；19． \(18,26,35\) ；20． 4,15 ；21．4， 30.
＇A \({ }^{\text {anias 1．} 1.30 .}\)
ả \(\gamma \mathrm{o}\) á 6． 25 ；11．16， 19.
àypós 14.5 ．
ả̊̌кєì 15． 10.
á \(\delta\) рótatos 3． 7.
ả́í 5． 39 ；14． \(3 \mathrm{I}, 40\) ；16． 3 ；20． 23. aieí 3． 13 ．
＇A \(\begin{aligned} & \text { j̄vat 2．} 10 .\end{aligned}\)
 13．1， \(15,22,24,30,36,40\) ；14．14．
\({ }^{\prime} \mathrm{A} \theta_{\eta}^{\prime} \nu \eta \theta_{\epsilon} \nu 1.2\).
aiyta入ós 18． 18.
Аїүเขa 1． 23 ；2． 35 ；3． 6.
aipeiv 1．17 ；6． 25 ；10． 6 （？）；Fr．13． 4 （？）；
15． 2 I ；16． 36 ；19． 7 ．
aìซӨávє \(\sigma\) Oat 3． \(3^{2}\) ；14． 28 ；17． 23.

uiтia 1． 18 ；12． \(3^{8 ;} 14.24\).
aїтtos 11． \(3^{6}\) ；16． 9 ．
àќ́paıos 20． 29.
àкıขסขขо́тєрог 7． \(3^{8}\)（？）．
đ́кодоv \(\theta\) єì 17．13．
àкотштє́ршs 21． 9.
а̉кои́єєข 2． \(3^{6 ;} 18.23\) ；21． \(3^{6 .}\)
＇Акраіфиıо 12． 20.
а́кро́тодєь 17． 35.
A入av［．．］vioov ？（gen．）17． 33.
＇А入ıа́ртьо 12．17．

＂Акт由（？）3． 26.
à入入á 6． \(3^{6}\) ；Fr．II． 10 ；12． 2 ；13．1， 28 ； 15． 10,20 ； 17.8 ；20．8；21．8． \(\mathrm{a}^{2} \lambda \lambda^{\prime} \eta^{\prime}\) 5． \(4^{2}\) ．
à \(\lambda \lambda \eta{ }^{2} \lambda \omega \nu\) 12． \(33 ;\) 14． 32.
ä入入os 2． 16 ；6． 27 ；7． 42 ，43；8． 41 ； Fr．11．9；11． 26 ；12．13；14．3． 19 ；

15． 29 ；17． 1 II ；18． \(2 \mathrm{I}, 30\) ；20． 2 I ． ä \(\lambda \lambda \omega_{s}\) 5． 20 （？）．
ӓ \(\mu\) 6． 5 ；7． 6 ；10． 2,3 ；13． 18 ， \(19 ; 18\). 34.

＇А \(\mu \phi і \pi\) одıs 2． 24.
á \(\boldsymbol{\text { ф́́t }} \boldsymbol{\tau} \boldsymbol{\rho o s} 5.43\).
ä \({ }^{2}\) 14． 28 ；16．7；17． 20.
àvaßaiveเข 11． 20 ；15． \(3^{8 ;}\) ；16． 25.
ảvá \(\notin \epsilon \nu 1.7\) ；6． 5 ；15． \(3^{6}\) ．
ảvaıpeì 20． 2.
àvakpá̧є兀 11． 21.
àva入а \(\beta\) ßávєı \(3.3^{2}\) ；6． 39 ；20．17．
àขа入і́бкєเข 12． 23 ；16．13．

àvaтє́ \(\mu \pi \epsilon \iota \nu\) 7． 22.
ảขa⿱т兀аขpov้̂ 18． 22.
àva才 \(\omega \rho \in i ̂ \nu ~ 15 . ~ 5, ~ 30 . ~\)
à \(\nu \delta \rho a ́ \pi о \delta o \nu 13.31\).
＇А \(\downarrow \delta \rho о к \lambda \epsilon\) є \(i \delta a s ~ 14.6,35 ; 15.2 ;(-\delta \eta s) 13.11 ;\)
（＇А \(\quad\) ӧрокл \(\bar{s}\) ）12． 34.
ảขท́p 3． 37 ：11． 22 ；14． 22 ， 35 ；16． 37 ．
à \(\nu \theta a \rho \pi a ́ \zeta є เ \nu ~ 14 . ~ 33 . ~\)
\({ }^{a} \nu \nu \rho \omega \pi\) os 6． 26 ；17．16， 25.
àvıбтávaı 1． 15 ；6．5，1 1， 17 ；19． 24 ； 20. \(27,36\).
àvtí Fr．II．I3；14．33；21．I5．
＇Avti \(\theta\) єos 12． 34 ．
àvтı入a \(\beta\) ßávєเ 17． 2 I．
àvтเтןáттєเข 1． 27.
＂Avutos 1． 16.
\({ }^{\prime} \nu \omega \omega\) 20． 37 ．
a̋ktos 21． 3 I．
ả \(\grave{\circ}\) иิ้ 14． 40 ；15． 6.
àта \(\gamma \gamma \hat{\text { ® }} \lambda \lambda \epsilon \iota \nu\) 3． 43 ．
à \(\pi \alpha ́ \gamma \epsilon \iota \nu\) 6． 5 I， 53 ；19． \(3^{6}\) ；21．5， 19.
àтаүорєن́єเข 16． 20.
ḋтa入入áттєєข 2．II．
ä \(\pi\) as 1． 25 ；6． 13,33 ；12． 6,27 ；13． 34 ；
18． 15 ．
à \(\pi\) át 12． 2 I ；15． 12.
à \(\pi \epsilon \iota \lambda \in i ̄ \nu 13.23\)（？）．
à \(\pi \epsilon เ \pi \epsilon i ̄ \nu 15.6\).
а̇лє́ \(\rho \chi є \sigma\) Өaı 15． 32.
＇Amias \(\pi \epsilon \delta i o n ~ 19 . ~ 2 . ~\)
d̀тเє́vut 15． 25 ；19． 26.
ӥтเのтоs 15． 8 ．
ám \(\lambda \omega\) ¢ 12.25 ．
«̇то́ 6． 15 ；13． 35 ；14． 17,30 ； \(16.3^{8} ; 18\). 2；21． \(3^{2}, 33,37\).

àmod̊̊óvat 6． \(3^{1} ; 16.3^{2}\).
ג̇поөข！！\(\sigma \kappa є \iota \nu\) 19．20，33．
íтокрои́єเ 17． 28 （？）．
ひтоктєірєเข 1． 33 ；11． 25 ；18．22， 29.
àтоданßìvєєข 3． 18.
ảто入aúєเv 12． 26.
a่тплข์єเข 1． 18.
ג̀тотєєа̄́テӨa، 15． 26.
«лолє́ \(\mu \pi \epsilon \iota \nu\) 1． 27 ；3．4．
«ітот еiv 17．\(^{2} 3\)（？）；18．1．
áто́рӨŋттоs 20． 9 ．
à \(\pi\) ópp \(\quad\) tos 1． 4.
а่тобтє่ \(\lambda \lambda \epsilon \iota \nu\) 1． \(3^{2}\) ；7． 35 ；15．14；16． 20 ； 21． 10.
äтотөө́vat 21．34．
ảтофєи́үєเข 20．I 4.
ảлохตрєiv 6． \(29 ; 15.19\).

йтрактая 15．І 4.
äлтєเข 17． 27.
＇Арүєio九 2．8， 16 ；14．13．
а́ \(\rho\) үи́рьог 13． 32 ；16．22，23． 28 ；21． 23.
＇Apuíos 7．23，36， 37 （？）；8． \(24 ; 16.27\) ．
＂рıбта 2．19；10． 18.
－apos 3．II，19， 3 O．

\(\dot{\alpha}_{\rho} \pi \pi \dot{\zeta} \zeta \epsilon \iota \nu 15.1\) ．

＇Aртафє́ \(\rho \nu \eta\) р 3． 37 （？）．
ӓрть 11． 28

21．37．\(\tilde{\mu} \rho \chi \omega \nu 11.25\) ；12． 21,26 ；16．11； 18． \(25,29\).
＇Apðє入aís 3． 22 ；Frs．I 9.8 （？），20．II（？）．
а́pxク́ 3． 30 ；16． 11 ；17． 36.
＇Avias 12． 35 ；（Avtias）13．13．
à \(\sigma \mu \epsilon \nu \in ́(\tau т a \tau a 15.1\).
à \(\phi a \lambda \omega \bar{s}\) 19． 12.
ӓтє 6． 20 ；13． 34 ．
ӓтактоs 19．7．व̇ти́ктшs 8．9．
’Aттıкク́ 2． 39 ；13． 33.
＇Aтtıкі互เข 12． \(3^{8}\) ；13． 4 （？）．
aข̉もเร 8．39；15． 19.

Aúdis 13． 25.

aùто́vo \(\mu\) оs 19． 5 ．
aủtós 1． \(3,5,17,33 ; 2.10,13,18 ; 3.2\) ， 29,42 ；5． 3 I ；6．3，7， 8 （？），14，20， 2 I ， \(22,25,27,36,40\) ；7．17，20；8．7，39； 11． \(15,20,28,35 ; 12.23\) ；13． 11,20 ， \(24 ; 14.1,3,9,15,22,34,40 ; 15.4,8\) ， 11，12，26，！39；16． \(17,27,3^{2}\) ；17． 7 ． \(20,28,3^{8}\) ；18．5．І5，16， 29 ；19．4，5． \(8,12,13,16,29,35 ; 20.9 .12,13,17\) ， 19，20， 26 ；21．11，15，24，32， 34 ． aùtoû 3．3，19；6． 30 ；20． \(3^{6}\) ；21．I4． ó aùtós 3． 23 ；12． 19 ；19． 28,36 ．
аи์той 3．4；6．8（？）；11．12；13．17，35； 14． 39 ；15．7， \(32 ; 16.14,21,3^{6} ; 18\). 7；19． 33.
á \(\phi \theta o ́ v \omega s\) 10． 3.
áфıкขєīӨaı 15．34；18． 28 ；20．24， 29 ； 21. 20 ；Fr．29． 3.
ảфıттívat 2． 31 ；6． 22.
ảфориầ 5． 27.

15． 7 ， 15 ；17． 35 ；18． \(3^{6}\) ；21． 35,39 ．
ßaivelv 18． 19 （？）．
ßá入入єเข 17． 28 （？）；18． 25.
ßúpßapos 5．24；6．6，12，18，23，28， 39 ； 8． 42 ；Fr．I1． 9 ；14． 12 ；16． 2 I．
ßupéws 18． 24.
Buoı入єús 1． 30 ；3．27， 41 ；7．4， 18 ；8．35， \(3^{8}\) ；14． 11 ；16．4．9．19， 26 ；18． 6 ； 19． 6 ；21． 23 ；Fr．33．4．
ßaбı入ıкós 18． 30.
ßé入тıбтаs 7． \(3^{8}\) ；12． \(3^{1}\) ．
\(\beta \iota \lambda \tau i \omega \nu\) 13． 28.
ßui̧єбөa 10．10；20． 34 ；Fr．18． 4.
BiAvvís 21． 9 （？）．
Bios Fr．il．II．
ßoầ 11． 23.
ßóń \(\theta\) ta 11． 24.
ßoŋ日eiv 14． 39 ；15．3；17． 24.

Botwtia 11． 39 ；13．8， 24 ；14． 6.
Botwtoí 2．3，8， 16 ；11．34， 37 ；12．7， 30 ；
13． 12 ；14． \(19,3^{8 ;} 15.3,7.9,31\).
ßои́лєсӨル 3．17． 39 ；6． \(3^{6 ;}\) 7．44；11．4， 9 ；14．8；15． 37 ；17． 10,34 ；18．2，7， I1． 37 ；19． 11.

ßoviєutท́s 1． 12 ；12． 22.
ßov入 1 1． 4 ；11． 39 ；12．3；13． 12.
ßuß入iov 8． 37.
yúp 1． 28,35 ；2．7， 22 ；3．13；4． 42 ； 5. 43；6．19；10．19；11． 36 ；13．15， 31 ； 14． \(3,14,19\) ；16． 2 ；18． 7 ， 12 ；19． 5 ； 20． 18 ；Fr．18． 2.
\(\gamma \in 13.28 ; 17.31\) ．
үévos 16． 37 ；20． \(11,3^{6}\) ．
访 6．33．

11． 35 ；12． 6,39 ；14． 24,31 ；17． 37 ；
18． \(13,3^{8}\) ；19． 9,26 ；20． 17 ；21． 33 ；
Fr． 71.3.
\(\gamma เ \gamma \nu \dot{\sigma} \sigma \kappa \in \iota \nu 5\) ． 5 ．
\(\gamma \lambda i \sigma \chi \rho \omega s\) 16． 6.
\(\gamma \nu \omega \dot{\mu}\) 1． 2 ；17． 19.
\(\gamma \nu \dot{\rho} \iota \mu\) я 1．9．\(\gamma^{\nu \omega \rho \iota \mu \dot{т} т а т о s ~ 12 . ~} 3\) I．
Го́рঠє七л 20． 29.
「úns 21． 11.
\(\gamma v \mu \nu \eta ́ \tau \eta\) s 6． 20.
\(\Delta a \sigma \kappa u ́ \lambda \iota o \nu 21.21\).
\(\Delta a \sigma \kappa v \lambda i \tau \iota s\) iínvך 21． 21.
\(\Delta a v \lambda i ́ a ~ 15 . ~ 19 . ~\)
\(\Delta\) aúnıo 15 ．I 7.
ঠє́ка 21． 14.
\(\Delta \epsilon к є ̂\) дєıa 13．16， 29.
\(\Delta \epsilon к \epsilon \lambda \epsilon \epsilon\) кòs \(\pi o ́ \lambda \epsilon \mu о s\) 2． 21 ；16． 5.
\(\Delta \epsilon \rho к \nu \lambda i ́ \delta \epsilon \iota о\) 19． 23.
\(\delta \eta \lambda\) oũ 12． 25.
\(\Delta \eta \mu a i v \in\) таs 1． 3,24 ；2． 38.
бпиократі́a 11． 31.
\(\delta \hat{\eta} \mu 0\) 1．2， 13 ；12． 39.

ถ！̣ดิิ 14． 37 ；19． 8.
ঠıá 2．33， 37 ；6． 41,42 ；7．19；10． 7 ； 13. 14,\(20 ; 14.10,21 ; 15.16 ; 16.8,18 ; 18\). 32,36 ；19．12，14，17， 25 ；20．19， 35 ； 21． \(6,9,16,28\).
סıaßaiveıv 6． 49.
\(\delta \iota \beta \beta a ́ \lambda \lambda \epsilon เ \nu 1.10 ; 16.32\).
סtáyєtv 21． 31.
पıaүópeto 11．10， 25.

бuঠıঠóva 18． 30.
סıáঠoбıs 17． 30.
סıáóo \({ }^{\text {os }} 15.34\) ．
ס̌atpễ 12． 9 ．

ঠєакєїӨає 2．17，19；7． \(4^{2}\) ；13． 5 ；14． 40.
סıако́бъоє 16． 22.
ठıaк \(\omega \lambda\) v́є 1 17． 22.
§ıà \(\epsilon ́ \gamma \epsilon \sigma \theta a t\) 1． 37.
ठเa入ข́єเข 14． 32.
ถ̇á̀vбıs 16． 34.
Stavaєi้ 14． 16.
Statoveív 13． 40.

סıaтрátтє兀D 11． 26 ；12． 1.
ठıарпá̧єєン 14． 29.
ठเaтєіขєเข 21． 36 ．
ठıatєлєiv 12． 7.
Statpißetv 3．19；8． 26 ；13．16；20．II．

ठıaфӨopá 11．10．
ठtáфopos 2． 18.
סıঠáбкєเข 1． 16.
§ıóóvaı 16． \(2 \mathrm{I}, 38\) ；17． 2 I ；18． 7.
\(\delta \iota \epsilon \xi^{\varepsilon} \rho \chi \epsilon \sigma \theta a \iota\) 6． 40.
§ıє६ı́̇vaı 21．9；Fr．36． 3.
ठıxaotи́s 12． 27.
סík 14． 3 I ；17． 2 I．Cf．12． 27.
סíoóos 19．II．
ठıоккíl 12． 7.
ठıт入áбıos 13． 27.
סьбхí入ıo七 21． 12 （？）．
סíxa 7． 10 （？），
ס七ஸ́кєเข 2． \(3^{8}\) ；6． 16 ；19．27， \(3^{2}\) ．
סímǧs 6． 22.
ठакє̂̀ 10． 23 ；12． 6 ；15． 26.
סóga 10． 28 （？）．
бро́ \(\mu\) ая 6.12.
8úvapıs 10． 12 （？）；16．15．
ठv́vaбӨuє 1． 23 ；6．19；11．21；13． 9 ； 18.6
20． 35 ；21． 18.
סvขa⿱亠тєย์єเ 10．19；13．18．
סvvatós 5． 27 ；7． \(3^{6 .}\)
ઈv \(\sigma \mu \epsilon \nu \omega ิ\) 2．6， 16.
Sío 2． 24 ；12．11，12，I5， 16 ；16． \(3^{8 .}\)
\(\delta v \sigma \mu \eta\) 18． 12.
\(\Delta \omega \rho i \mu a \chi o s\) 11．I 9.
ย̇ầ 6． \(3^{6}\) ；15． 9 ；17．7．
єัар 21． 34 ．
є́ \(\gamma \gamma \dot{\text { útє }}\) os 5． 4 I ．

є̈ \(\gamma \kappa \lambda \eta \mu a\) 2． 18.
є́ \(\gamma \chi є \iota \rho \epsilon\) ì 11． 18.
＇่ \(\gamma \chi\) Єє pídıo 11．19， 24.
 18.

テ̈ \(\theta\) vos 12.29 ；14．8， 25.
\({ }^{\epsilon}\) € \(\theta\) os 16.3 ．
єi 1． 17 ；15．10；16．8；18． 6 ．
єió́val 2． 5.
єїкиб兀 11． 8 ；15． 35 ；16． 22.
tivat 1． 10 ；2．14，24， 29 ；5．1；6．10， 20 ；
11． 12,18 ；13． 19 ；14．15， 25 ；15． 27 ；
16． \(3,6,9\) ；17．14， 17 ；19．5，11，18，29，
34 ；20．I，11，16，20． 36 ；21．9，24，31， 39 ；Fr． 23.1.
єітєї 1． 23 ；18． 5 ．
єiр \(\eta_{\eta \eta} 2.12\).
tis 1.6 ；2． 24 ；3． 6,24 ；6． \(4,6,33,38\) ， 44,47 ；8． 23 ；11． \(15,19,24.28,34,37\) ； 12． 5,15 ；13． 24 ；14．4，22，23，36， \(3^{8}\) ；
15． \(7,16,22,3^{2}, 3^{6} ; 16.28,31,3^{6} ; 17\).
3 1， \(3^{8}\) ；18．13， 3 1，34， 39 ；19．3，22，30，
\(3^{8}\) ；20．8， \(9,15,23,28,3^{8}\) ；21．29， 3 I， 34， 35.
cis 12．10， 17.
〔iбßuivetv 17． 30 （？）．
єiбßü入入єเข 19． 3 ．
єianๆðầ 11． 24 ；17． 25.
єi \(\sigma \pi \lambda \epsilon i v 3.35\) ；21． 29.
єї ф́єрєєข 12． \(5 \cdot\)
єíवфорá 12． 26.
є́к 1． 6 ；2．13， 2 I ；6． 11,17 ；11． 29 ； 13. 25,\(33 ; 15.4,3^{6}, 3^{8} ; 16.13,23 ; 17\). 16 ；18．\({ }^{15}\) ， 28 ；21． 39.
є̈кабтоs 6． 12 ；11．1；12．1，f． \(10,19,24\) ； 16． 38 ；18． 19 ；19． 25.
є́ка́тєроя 13．6，8；14．27， 30.
éкато́v 12． 25 ；20． 4 ．
Є̇кєi 3． 12 ；8． 52 ；21． 2.
éкєïӨl 21． 25.
ékeivos 2．2，22，25， 40 ；3．4；6．16；7．19； 10． 7 ；Fr．12． 5 ；11．13， 23 ；12．14； 13. 9 ；14． \(10,34,39\) ；15． 6 ；17．13， 19 ； 18． 32 ；20． 21 ；21．4， 29 ．

éк \(\kappa \lambda\) єì 1.1 ；11． 9.
єंкпо入є \(\mu\) ой 2． 7 ；14． 7.
є́кфє́рецу 15． 9.
＇Е入áteia 15． 23.
є＇\(\lambda\) с́тт \({ }^{\prime}\) 5． 16.
＇Eג入ás 13． 37 ；14． 20.
с＇入入єітєє 15． 28.
\({ }^{7}{ }^{\text {E }} \lambda \lambda_{\eta} \nu\) 5．14．28， \(38 ; 6.7 .13,29,3^{8}, 44\) ； 7． 8 ；14．4；17． 8 ；18．7， 15 ；19． 28 ， 32 ；21． 16.
＇Еגへウ́
є́ \(\mu \beta i \lambda \lambda \epsilon \iota \nu\) 3．1；14．23． 37 ；15． 15 ；20． 8.
\(\epsilon^{\prime} \mu \beta\) ол \(\dot{\eta}\) 11． \(3^{8 .}\)
є́ \(\mu \mu\) е́vetv 18． 37.

ćv 2．10， \(3^{2}\) ；6． \(3^{1}, 4^{6}\) ；11．3．6， \(3^{6}\) ；12．6， 31；13．5，7，16， \(3^{8 ; 15.11 ; 16.2 \tilde{2} ; 17 .}\)
19；18． 23 ；19．34．37；Fr．30． 3
èvavtios 2． 9.
モ̇ข \(ข \nu \tau \iota \omega \hat{\sigma} \theta\) a 1． 33.
สัעঠєเа 16． 18.
द́vठciv 21． 7.

évéópa 6． 11,17 ；19． \(22,30,37\) ．

ёуєка 2． 19 ；20．18， 22.
લ̇vıavtús 5． 56 （？）．
є゙viot 5． 3 ．
éviote 18． 14 ．
èvıтtávat 3． 10 ；16． 10.
е̇ขо七кєิ้ 18． 37.
évтı日́̀́va 21． 30.
єै \(\xi\) 20． 32 ．
ধ́ \(\xi a ́ \gamma \epsilon \iota \nu\) 18． 15.
＇̇छ大ai申ums 19． \(3^{2}\) ．
đ́Gaкóбเoเ 8． 21 ；17． 24 （？）．
＇̇छацарта́vєเv 17． 20.
ধ́乡абкєi้ 13． 40.
é \(\xi\) єivaı（ \(\tilde{\epsilon} \xi \in \sigma \tau \iota) 2.20\) ；12． 2.
є＇\(\xi \in \lambda a ⿱ 亠 乂 \nu \in \iota \nu\) 18． 26.
¿＇\(\xi \in р \gamma a ́ \zeta \epsilon \sigma \theta a \iota ~ 11.30\).

é \(\xi \in \tau u ́\} \epsilon เ \nu\) 11． 2.
є＇\(\xi \in \tau а \sigma \mu\) о́s 11．8， 13 ．
є́乡そкодта 12． 22 ；18． 2 I．

\({ }^{\epsilon} \xi \omega \theta \in \nu 5.34 ; 18.16\).

єттаі́pєь 2． 34.
є́такодuvөє̂̀ 5．14：8．9，18， 39.

є́та́рұєєン 20． 35.
єंтєi 13． 2 ；16．4．
én \(\epsilon \iota\) ®í̀ 18． 10.
Є̇ \(\pi \epsilon \iota\) ס̀ク 1． 5,37 ；2． 40 ；6． 10,43 ；7． 21 ；
17． 14 ；18． \(3^{8 ;} 19.9\) ；20． 3 4．
ёாєєта 13． 6 ；18． 16 ；20．12， 19.

\section*{INDICES}
éni 1． 28 ；2． 12,23 ；3．1；6．22， 50 ； 10. 5 ；Fr．12．7；11．20， 22 ；15． 15 ； 16. 26 ；17． 3 I ；18． 20 ；20．30， 33.
є̇ \(\pi\) ८র́т̀ 16.35 ；21． 26.
\({ }_{\epsilon} \pi \pi \iota\) ßov \(\lambda \epsilon \dot{\prime} \epsilon \tau \nu\) 21． 15.
є́тıঠєıкцı́vaı 6． 8 （？）．
є̇ \(\pi \iota \delta \iota \delta o ́ v a \iota ~ 13 . ~ 20 . ~\)

є̇тเヒ́vą 6． 37,53 ；18． 13 ；19． 22 ；21． 35.
émıӨvцє̂̀ 1． 35 ；2． 10 ；17． 19.
é \(\pi \iota \theta \nu \mu \eta \tau \iota \kappa \omega ิ s\) 20． 18.
＇Етıкра́тךs 1． 35.
е̇тı \(\lambda a \mu \beta a ́ v \epsilon \iota ~ 17 . ~ 17 . ~\)
є́тí入oєтоs 16． 12.
\(\epsilon \dot{\epsilon} \pi \mu \epsilon \lambda \epsilon \hat{\epsilon} \sigma\) at 11． 11 ；21． 27.
є่тเขє́ \(\mu \epsilon \iota\) 14． 27.
ध̇ாเสто入ท́ 7． 22 ；8．18， 36.
є่ \(\pi \iota \tau a ́ \sigma \sigma \epsilon \iota \nu\) 12． 23.

є́тเтเӨ́̌va 14．18；19． 27.
é \(\pi \iota \chi \epsilon \iota \rho \in\) î̀ 3．1；6． 10 ；11． 7 ；14． 2 I ； 15. 18.

єтттако́ть๐ 16． 29.
єерооу 1．7， 18.
е́ \(\rho \in і\) iv 2． 27 ；12． 32.
＇E \(\rho\) v́ \(\theta \rho a t\) 12． 12 ；13． 25.

є́таиреі́a 13． 6.
ย̈́tєpos 2． 25 ；12． 17 ；13． 18,26 ；14． 29 ； 20． \(9 ; 21.8\) ．
ย̃тоцпоя 13． 4.
є̈тоя 3．10；11．37．
єن̇ठathovía 13． 2 I．
\(\epsilon \dot{v} \in \rho \gamma \in \tau \epsilon i v\) 13． 20.
єن̉ق \(\theta\)＇́ \(\omega\) s 13． 2 I．єủ \(\theta\) ús 14．33．
© ỉ入óy \(\omega\) s 16．I9．
Eüt \(\rho \eta\) б८s 12． 16.
èфıт̛ávat 16． 12.
є́ \(\chi\) єเ 1．19， \(3^{6} ; 2.6,22,30 ; 4.41,42 ; 5\). 26 ；6． 35 ；7． 39 ；11． \(3^{8}\) ；12． 38 ； 13. 1， 2 （？）， 14 （？）， 27 ；14． 18 ；16．13， 20 ， 22 ；20．10，19；21． 27.
є̈ \(\chi\) Өра 11． 35 ；14． 24 ；20． 12.
éx \begin{tabular}{c}
pós 14.15. \\
5. \\
\hline
\end{tabular}
\(\tilde{\epsilon} \omega \mathrm{s}\) 19． 37.
ऽ \(\ddagger\) тєiv 2． 15 ．
\(\eta{ }^{\eta}\) 5． 42 ；6． 50 ；14． 2 ；20． 4.
！ \(19.3^{8 .}\)
 21． 8.
\(\dot{\eta} \gamma \epsilon \mu \dot{\omega}\) 20．10， 20.
グठ萠15．33；18． 12.
ぞкєเข 11． 29 ；20． 15 ；21． 34 ．
\(\eta^{\prime} \lambda \cos\) 18． 12.
ї \(є\) р́ \(6.5,31,5^{2}\) ；8． 6 ；11．2，13；12． 23 ；
18．12，13；19．19；20．6， 32 ；21． 14.

Өáлatтa 6． 47 ；21． 6.
Өá́os 2． 31.
\(\theta\) єî 6． 12.
\(\theta \epsilon \rho a \pi \epsilon \cup ́ \epsilon \iota 2\) 20． 12.
Ө́́ \(\rho\) оз 3． 9 ；11． 34 ；20． 8.
Өє \(\sigma \pi t \epsilon i\) 12． 16.
Ө \(\hat{\beta}\) ßat 11． \(3^{6}\) ；12． \(15,3^{1}\) ；13．5， 28 ；14． 6 ； 15． 4.
Өŋßaio九 12．I I；13．І I， 20 ；14． 9.
Өи́ß \(\eta\) s \(\pi \epsilon \delta i ́ o \nu 19.2\).
Өíaßaı 12． 17.
Өорıкós 2． 39 ；3．І．
\(\theta\) ó \(\rho \nu\) ßos 1．7， 12 ；18． 27.
Ө \(\rho a \sigma\) úßuv \({ }^{\prime}\) os 1． 16.
Өíє兀 6． 49.
ídos 2．18；12．7；16．13．ioiá 1． 2 （？）．
lívaı 11． 22 ；19． 30.
ífós 6． 52 ．
\({ }^{\text {＇} 1 \in \rho \omega ́ \nu \nu \mu o s ~ 11 . ~} 10\).
іца́тьоу 8． 27.
ïขа 2． 13 ；5． \(5^{2}\) ；11． 3 ；14． 9 ；16． 21 ．
imteús 5． 2,15 （？）；6．16， 20 ；7． 41 ； 12. 25 ； 21.12.
＇I \(\sigma \mu \eta \nu i a s\) 12． 34,\(37 ; 13.10 ; 14.7,35\) ； 15． 2.
iбтávą 6． \(3^{2 .}\)
io \(\chi\) v́єє 13.6.
ioxuoós 15． 27.
Kадิ \(\mu\) єía 12． 30.
каӨа́лєр 11．14．
\(\kappa а \theta_{\epsilon} \lambda_{\kappa} \dot{\epsilon} \epsilon \iota \nu 1.6\).
ка \(\theta \eta \neq \mu \omega \dot{\omega}\) 20． 5 ．
каӨ \(\bar{\eta} \sigma \theta a \iota\) 7． 40.
кäi̧et 19． 22.
каӨıбтáva؛ 6． 24 ；11． 3 1， 35,39 ；16． 26 ； 18. \(25 ; 20.13\).
каӨора̂̀ 5． 28 ；6． 14 ；19． 33.

кui үиíp 18．I 2.
кuриія 6．10；11．IS：15．I
киітоя 2．1．
кико́s 12． 28 ；15．31；17． 37 ：18． \(3^{6} ; 19\). \(8 ; 20.14\). кикйs 6． 37 ；13．4， \(3^{8 ;} 16\). 3 ；20． 9 ；21． 14 ．
калеї 20． 2 5．ка入ои́цеขоs 7． \(2 ; 14.23 ; 19\) \(3,10,23 ; 21.18\).
кuдós 6． 52 ；20．гб．калйs 20． 3 I ．
Каттабокіа 21． 35.
Kâpes 18．8， 1 \＆．
Kaptartés 16． 37 ；17．11，16，22， 27 ；18． 2 I．
китú 2． 21,\(38 ; 6.3,8,13 ; 7.20,39 ; 11\). 1， \(3^{8} ; 12.18,22,23,25 ; 13.7,40 ; 14\) 5 ；15． 2 I ；16．I，4，II ；17．I4，I7； 19 9，29；21．13．
катаßа́入入єเข 6． 21 ；19．16．
катаßıßа́乡єєข 6． 43 ；20．7．
ката́yєเข Fr．11．13；18．4；21．13．
катаऍєขүทи́va九 19．18；20． 3 1．
катаірєєг 8． \(22 ; 18.38\).
каталацßávєьข 6．19， 23 ；20．13．
каталєітєเข 3． 3 ；16． 28 ；18． 23 ， 27.
ката入úєєข 11． 30 ；14． 9 ；16．7，14；17． \(3^{6}\) ．
катацарӨávєє 2． 20.
катаує́ \(\mu \epsilon \iota \nu\) 5． 53.
кататє́ \(\mu \pi \epsilon \iota \nu\) 16．10．
катат入єір 2． 25,30 ；3．12；15． \(3^{6 ;} 16.30\). катат \(\lambda\) ๆ́ттєเ 1． 12 ；6： 28.
катабкєบа̧́єเע 3．14；13． 37 ；20．30；21． 22.
катабкєчй Fr．11． 15 （？）；13． 33.
катабкпขой» 19． \(3^{8 .}\)
катабтратотє \(\delta \in i \in \epsilon \nu\) 6． 47 ；19． 39 ；21．2， 24.
китатрє́ \(\in \iota \nu\) 15． 22.
катафроуєір 5． 30.
катє́ \(\rho \chi є \sigma \theta а \iota ~ 17.5\)（？）．
катє́ \(\chi \epsilon \iota\) 17．20；Fr． 3 1． 3.
катпүорі́а 14． 38.
катоккеір 13． 34 ；15． 24.
Kavvía 入íдข 3．35．Kav̀иos тотацós 3． 34.
Kaûvos 3． 24 ；11． 9 （？）， 29 ；15．36， 39 ； 16. \(3^{1} ; 18.8,29\).
Kaû̃трเov \(\pi \epsilon\) ôiov 5． 8.
кєїөөu 6． 42 ；7．го．
Ke入atvai 6． 45,50 ．
кє入єข́єเข 18．Іо， 18 ；19．4；20． 37 ；21． 30.
кє́радоя 13． 35.
Кєфалаí，Аєо́ıтну K．20． 25.
Kéфa入os 1． 35.
\(\kappa \tilde{\eta} \rho \cup \xi\) 11． 21 ；20． 1 ．

кпри́tтет 11．20：18．19．
Кı入七кía 3． 25 ；21． \(3^{8}\) ．
кเขסขvยiєル 16．17
кivóvios 1．17；18．31．
Kios 21． 13.
кuıós 2．14：12．26， 30.
kotvoìv 1． 3.
\(\kappa п \mu เ \delta \hat{\jmath} 16.6\).

Kóv \(\omega \nu\) 1． 7,\(29 ; 3.31,36 ; 11.28 ; 15.32\) ；
16． 16,\(30 ; 17.3,5,6,15,18,25,29\) ，
\(3^{6}(?) ; 18.3,25,28,32\).

Kоррацтá8as 12． 35.
Коршขєis 12．ı 8 ．
койфоs 6． 15.
критеì 3． 2.
кра́тоs 15． 2 I．
кратívet 5． 20 （？）．
ктâбӨaı 12． 2.
Kúlikos 20． 15 ；21． 32.
Kи́mpt＂s 16． 30 ；17．11， \(21,26,35 ; 18.4,20\).
Kúmpos 17． 33.
ки́рıos 12． 6.
Kй роя 16． 8.
кю́цך 19．27，34；20．5．
K \(̄ \pi a \iota ~ 12 . ~ 20 . ~\)

Аакє 8 atцо́ข七о 1．I1， 27,32 ；2．6，8，17， 35 ； 3． 20 ；10． 28 ；12． 37 ；13． \(15,19,23\) ， 30,\(39 ; 14.8,15,20 ; 15.6,14,33 ; 16\). 5 ；18． 35 ．
лакє aíh \(^{\prime}\) 3． 21 ．
Аакшขi乡єt 2． \(20 ; 14.10\).
入a ßávetv 2． 28 ；3． 39 ；6． 25 ；7． 25 （？） 11． 8,\(33 ; 14.4 ; 15.10,15,20,3^{8} ; 16\) 23 ；18．10，13；21．19；Fr．36． 2.
Aєßuर́eis 12．I 8 ．
\(\lambda \epsilon ́ \gamma \in \iota \nu 1.4 .10 ; 2.2 ; 8.34 ; 15.8 ; 16.17\) ； 17． 32 ；20．18；21． 23.
入єๆ入ateiv 19．1；20．23， 28.
\(\lambda\) літєи 3． 25 ．
Aєоитuiồs 12．35． \(3^{6}\) ；13． 13.
Аєо́дтшу Kєфадаí 20． 25.

入íav 6．I9．
入i \({ }^{2}\) os 11． 20.
\(\lambda \iota \mu \eta \nu 11.3\), I 5 ；18． 26.
\(\lambda i \mu \nu \eta\) 3． 35 ；21．21， 29.
גéryos 14． 3 I ；17．7， 39 ．

入o七тós 11． 23 ；13． 31 ；19． 8.
мokpís 14． 36 ；15． 4.
локроі＇14．28，3＇， 37 ；15．3．Мок．＇Ебтє́－ ptot 14． 23.
Audía 6． 42 （？）；7． 2 I；18． 36.
ムvóoi 6． 4 I ；7． 3.
Maүขдбia 7． 40.
Maíavopos 6． 45 ；7． 2.
Макєठо⿱і́a 9． 29 （？）．
\(\mu a ́ \lambda \iota \sigma \tau a 1.36 ; 2.20 ; 7\) ． 18 ；11． 36 ；19． 9 ； 20． 17.
\(\mu a ̂ \lambda \lambda o \nu 2.33 ; 5.4 \mathrm{I}\) ；7． 9 ；13．3， 17.
\(\mu a ́ \chi \in \sigma \theta a \iota\) 5． 22.
на́хך 6．4， 28.
Мєүаßáтクs 20．І6．
н́́yas 1． 7 ；6． 34 ；18． 3 1．
\(\mu \in \theta_{\iota} \sigma \tau\) ávaı 2．I 5.
\(\mu \in \iota\) ра́кьор 20．18．
\(\mu \epsilon \lambda \lambda \epsilon \iota \nu\) 7． 28 ；16． 32 ；17． 32.
\(\mu_{\text {é } \nu}^{\nu}\) 1．19，21， 28 ；2．8， 15,22 ；3．2， 9 ； 6. \(7,21,25,27,28 ; 10.2\) ；11． \(3,15,20\) ； 12． \(11,14,24,34,36\) ；13． 18 ；14． 9 ， 17 ； 15． \(13,19,29\) ；16． 32 ；17．I4；18．II， 22，24， 35 ；19． 3 I；20．I，I1，14，18， 32 ； 21．12， 14 ；Fr．71．4．\(\mu\) ย้̀ oủv 2． 32 ； 3. 7，19；5． 4 ；7．1；11． 32 ；12． 21,28 ； 14． 5,30 ；15． 3 I；16． 15,24 ；18． 30 ； 19． 6 ；20． 2 I．
\(\mu\) е́vєıン 2． 39 ．
ب́́роя 12．4，9，18， 2 I，24， 33 ；13．9；15． 23.
\(\mu\)＇́́тos 6． 42 ；19． 9 ．
Mє \(\sigma \sigma \dot{\eta} \nu ⿺ 𠃊 八\) 17．I7，23， 27.
\(\mu \epsilon \tau\) 1． \(8,24,29\) ；2． 24,30 ；3． 5,\(6 ; 6\). \({ }_{17} 7\) ；8． 24 ；11． 24,29 ；13． 30 ；14． 31 ， 36 ；16．20，30；17．19；19．4，39； 20. 38.
\(\mu \epsilon \tau а \beta a ́ \lambda \lambda_{\epsilon \iota \nu}\) 19． \(3^{6}\) ．
\(\mu \epsilon \tau а ß \imath ß a ́ 乌 \epsilon \iota \nu\) 3． 4.
\(\mu є \tau а к о \mu і \zeta \epsilon \iota \nu\) 13． 34 ．
\(\mu \epsilon \tau a \pi \epsilon ́ \mu \pi \epsilon \iota \nu\) 10． 22 ；21． 25.
\(\mu \in \tau \in ́ \chi \in \iota \nu\) 1． 13 ；12． 2,27 ；13． 8 ；14． 14 ； 19．7．
\(\mu\) е́ \(\chi \rho \iota 21.3^{8 .}\)
Mє ．．． \(\operatorname{atos}\)（？）7． 24.
\(\mu\) ク́ 1． 18 ；6． 50 ， \(5^{\text {I ；11．}} 3\) ；14． 9 ；16． 8 ； 20． 13 ；21． 6.
\(\mu \hat{\eta} \kappa u s\) 21． \(3^{8 .}\)
\(\mu \dot{\eta} \nu\) 16． 2.
\(\mu \eta \eta \nu\) ，ov \(\mu\) ．12．39．ov̉ \(\mu\) ．ả入入á 13． 28.
\(\mu\) uкрós 11．16；13．10， 32,38 ．
Mı入ウ́бıo七 8． 2 I（？）．
Mi入ítov Tєíxos 21． 18.
Mì \(\omega \nu\) 1． 22 ；2． 35 ；3． 6.
\(\mu\) ルढєi้ 2．7， 34 ．
\(\mu\) ルOOós 3． 18 ；16．2， 21,33 ；18． 30 ；21． 32.
\(\mu \iota \sigma\) Өоסотєіิ้ 16． 2.
\(\mu \iota \sigma\) офо́роs 19． 23.
но́vos 2． 18 ；16． 34 ；18． 6.
\(\mu\) ข́pıo七 5．I 5 ．
Muvía 19． 3 ；21． \(13,33\).
Múvıos＂О \(\lambda \nu \mu\) тоs 19．іо．
Mugoí 19．4，5，6，13，24， \(3^{1}\) ；20．1 ；21．I 5.
ขavapxia 3． 28.
vav́ap \({ }^{\text {os }}\) 1． \(3^{2}\) ；3． 2 I ；15． 34 ；21． 26 ．
рауцахєіً 2． 26.
vaûs 1． 6,28 ；3．2， 3,24 ；15． 33 ；18．17．
ขav́тทs 3． 4 ．
ขєкро́s 6． 3 I ；20． 3 ．
\(\nu \epsilon ́ \mu \epsilon \iota \nu\) 7． 3 ．
\(\nu\) ข́ós 20． 16.
\(\nu \epsilon \omega ́ \rho t o v 3.14\).
\(\nu \epsilon\) ढ́боькоs 1． 7.
\(\nu \eta\) चos 2． 23.
ขเкầ 2． 26.
Nıкó \(\phi \eta\) оs 11．I I．

\(\nu v ́ \xi 5.59\).

छú入ov 13． 35 ．
ó бסоп́коута 15． 30.
oै \({ }^{\circ} \delta\) oos 3．Io．
ӧठє 3． 9.
оиєбӨat 14．10；19． 25.
oikє \(\imath \nu\) 12． 9.
oíkクбเร 14． 2.
оікía 13． 36.
оїкоסоцєî̀ 8．І I ；14． 2 ；20． 30.
¿̀íyos 5． 45 ；11． \(3^{2}\) ；15． 20 ；16．І I， 25 ．
ò \(\lambda \iota \gamma \omega \rho \in i \nu\) 16．II．
ঠдо́кл \(\eta\) роs 13． 21.
\({ }^{\circ}{ }^{\circ} \lambda_{0}\) 12． 29.

б́лодоүєї 7． 18.

ó \(\pi \lambda i \tau \eta s 5.60 ; 12.25\).
ӧ \(\pi\) лор 1． 28 ；11． 2 ，6， 15 ；14． \(3^{6 ; 15.15 .}\)
óто́́тos 18．II．
о́то́тє 7． 34 ；18． 5.
о́то́téos 14． 28.
ล̈точ 3．I5．
\({ }^{\circ} \pi \pi \omega\) 人 1． 23 ；2． 7 ；17． 20 ；21． \(3^{2}\) ．
ópầ 6.12 ；11．6， 8.
¿рүі\}єбөat Fr. 2 I． 2 （？）．
о́ \(\rho \mu \hat{\nu} \nu\) 3． 1 ；10． 20.
\({ }_{\text {ö }}\) ós 5． 9 ；6． \(4^{2}\) ．
＇ОрХоне́ขıо، 12． 16.
ös 1． 3 I， 33 ；3． \(24,26,3^{8}\) ；6． 3 I， 45,46 ， 53；7．20，21，22；Fr．11．13；12．1， 18 ； 13． 27 ；14． \(24,26,27,33,35\) ；15． 34 ；
16． \(3,9,19,29 ; 17.20 ; 18.8 ; 19.38\) ；
20． \(8,25,35\) ；21． \(15,21,23,26\).
ӧтоs 6． \(3^{6}\) ；18． 35 ；19．6， \(21,23,30\) ．

ӧтє 13． 15 ．
о́тє́ 2． 22.
ชึтเ 1．ェ7；2． 5,9 ；3． 3 ；16．17；18． 5 ．
oủ 1． 24,37 ；2， 5 ；5．16；6．19， 24 ； 10 ． 19；11． \(3^{6}\) ；12． 1,39 ；13．27，28； 15. 9 ；16． \(13,19,32\) ；17．7；19． 6 ；20． 8 ， 35 ；21． 18.
oúdeis 1．13；5． 42 ；14．I（？）；15．20，28， 29 ； 18． 36 ；20． 26.
ои́ס́́тотє 14． 18.
ойкє́тィ 6． 35 ；21． 8.
oủ \(\nu\) ．See \(\mu \epsilon ̀ \nu\) oủv．
ov̉ \(\pi \epsilon \rho\) 11． 20.
ov̉𧰨ia 1．19；16． 23.
จข̃тย 5． 29 ；14． 19.
oitos 1．8，24，34，35， \(3^{6 ; 2} 30,3\) 1， \(33,3^{8}\) ； 3． 8,27 ；5．10；6．1；7．5；8． 25 ； 11. \(27,33,34\) ；12．3，6，8，10， 23 ；13．17，
14．11， \(14,16,18,21,25\) ；15．13，22， 24 ；
16． \(1,9,15,23,37 ; 17.9\) ；18．І1， 1 ；； 19． \(19,35,39\) ；20． \(17,21,38\) ；21． 36. oüt \(\omega(s)\) 11． 39 ；12．7，21， 29 ；13． 40 ； 14． 6 ；16． 15 ；18． 3 I ．
ò \(\phi є i \lambda \epsilon \iota \nu\) 16． 33 ．
óxupós 21． 22.
Па́ \(ү к а \lambda\) ля 21． 2 ²， 28.
mú入at 2． 5 ．
\(\pi\) đ́入ı 5．10；6． 34 ；12．17；15．5， 30 ； 19. \(24,3^{6}\) ；20．29；21．15．
тара́ 2．2， 25,36 ；3． 29 （？）；6． 47 ；Fr． 12. \(5 ; 13 . \mathrm{II} ; 14 . \mathrm{I}, 2,12 ; 15.11,26 ; 18\). 14；20． 11 ；21． 20.
\(\pi а р а \gamma^{\prime} \epsilon ́ \lambda \lambda_{\epsilon}\) 9．9． 26.
тира́ \(\gamma \epsilon \iota \nu\) 11． 15.
\(\pi а р а у і \gamma \nu є \sigma \theta a \iota\) 3．І 7 ；6． 53 ；16．16；21． 28.
тараб́ıó́vaı 16． 27.
тараӨидитті́̊ıos 21．I 7.
таракодоv \(\epsilon\) еiv 17． 18.
таракорі广є 17 17． 34 ．
таралацßӓขєєц 9． 28 （？）；13． 32 ；15． 32 ； 17 32.

тара入入áттє！19． 2.
тарабкєยá̧єเข 5．．5（？）；11．5；14． 36 ； 16. 33；17．29；21． 34.

Паратотіццоь 15．І 7.
тариітаछ̆ıs 5． 18.
тараитіка 20． 14 ．
\(\pi a ́ \rho \in \delta p o s 11 . ~ 12(?)\).
тарєìaı 1． 20 ；7． 19 （？）；11．6，10， 13 （？）， 30.

тарı́́vat 18． 12 ；19． 14.
Mapvaббós 14． 26.
\(\pi a \rho \circ \xi \dot{v} \nu \epsilon เ \nu 1.34\) ；3． \(29(?)\) ；14． 34 ；15．II．
пâs 7．20；11．7；12．9；13． 3 I ；17．8，29，37．
Пабıфє́рьŋs 3． 37 （？）；16． 27.
тá \(\chi \notin \iota \nu\) 13． \(3^{8 ; 20.14 .}\)
таи́єเข 18．9， 33.
Паф入аүóves 21． 5 ．
Пафлауovía 20． \(3^{8 ;}\) 21．1．
Пєठ́єєî 15． 24.
\(\pi \in\) סion 6．8，14， 40 ；7． 2 ；15． 23 ；19． 2.
\(\pi \epsilon\) Cós 5．16（？）；7．＋1 ；21． 12.
\(\pi \epsilon i \theta \epsilon \epsilon \nu 1.21\) ；14．19；17． 28 ；21． 3.
Metpateús 1． 6.
Пєлопоขvท́бเ๐เ 5． 36 ；6．ІІ， 48 ；19．І5； 20. 39.
\(\pi \epsilon ́ \mu \pi \epsilon \iota \nu\) 1． 22 ， 29 ；2． 29 ；6．15；12． 18,27 ；
14． 12,\(38 ; 15.5\) ；19．12；20． 2 ；
Fr． 7 I． 6.
\(\pi \epsilon ่ \nu \tau \epsilon 2.29\) ；21． 27.
\(\pi \epsilon \nu \tau \epsilon \nu\) йa 2． 22.
\(\pi \in \nu \tau \eta \dot{\kappa o \nu \tau а ~ 19 . ~} 21\).
\(\pi \in \rho a i \nu \in เ \nu\) 20． 27 ．
\(\pi \in \rho i\) 1． \(4,16,3+\) ；2． 39 ；3．8，28， 30 ；6． 4 ； 7．5， 40 ；Fr．II．12， 16 ；11． 33 ；12． 4 ， \(24,36,37 ; 13.10,13 ; 14.6,17,25,26\) ， \(35 ; 15.23 ; 16.29 ; 17.30 ; 18.12 ; 19\). \(21 ; 21.1\) 2， 32.
\(\pi \epsilon р и \sigma т a ́ v a \iota ~ 18 . ~ 16 . ~\)
\(\pi \epsilon р \iota \dot{\mu} \nu \epsilon เ \nu\) 6． \(30,5^{2}\) ；11．： 2 ；16． \(24 ; 20\). \(32 ; 21.14\).
\(\pi \epsilon \rho \iota \circ \rho a ̂ \nu 16.14\).
Пє́роךऽ 3． 37 ；20．11， 36.
\(\pi \iota \sigma \tau \epsilon \dot{\iota} \epsilon \iota\) 17． 7.
П入aтaleîs 12． 12.
\(\pi \lambda\) єi้ 1． 7 ；17． 33 ；21． 26.
\(\pi \lambda \epsilon i ̈ \tau o s ~ 18.9\).
\(\pi \lambda \epsilon i \omega \nu\) 21．12， 32.
\(\pi \lambda \eta \gamma \dot{\eta}\) 15． 20 ；19． \(25,34\).
\(\pi \lambda \hat{\eta} \theta\) os 1． 15 ；11． 27 ；12． 3 ；17． 12.
\(\pi \lambda \eta \sigma\) ío 13． 18.
\(\pi \lambda \iota \nu\) Oiov 5． 34 ；6． 35.
тoteîl 1． 25 ；6．34， 37 ；Fr．11．14；11．7， \(32 ; 12.27\) ；13． 4,27 ；14． \(3^{8}\) ；15． 20 ， 25,3 1；16． 3 ；17． 38 ；18．18， \(3^{6}\) ；19． 7 ； 20．9，26，33；21．4，7，14， 19.
 19.

тодє́ \(\mu\) оя 2． 28 ；5．1 8 （？）；6．10，18，32， 37 ； 19． 30 ；20． 32.
\(\pi \dot{\prime} \lambda \epsilon \mu\) оs 1．ІІ ；2． 21 ；9．18；10．17（？）； 11. 4,\(35 ; 13.22,32 ; 14.14,22 ; 15.9\) ； 16． \(5,10,28\).
пódıs 1．11， 18,\(36 ; 2.3^{2} ; 8.13 ; 12.1,12\) ， 19 ；13．14，20， 29 ；15． 18,27 ；17． 20 ， 26；18．I，I5．
\(\pi\) олıтєía 11． 3 I．
\(\pi о \lambda \iota \tau \epsilon \cup ́ \epsilon \sigma \theta a \iota ~ 12 . ~ 29, ~ 36 . ~\).
mo入itךs 1． 5 ；2． 9 ；11．22， 26 ， 3 I；12． 2 ， \(32 ; 14.16\).
тол入а́кıs 14.27 ；16． 7.
По́入入ıs 3． 21 （？）；15． 35.
\(\pi о \lambda \nu \pi \rho a \gamma \mu о \nu \in i ้\) 2．I 3 ．
то入ús 1． 26 ；3．1；5．54；6．19，25，26， 40 ； 10．12；Fr．II，I2， 15 ；11． \(3^{6}\) ；13．7， 19， 26 ；14． \(29,30,3\) I；16． 2 ；19．I5， 22 ；20．33．oi \(\pi o \lambda \lambda\) oí 1.20 ；6． 20 ； 19.

\(\pi о \lambda v \tau \epsilon \lambda\) є́ \(\tau т а т а ~ 13 . ~ 37 . ~\)
Поутıкク̀ Өà̀atтa 21． 37.
торєía 5． 29 ；6． 34 ；21．7， 21 ．

\(\pi\) ор \(\theta\) єi้ 2． 23 ；6． 33 ；15．г6；19．у ；20． 28.
тотацо́s 3． 34 ；6．45， 49 ；21． 20.
тотє́ 14．26，29， 40.
то́тєра 6． 49.
Пotveaí 13． 26.
mov 2． 27.
\(\pi \rho a ̂ \gamma \mu a\) 1．4，14， 26 ；2． 15 ；3． \(3^{8 ; ~ 11 . ~ 12, ~}\) \(3^{8}\) ；12． 4 ；14．5， 17 ；15． 12 ；16． 12 ， 18， 26.

\(\pi \rho a ́ \tau \tau \epsilon \iota \nu 13.29\) ；14． 1 I ；15． 29.
\(\pi \rho \epsilon ́ \sigma \beta\) й 1． 29 ；14． \(3^{8 ; ~ 15.5 . ~}\)
Прוŋ́vך 6． 47.
\(\pi \rho i v 18 . ~ 13\).
\(\pi \rho \circ a ́ \gamma \epsilon \iota 2\) 2． 12 ；6． 33 ；14． 21 ；18． 39 ； 19.
24 ；20．22，27， 39 ；21． 16.
\(\pi \rho о a \iota \rho \in i ̃ \nu 13.3\) ．
трос́ттєор 15． 21.
\(\pi \rho о ́ \beta a t o \nu ~ 14 . ~ 30, ~ 33 . ~\)
\(\pi \rho \circ ß o v \lambda \epsilon\) ย́єtv 12． 4.
\(\pi \rho о є \rho \in \hat{\imath} \nu, \pi \rho о є \iota \rho \eta \mu \epsilon ́ \nu о\) ，2．4， 32.
\(\pi \rho о є ́ \rho \chi є \sigma \theta a \iota\) 11． \(3^{8 ;} 13.7\) ；15． 22 ；18． 32.
\(\pi \rho \circ\) о́ \(\chi \epsilon \iota \nu\) 13． 12.
\(\pi \rho о \theta v \mu i a \operatorname{15.~} 28\) ；16． 9 ；18． 32 ；20． 35.
\(\pi \rho o ́ \theta v \mu о\) 12．38．\(\pi \rho о \theta \dot{v} \mu \omega\) 20． 22.
\(\pi \rho о \iota\) е́vaı 5． 44 ；19． 9.
\(\pi \rho о к а Ө \hat{\eta} \sigma \theta a \iota\) 12． 4 （？）．
\(\pi \rho o \pi \lambda\) єì 3． 2 （？）， 4 ．
\(\pi \rho o ́ s ~ 1 . ~ 7, ~ 22, ~ 32 ; ~ 2 . ~ 17, ~ 40 ; ~ 6 . ~ 30 ; ~ 7 . ~ 23, ~\),
24 ；8．19；12． \(33,3^{8}\) ；13． 2 I ；14． \(3^{22}\) ，
40 ；15．6， 39 ；17．12， 35 ；18．4，17， 38 ；
19．I 3， \(34 ; 20.13,24,26,29,32 ; 21\). 1， 17 ， 21 ．
\(\pi \rho о \sigma a \gamma \gamma \epsilon \bar{\epsilon} \lambda \epsilon \iota \nu\) 19． 35 ．
\(\pi \rho о \sigma a ́ \gamma \epsilon \iota \nu\) 5． 37.
\(\pi \rho \circ \sigma \beta a ́ \lambda \lambda \epsilon \iota \nu\) 5． 33 ；6． 7 ；15．18， 27 ；21．17． \(\pi \rho \circ \sigma \beta \circ \lambda \eta ́ 20.26 .33\).
\(\pi \rho \circ \sigma\) є́ \(\rho \chi \in \sigma \theta a \iota 15\) ． 19.
\(\pi \rho \circ \sigma \theta \in i ้\) 6． 13 ．
\(\pi \rho o ́ \sigma \theta \epsilon 6.38 ; 20.28\) ．\(\pi \rho o ́ \sigma \theta \in \nu 6.6\) ；20．6， 23.
\(\pi \rho о \sigma \circ \phi \epsilon і \lambda_{\epsilon} \epsilon 1\) 16．I．
\(\pi \rho o \sigma \pi \lambda \epsilon i ̂ \nu 2.40\).
\(\pi \rho о \sigma \pi о t \epsilon\) îбӨut 1． 13 ．
\(\pi \rho \circ \sigma \tau\) áтtє兀้ 5． 35 ；11．II ；21． 34.
\(\pi \rho o ́ \sigma \chi \omega \rho o s ~ 13.34\).
\(\pi \rho о ́ т є \rho о\) 17． 15 ；19． 25,39 ；20．8．\(\pi \rho o ́-\) тє \(\rho \circ \nu\) 1． 32 ；2．І，19， 28 ；11． 37 ；12．13， 32；13．10；14．26， 30.
\(\pi \rho \hat{\text { ontos 19．} 3 \text { I，33．} \pi \rho \hat{\tau} \tau о \nu ~ 21 . ~ I 4 . ~}\)
\(\pi v ́ \lambda \eta\) 17．14， 17.
\(\pi \nu \nu \theta a ́ v \epsilon \sigma \theta a 16.38\).
．．．\(\pi[.] \kappa \rho a ́ t \eta s\) 1． 30.
\(\dot{\rho} \mathfrak{o}^{\delta} i ́ \omega s\) 14．I I．
＇Pa日ávŋs 20． 35 ．
¢̣a \(\theta v \mu\) ề 11 1． 3 ．
－．pvis 3． 37.
＇Póotot 11．5，17， 27 ；18． 28.
\({ }^{\text {＇Pódos 11．} 33 ; 15.36 ; 17.32 ; 18.24 .}\)
＇Púv8̊akos 21． 20.
इápótıs 6． \(30 ; 7.3^{6 ; 16.25 .}\)
батраті́а 7． 39.
ミıঠ́̀vios 3． 26.
ェเขต́тๆ 21． 39 ．
Síxos（？）2． 26.
Eки́фаи 12．I 3 ；13． 25.
акর́申os 3． 3 ．
\(\sigma \kappa \in \hat{v} o s\) 6． 26.
бкпиๆ́ 3． 42 ．
бкотєір 2． 6.
इкต̂入os 12．12；13． 25.
इпaptiátךs 6． 2.
\(\sigma \pi\) ย́vסєєน 19． 13.
\(\Sigma \pi t \theta \rho a \delta a ́ t \eta s\) 20．9，10．\(\Sigma \pi t \theta \rho \iota \delta .20 .19 .37 ; 21.2\).
бтоубаі 18． 37.
बтovóá̧єเ 14． 7.
бтоvסаíws 6． 24.
\(\sigma \tau a ́ \delta \iota \iota ~ 6 . ~ 40\).
बтабıá̧єเข 12． 33.
бтабıабнós 11． 37 ．
бтабเต่тทs 2． 8 （？）．
atєขós 19．1 1 ；21． 37.
बтєขохшрі́a 19． 18.
\(\sigma \tau \epsilon ́ \rho \gamma \epsilon \iota 1\) 1．I 9.
атратєía 19． 7 ．
бтра́тєvца 3． \(5 ; 5.23,32,46,49 ; 6.5,15\) ， \(33 ; 7.45 ; 18.34 ; 19\). ，14，24， 36 ；
20．7，23，27， 31 ；21．13， 32 ．
бтратクүía 5． 2 I．
oтратクүós 2． 27 ；7．6， 38 ；16． \(3,26,36\) ；
17．II， \(24 ; 18.22\).
बтparıá 6． 4 I ；12． 24 ；20． 20.

16． \(2 \mathrm{I}, 3^{8}\) ；17． 13 ；18．І1， 19 ；19． 17 ，
21 ；20．6，33， 37 ；21．10，19， \(25,33\).
\(\sigma \tau \rho a т o ́ \pi t<\delta \nu\) 3． 31 ；5．7， \(12 ; 6.23 ; 18\). \(9,16,26,3^{1} ; 19.3^{8 .}\)
テтрaтós 7．І．

бvукатаßаive九ข 1．5（？）．
\(\sigma_{v \lambda \lambda a \mu \beta a ́ v \epsilon เ \nu ~ 1 . ~}^{\text {I }}\) ；18．20， 29.
\(\sigma \nu \lambda \lambda \epsilon ́ \gamma \epsilon \iota \nu 11.18,28 ; 14.29\).
бvןßaivetv 2．5． 2 I ；3． 8 ；6． 5 I ；16．І5．
\(\sigma v \mu \beta i ́ \lambda \lambda \epsilon t \nu 12.11\) ．
\(\sigma \nu \mu \beta \circ v \lambda \epsilon \dot{\epsilon} \epsilon \nu\) 1． 2 I．
би́ \(\mu\) ахоя 6． 49 ；13．17；15．11，34；16．5，
8 ；18． 35 ；19．15；20． 39.

бvццєүขи́vat 15． 37 ；19． \(3^{22} 37\).

\(\sigma \nu \mu \pi i \pi t \epsilon L\) 3． 15 ；13． 29.
\(\sigma v \mu \pi \lambda \eta \rho \circ \stackrel{\nu}{\nu}\) 2． 26,37 ；3． 33 ；15． 35.
\(\sigma v \mu \pi \sigma \lambda \iota \tau \epsilon i \in \sigma \notin 12.14\) ．
oúv 11．2， 19.
बvváyєเv 1． 12 ；11． 27.
бvขако入ouӨєi้ 8．6；17． 21 ．
бvขарти́ऽєьข 8． 28.
\(\sigma v \nu\) v́́piol 11． 24 ；12． 29.
бuveióvat 11．I7．
бvขє \(\xi_{0} \rho \mu a ̂ \nu\) 17． 13.
бvขє́ \(\rho \chi є \sigma\) Өat 1．14；16． 35.
बขvє́ \(\chi \epsilon เ \nu 13.17\) ；20． 34 ．
ovvıттávaı 1． 5 ；15．13．

बvขтáттєเข 5． 25 ；6． 35 ；12． 8.
बvעтєлєiv 12．I4．
बvขт \(\mathrm{\rho}_{\mathrm{\beta}} \mathrm{\beta}_{\epsilon \iota \nu}\) 16．17．
бvбтратєv́єยข 19．4．
\(\sigma v \chi^{\nu o ́ s}\) 6． 26 ；13．14；18．14．
बфа⿱㇒冋 11． 30.
бфó \(\delta\) ра 20．19；21． 22.
\(\sigma_{\chi \in \delta o ́ v} 1.25\).
\(\Sigma_{\text {ұoívos 13．}} 26\).
\(\sigma \hat{\omega} \mu a 16.38\) ．
．．．такóбıot 6．I．
тá入avтov 16．22， 29.
Tavaypaio 12．I 7.
тара́ттєเข 1． 26.
тарахй 18．9，27，33．
та́ттє兀ข 5．9；6．4．

тєixos 13． 27 ；15． 28 ；17． 16.
Te \(\lambda \in \sigma \dot{\eta} \gamma \circ \rho o s\) 1． 3 I．
te入eutaios 19．16， 28.
тє \(\lambda \epsilon\) vâà Fr． 12.4 （？）．
télos 11． 3.3 ．
те́тtapes 2． 25 ：12．1， 11 ．
тпиıкаи̂та 11． 6.
Ti日pav́aтทs 7．20， 29 ；8． 9,16 ；15． \(3^{8 ;} 16\). 16， \(24 ; 18.38\).
Tінокраіт 1．\(^{27}\) ．
Tıцó \(\lambda\) aos 2．17．
тинорєітөat 1． 23.
Tis 2．1，23；3． 2 （？）；10． 23 ；11． 32,36 ； 12． 3 ；13．14． 32 ；14． 22 ；15．10， 23 ；
16． 20,31 ；17．18， \(3^{2} ; 19.13 ; 20.5,14\) ．

Tıббафє́ \(\rho \nu \eta\) 5．13；6． \(27,29,37 ; 7.7,13,19\) ， 23，34， 37 ；8． 9 ；16． 24 ；Fr．17．1， 3 （？）．
тоเồtos 5．5，II ；6． 28 ；13． 26 ；14．24， 3 ．
тобои̂tos 5． 26 ；15． 3 I ；21． 39.
то́тє 1． 2 I ；11． 38,39 ；12． 14 ；13． \(9,3^{6}\) ；
14． \(3^{2}\) ；15． 4 ．
т \(\rho\) єis 6． \(3^{1}\) ；12． 5 ．
тр七а́коута 2． 29 ；20． 4.

11． 9,29 ；15． 35 ；16． 8 ；17． 3 I；18． 3 ；
21． 27,29 ．
тро́татоу 6． \(3^{2 .}\)
тоо́тоя 12．8， 19 ；19． 28.
тvүđávєเข 1． 35 ；2． 16,39 ；3． 13 ；11． 37 ；
12． 3 I ；14． 28 ；15． 39 ；17．4， 15.
túpanvos 11． 22 ；Fr．19．I（？）．
\({ }^{`} Y a ́ \mu \pi o \lambda \iota s\) 15． 26.
viós 20．10， 16.
іттакоиєєเข 19． 6.
v̇лápхєเข 10． 6 （？）．
vтт́́ 12．II， 12 ；16．4， 19 ．
\(\dot{i \pi \epsilon \rho \beta o \lambda \eta}\) 14． 1 ．
viтє \(\rho \in ́ \chi \in \iota \nu\) 5．19．
ím \(\eta\) рєтia 1． \(28 ; 16.34\) ；17． 39.
ข่тó 1 ． 1 ；8． 14 ；13． 39 ；14．10；16．2．31；
21． 21,22 ．
v̇тоס́́ \(\chi \epsilon \sigma \theta a \iota 20.22\).
v̇по入ацßávєєข 6．10；11．17；14．I1．
íло́тто⿱亠幺os 6． 3 I ；20． 3.
＇Yбıầo 12． 16.
vortepaius 11． 14.
ขัбтєроン 20．15；21． 16.
фаivetv 16． 29.
фávat 11． \(12 ; 16.29\).
фavepós 14．I7．
Фадотєis 15．18， 21.
Фа́ра६ 1． 31 ．
Фарьáßa̧̧as 2． 33 ；3． \(16,28,36\) ；15． 37 ；
18． 39 ；20．12， 24 ；21． 23.
фа́бкєєц 17．Іо．
фаúخ \(\omega\) s 16． 6.
фє́ \(\epsilon \iota \nu\) 7． 22 ；12． 2 I ；16． 35 ；18． 24.
\(\phi \epsilon \check{\gamma} \gamma \epsilon \tau\) 6．I3；12． 39 ；19． 34.
\(\phi \theta a ́ v e l v 5\) ．I I．
фi入ía 3． 40.
фídos 2． 10.
\(\phi \iota i \omega s\) 14． 40.

Фоívikes 3． 23.
Фонík 21． \(3^{8 .}\)
фоо⿱㇒日̇iv 12． \(35^{-}\)
фроутіऍєІข 12． 39.
фрovpós 18．7．
Фри́yєs 20． 7.
Фрvyia 6．43，44， 46 ；7． 21 ；8． 7 （？）；21．1． \(\Phi \rho . \mu \epsilon \gamma a ́ \lambda \eta\) 6．34．Ф \(\rho . \pi а р а \theta a \lambda a \tau \tau i ́ \delta \iota o s ~ 21.17\). филакй 6． 24 ；16． 37.
Фமкєîs 11． 34 ；14． \(22,28,34,39\) ；15． 3 ， 10 ， 15， 32.
\(\Phi \omega\) кis 15．16， 22.
Хaıрஸ́vєเa 12． 20.
\(\chi^{a \lambda \epsilon \pi o ́ s} 5.17\) ；19． 1 1．\(\chi^{a \lambda \epsilon \pi}{ }^{\wedge} \varsigma 14\) ．18；16．35．
\(\chi\) apiets 1． 9.
\(\chi є \iota \mu \dot{\nu}\) 21．7， 35.
\(\chi\) єі́ 19． 30.
Хєєрıкаа́тทs 15．33；21． 26.
\(\chi є i \rho \omega \nu\) 3． 3 ；11． 4.
хільо 12． 24.
\(\chi\) १ิ̆นа 2． 2 ；6． 27 ；12． 3 ；14． 12 ；15． \(3^{8}\) ；
16．7，II， 18.
\(\chi \rho \eta \mu a \tau i \zeta \epsilon \sigma \theta a \iota 2.14\).
\(\chi \rho \eta ิ \nu a \iota\) 6． 49.
\(\chi \rho \eta\) चुб大at 2．10；10．19；18． 3.
\(\chi \rho \eta ́ \sigma \iota \mu\) оs 20． 21.
\(\chi\) рóvos 1．1， 26 ；2． 39 ；3． 23 ；6．19； 10. II ；16．1， 12,25 ；18． \(3^{6 .}\)
रevoion 2． 1,\(34 ; 16.28\) ；21． 24.
\(\chi \omega ิ \mu a\) 20． 30 ．
\(\chi \dot{\rho} \rho a\) 6． \(3^{6 ;}\) ；12． 9 ；13． 37 ；14． 25,\(37 ; 15\). \({ }_{17}\) ；18． 39 ；19． 8 ， 14 ；20．7，24， 28 ； 21． 36 ．
\(\chi\) хріор 12． 13 ；13． 27 ；15． 27 ；20． 25 ，29， 34 ；21．17， 22.
\(\psi i \lambda o ́ s ~ 6.1\).
ఓ 11． 22.
©s（prep．）1． 30 ；3． 4 I ；13． 35 ；16． 17 ， 26 ； 20． 15 ．
فs（conj．）1．4，24；2．20， 36 ；6．7，12，51； 7． 24 ；11． 17 ， 21 ；12． 39 ；13．22， 29 ； 15． \(30 ; 16.3^{2} ; 17.4,16,3^{1}, 3^{6} ; 18\). 9 ；19． 27 ， 29 ；20． 26 ；21． 18.
\(\boldsymbol{\omega} \sigma \pi \epsilon \rho\) 2． 27 ；10． 19 ；12． \(3^{2}\) ；21． 36.
\(\omega ̈ \sigma \tau \epsilon 21.39\) ．

 ohindrantplesiderleahasiny

 urvinchandiato vecrdolevigud

 istry 150 dures. Jozaliphited
 Nogrefy Lrindlch frydath

seruoryy oyprondor partanjigy 1a civerial foorinaces sonfreer
 2
\(\frac{1}{4}\)
\(\frac{1}{2}\)
2 TMMEINE zNODME TIPFIWH Poripactic aropacies fincwas mpatramio

 TOT．： 1 OT EITEANTHKPYEFI OPEYIBCI ：＂．TAlKATAKXEINETOMin A DOPYE U＇YMFTTATANTAFIN NXALO KETIENKOIMCSOY \(\triangle\) NNI 4 VAMKAZF TOAlF：IEINEINTIAMTORYN INONTON MFNEYIEPYEIMAKOP－大EITON中ATI AgOR：K－ETBYEANAOYETIAATE中HO AfITH OAMMOTOIZEFOAI．IIIONTAEFY AYT：NAFŸFINONS 1 Hi．NKAlKATAY

 TUS\＆EEFPOMEN－HAFINTOYT

 KAb，API TTOHANHYTMONOYEESHTO

 ALPAPITTOAMMOIGYKE中HMFAINT： ISCONAOTUNOYTETAPEEAP：ITI T．APATENFIAAIYゥONYETAZこINV
 Kの：L゙\＆NTONTUN゙アッTHOMOS TEIN AV\｛～NYTOYAYTOYANSPOTAJNA！ Ni\＆NAIANN゙ATァA UAI－INETIITH

 ＇T＋iYrAAMANATi＝jै：OMENOYRAY
 KAiJIPOTEPONdIFNKATA备AP日EINYす。
 F\％j世MFNMITANA保OUNATONOYA TUKアムTHKATAK MITムNTAIKッy
 IO\＆IKAIFAOONTAEITAYKIONAY，Y ＂MMFNbNUTIPFPANNOTETRN，N1 －FinHNHMEgANA．－TPIEEINNHM ？隹何A iv

. \(\quad\) ?
arosernactituycmol
 आTOE \＆FFEYIIDPI TPOF，YeHciny का \(\triangle H\) HAl迎： －et यदz（3in）culida

 INTOIC I epuse （1）\({ }^{(1)}\) an rmbraigotire acurin a wr
 AlO GNBTan JNET
 Tos nor myutur
「ど

 ：EHVLHZENUEANNPY －HeगO人e Teracelhitilalfoilei CT• NiAM THNTETENA C7A AIAAA BBOYCADA． COAJ MAPh R 1 RN：OLU．
 －Cuntacrsicirorazan

 MeNOVMOVCRE MANAT xuaritodiruenoye रgमाoYTUNTUNはKKiwn AY ROMITHAA，2eN．

अaderruange ruraficerticnovicou
 Ir Irn is \(\Delta\) ondec

入hoen：echeth du K゙ALUI INTAB1ACAI
 dildoycevolidcerimo NuMolirroyiuen！
 IKCNTOTEIAY
 ｜acionta diflelak名 Aillir E！（XProll

 T AcA
 －ble a ara．．．1！

 rstrerkevarstolia： मएOCAIANTAKC1たE currucherskiolekr： －iltcuriedoxeNぶ心

 Amम10 Nuverambel dYGYXOYCINENINCE
 arkendepoldivinn ＂NAAIIArHMENJG Cue！

\section*{EGYPT EXPLORATION FUND.}

\section*{GRAECO-ROMAN BRANCH.}

THE EGYPT ENPLORATION FUND, which has conducted Ar haeologial reseal ch in Egypt contimuously since 1882, in 1897 starlid a special dipartment, called the GracooRoman Branch, for the discovery and publication of remains of clussical antiquity and early Christianity in Egypt. The exploration of the sile of Oxyrhynchus has now been completed, and owing to lack of funds further excavations have been suspended for the winter of 1907-8; but it is hoped to resume woork in Egypt in 1908-9.

The Graeco-Roman Branch issues annual volumes, each of about 250 quarto pages, with facsimile plates of the more important patyrri, under the editorship of Drs. B. P. Grexfell and A. S. Hunt.

A subscription of One Guinea to the Branch entilles subscribers to the annual zolume, and also to the annual Archaeological Report. A donation of \(£_{5}\) constitutes life membership. Subscriptions may be sent to the Honorary Treasurers-for England, Mr. H. A. Grebber, British Museum; and for America, Mr. Gardiner M. Lave, Pierie Building, Coply Square, Boston.

\section*{PUBLICATIONS OF THE EGYPT EXPLORATION FUND.}

\section*{MEMOIRS OF THE FUND.}
I. THE STORE CITY OF PITHON AND THE ROUTE OF THE EXIODUS. For 1883 -4. By Edouard Naville. Thirteen Plates and Plans. (Fourth and R'cvised Edition.) 25 s.
II. TANIS, Part I. For \({ }^{1884-5}\). By W. M. Flinders Petrie. Eighteen Plates and Plans. (Second Edition.) 25 s.
III. NaUkRatis, Part I. For \(\mathbf{1 8 8}_{5-6 .}\) By W. M. Flinders Petrie. With Chapters by Cecil Smith, Ernest A. Gardner, and Barclay V. Head. Forty-four Plates and Plans. (Second Edition.) \({ }^{2} 5\) s.
IV. GOSHEN AND THE SHRINE OF SAFT-EL-HENNEH. For 1886-7. By Edouard Naville. Eleven Plates and Plans. (Secomd Edition.) 255.
V. TANIS, Part II ; including TELL DEFENNEH (The Biblical 'Tahpanhes') and Tell nebeshieh. For 1887 -8. By W. M. Flinders Petrie, F. Ll. Griffith, and A. S. Murray. Fifty-one Plates and Plans. 25 s.
VI. NaUKRATIS, Part II. For 1888-9. By Ernest A. Gardner and F. Ll. Griffith. Twenty-four Plates and Plans. \({ }^{25}\) s.
VII. THE CITY OF ONIAS AND THE MOUND OF THE JEW. The Antiquities of Tell-el-Yahâdîyeh. An Extra Volume. By Edouard Naville and F. Ll. Griffith. Twenty-six Plates and Plans. 25 s.
VIII. BUBASTIS. For 1889-90. By Edouard Naville. Fifty-four Plates and Plans. 25 s.
IX. TWO HIEROGLYPHIC PAPYRI FROM TANIS. An Extra Volume. Containing THE SIGN PAPYRUS (a Syllabary). By F. Ll. Griffith. THE geogkaphical papyrus (an Almanac). By W. M. Flinders Petrie. With Remarks by Heinrich Brugsch. (Out of print.)
X. THE FESTIVAL HALL OF OSORKON II (BUBASTIS). For 1890-1. By Edouard Naville. Thirty-nine Plates. 255.
XI. AHNAS EL MEDINEH. For \(1891-2\). By Edouard Naville. Eighteen Plates. And the tomb of paheri at el Kab. By J. J. Tylor and F. Ll. Griffith. Ten Plates. 2 g .
XII. DEIR EL BAHARI, Introductory. For 1892-3. By Edouard Naville. Fifteen Plates and Plans. 25 s.
XIII. DEIR EL BAHARI, Part I. For 1893-4. By Edouard Nayille. Plates I-XXIV (three colonred) with Description. Royal folio. zos.
XIV. DEIR EL BAHARI, Part II. For \(1894-5\). By Edouard Naville. Plates XXV-LV (two coloured) with Description. Royal folio. zos.
XV. DESHÂSHEH. For 1895-6. By W. M. Flinders Petrie. Photogravure and other Plates. 25 s.
XVI. DEIR EL BAHARI, Part III. For 1896-7. By Edouard Naville. Plates LVI-LXXXVI (two coloured) with Description. Royal folio. 30s.
XVil. DENDEREH. For 1897-8. By W. M. Flinders Petrie. Thirty-eight Plates. 255. (Extra Plates of Inscriptions. Forty Plates. ros.)
XVIII. ROYAL TOMBS OF THE FIRST DYNASTY. For 1898-9. By W. M. Flinders Petrie. Sixty-eight Plates. 25 s.
XIX. DEIR EL BAHARI, Part IV. For 1899-1900. By Edolard Nayille. Plates LXXXVII-CXVIII (two coloured) with Description. Royal folio. zos.
XX. DIOSPOLIS PARVA. An Extra Volume. By W. M. Flinders Petrie. Forty-nine Plates. (Out of print.)
XXI. THE ROYAL TOMBS OF THE EARLIEST DYNASTIES, Part II. For 1900-1. By W. M. Flinders Petrie. Sixty-three Plates. 25s. (Thirty-five extra Plates, ics.)
XXII. AbYDOS, Part I. For igoi-2. By W. M. Flinders Petrie. Eighty-one Plates. \({ }^{2}\) §. .
XXIII. EL AMRAH AND ABYDOS. An Extra Volume. By D. Randall-MacIver, A. C. Mace, and F. Ll. Griffith. Sixty Plates 25 s.
XXIV. ABYDOS, Part II. For 1902-3. By W. M. Flinders Petrie. Sixty-four Plates. \({ }^{25}\) s.
XXV. ABydOS, Part III. An Extra Volume. By C. T. Currelly, E. R. Ayrton, and A. E. P. Weigall, \&c. Sixty-one Plates. \({ }^{2} \bar{\Sigma} s\).
XXVI. EHNASYA. For 1903-4. By W. M. Flinders Petrie. Forty-three Plates. \({ }_{2} 5\) s. (ROMAN EHNASYA. Thirty-two extra Plates. Ios.)
XXVII. DEIR EL BAHARI, Part V. For 1904-5. By Edouard Naville. Plates CXIX-CL with Description. Royal folio. 30 s.
XXVIII. THE ELEVENTH DYNASTY TEMPLE AT DEIR EL BAHARI. Part I. For 1905-6. By Edouard Naville, H. R. Hall, and E. R. Ayrton. Thirty-one Plates. \({ }^{2} 5\) s.
xxix. DEIR EL BaHari, Part VI. For 1906-7. By Edouard Naville. Royal folio. (In preparation.)

\section*{ARCHAEOLOGICAL SURVEY.}

Edited by F. Ll. Griffith.
I. BENI HASAN, Part I. For \(\mathbf{1 8 9 0} \mathbf{- 1}\). By Percy E. Newberry. With Plans by G. W. Fraser. Forty-nine Plates (four coloured). 25 s.
II. BENI HASAN, Part II. For 1891-2. By Percy E. Newberry. With Appendix, Plans, and Measurements by G. W. Fraser. Thirty-seven Plates (two coloured). 25 s.
III. EL BERSHEH, Part I. For 1892-3. By Percy Newberry. Thirty-four Plates (two coloured). \({ }_{2}^{2} \mathrm{~S}\).
IV. EL BERSHEH, Part II. For 1893-4. By F. Ll. Griffith and Percy E. Newberry. With Appendix by G. W. Fraser. Twenty-three Plates (two colonred). \({ }_{2} 5\) s.
V. BENI HASAN, Part III. For 1894-5. By F. Ll. Griffith. (Hieroglyphs, and manufacture, \&c., of Flint Knives.) Ten coloured Plates. 25 s.
VI. HIEROGLYPHS FROM THE COLLECTIONS OF THE EGYPT EXPLORATION FUND. For 1895-6. By F.Ll. Griffith. Nine coloured 「lates. \({ }^{25}\) s.
VII. BENI HASAN, Part IV. For \(1896-7\). By F. Ll. Griffith. (Illustrating beasts and birds, arts, crafts, \&c.) Twenty-seven Plates (twenty-one coloured). \({ }_{2} 5\) s.
VIII. THE MASTABA OF PTAHHETEP AND AKHETHETEP AT SAQQAREH, Part I. For \(1897-8\). By N. de G. Davies and F. Ll. Griffith. Thirtyone Plates (three coloured). \({ }_{2} 5\).
IX. THE MASTABA OF PTAHHETEP AND AKHETHETEP AT SAQQAREH, Part II. For \(1898-9\). By N. de G. Davies and F.Ll.. Griffith. Thirtyfive Plates. \({ }^{2} 5\) s.
X. THE ROCK TOMBS OF SHEIKH SAID. For 1899-1900. By N. de G. Davies. Thirty-five Plates. \({ }^{2} 5\) s.
XI. THE ROCK TOMBS OF DEIR EL GEBRÂWI, Part I. For 1900-r. By N. de G. Davies. Twenty-seven Plates (two coloured). \({ }_{2} 5\) s.
XII. DEIR EL GEBRÂWI, Part II. For 1901-2. Thirty Plates (two coloured). \({ }^{2} 5^{5}\).
XIII. THE ROCK TOMBS OF EL AMARNA, Part I. For 1902-3. Forty-one Plates. \({ }^{25}\) s.
XIV. THE ROCK TOMBS OF EL AMARNA, Part II. For 1903-4. Forty-seven Plates. \({ }^{2} 5\) s.
XV. THE ROCK TOMBS OF EL AMARNA, Part III. For 1904-5. Thirty-nine Plates. \({ }^{2} 4\) s.
XVI. THE ROCK TOMBS OF EL AMARNA, Part IV. For 1905-6. By N. de G. Davies. Forty-five Plates. \({ }^{25}\) s.
XVII. THE ROCK TOMBS OF EL AMARNA, Part V. For 1906-7. By N.de G. Davies. (In preparation.)

\section*{GRAECO-ROMAN BRANCH.}
I. THE OXYRHYNCHUS PAPYRI, Part I. For 1897-8. By B. P. Grexfell and A. S. Hunt. Eight Collotype Plates. 25 s.
II. THE OXYRHYNCHUS PAPYRI, Part II. For \(1898-9\). Eight Collotype Plates. 25 s.
III. FAYÛ̀m TOWNS AND Their Papyri. For 1899-1900. By B. P. Grenfrll, A. S. Hunt, and D. G. Hogarth. Eighteen Plates. 25 s.
IV. THE TEBTUNIS PAPYRI. Double Volume for \(1900-1\) and \(1901-2\). By B. P. Grenfell, A. S. Ilent, and J. G. Smyi.. Nine Collotype Plates. (Not for sale.)
V. THE OXYRHYNCHUS PAPYRI, Part III. For 1902-3. Six Collotype Plates. 25 s.
V1. THE ONYRHYNCHUS PAPYRI, Part IV. For 1903-4. Eight Collotype Plates. 25 s.
VII. THE HIBEH PAPYRI, Part I. Double Volume for \(1904-5\) and \(1905-6\). By B. P. Grenffll and A. S. Hunt. Ten Collotype Plates. 455.
VIII. The OXYRHYNCHUS PAPYRI, Part V. For 1906-7. By B. P. Grenfell and A. S. Hunt. Seven Collotype Plates. 25 s.
IN. The OXYRHYNCHUS PAPYRI, Patt VI. For 1907-8. By B. P. Grenfell and A. S. HUNT. In preparation.)

\section*{ANNUAL ARCHAEOLOGICAL REPORTS.}

Yearly Summaries by F. G. Kenyon, W. E. Crum, and the Officers of the Society, with Maps.) Edited by F. I.L. Griffith.
the season's work. For 1890-1. By Edouard Nayille, Pfrcy E Newberry, and G. W. Fraser. 2 s .6 d .

For 1892-3 and 1893-4. 2s. 6d. each.
" \(1894-5.3\) 3. 6 d. Containing Report (with Plans) of Mr. D. G. Hogarth's Excavations in Alexandria.
," 1895-6. 35. With Illustrated Article on the Transport of Obelisks by Edouard Naville.
", 1896-7. \({ }^{2 s} .6 \mathrm{~d}\). With Articles on Oxyrhynchus and its Papyri by B. P. Grenfell, and a Thucydides
Papyrus from Oxy rhynchus by A. S. IU Nit.
" \(1897-8\). 25.6 d . With Illustrated Aiticle on Excavations at Hierakonpolis by W. M. Flinders Petrie.
" 1898-9. 2s. 6d. With Article on the Position of Lake Moeris by B. P. Grenfell and A. S. Munt. ,, 1899-1900. 2s. 6d. With Article on Knossos in its Egyptian Relations by A. J. EVans.
And six successive years, \(25.6 d\). each.

\section*{SPECIAL PUBLICATIONS.}

Aoria lhsoy: 'Sayings of Our Lord,' from an Early Greek Papyrus. By B. P. Grenfell and A. S. Hunt. 25 . (with Collotypes) and \(6 d\). net.
NEW SAYINGS OF JESUS AND FRAGMENT OF A LOST GOSPEL. By B. P. Grenfell and A. S. Hunt. is. net.
fragment of an uncanonical Gospel. By B. P. Grenfell and A. S Hunt. is. net.
ATLAS OF ANCIENT EGYPT. With Letterpress and Index. (Second Edition.) (Under revision.)
GUide to temple of deir el bahari. With Plan. \(6 d\).
COPTIC OSTRACA. By W. F.. Crim. ios. 6d. net.
Slides from Fund Photographs may be obtained through Messrs. Newton \&o Co, 3 Fleet Street, E:.C.; and Prints from Mr. K. C. Murray, 37 Dartmouth Pa,k Hill, N.W.

\section*{Offices of the Egypt Exploration Fund:}

37 GREAT RUSSELI. STRIET, LONDON, W.C., AND
PIERCE BUILDING, COPLEY SQUARE, BUSTON, MASS., U.SA.

\section*{Agents:}

BERNARD QUARITCH, 11 GRAFTON STREET, NEW BONI) STREET, W:
KEGAN PAUL, TRENCII, TRUBNER \& Co., IRYDEN HOUSE, GERRAKD STREET, W. ASHER \& Co., 33 BEDFORD STREET, COVFNT GARDEN, W.C., AND

56 UNTER DEN LINIDEN, BERLIN.
HENRY FROWDE, AMEN CORNER, E.C., AND \(91 \& 2.3\) FIFTH AVENUE, NEW YORK.

> PA 3315 \(08 G 7\) pt. 5

\section*{PLEASE DO NOT REMOVE} SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY```

